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Genetic insights of blood lipid
metabolites on polycystic ovary
syndrome risk: a bidirectional
two-sample Mendelian
randomization study
Xinzhe Wang1†, Huawei Han2†, Xiuwen Shi1, Xiaping Nie1,
Rui Zhu1, Jing Jin1* and Huifang Zhou1*

1Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine,
Nanjing, China, 2Department of Orthopedics, The Second Affiliated Hospital of Nanjing University of
Chinese Medicine, Nanjing, China
Background: Pathologically, metabolic disorder plays a crucial role in polycystic

ovarian syndrome (PCOS). However, there is no conclusive evidence lipid

metabolite levels to PCOS risk.

Methods: In this study, genome-wide association study (GWAS) genetic data for

122 lipid metabolites were used to assign instrumental variables (IVs). PCOS

GWAS were derived from a large-scale meta-analysis of 10,074 PCOS cases and

103,164 controls. An inverse variance weighted (IVW) analysis was the primary

methodology used for Mendelian randomization (MR). For sensitivity analyses,

Cochran Q test, MR-Egger intercept, MR-PRESSO, leave-one-out analysis,and

Steiger test were performed. Furthermore, we conducted replication analysis,

meta-analysis, and metabolic pathway analysis. Lastly, reverse MR analysis was

used to determine whether the onset of PCOS affected lipid metabolites.

Results: This study detected the blood lipid metabolites and potential metabolic

pathways that have a genetic association with PCOS onset. After IVW, sensitivity

analyses, replication and meta-analysis, two pathogenic lipid metabolites of

PCOS were finally identified: Hexadecanedioate (OR=1.85,95%CI=1.27–2.70,

P=0.001) and Dihomo-linolenate (OR=2.45,95%CI=1.30–4.59, P=0.005).

Besides, It was found that PCOS may be mediated by unsaturated fatty acid

biosynthesis and primary bile acid biosynthesis metabolic pathways. Reverse MR

analysis showed the causal association between PCOS and 2-tetradecenoyl

carnitine at the genetic level (OR=1.025, 95% CI=1.003–1.048, P=0.026).
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Conclusion: Genetic evidence suggests a causal relationship between

hexadecanedioate and dihomo-linolenate and the risk of PCOS. These

compounds could potentially serve as metabolic biomarkers for screening

PCOS and selecting drug targets. The identification of these metabolic

pathways is valuable in guiding the exploration of the pathological

mechanisms of PCOS, although further studies are necessary for confirmation.
KEYWORDS

Mendelian randomization, lipid metabolites, polycystic ovarian syndrome, genetics,
meta-analysis, metabolic pathway analysis
1 Introduction

Globally, PCOS affects 2.2% to 26% of women, making it the

most prevalent reproductive and endocrine disorder (1). The clinical

manifestations are varied, such as menstrual disorders, infertility,

hirsutism, acne, glucose and lipid metabolism disorder (2). Moreover,

it can increase the risk of cardiovascular disease, diabetes,

gynecological tumors and other diseases (3, 4). PCOS is a

multisystem disease that affects women from adolescence to

menopause, imposing a heavy economic burden on patients and

posing threats to their physical and mental well-being. The delayed

detection and inadequate management of PCOS have generated

discontent among women worldwide (5). Therefore, exploring the

key targets for the pathogenesis and treatment of PCOS

has increasingly become a public health issue that requires

urgent attention.

Metabolites, which are the outcomes of genetic and

environmental influences on organisms, exhibit sensitivity to

physiological and pathological variations within the body (6).

Metabolomics play an imperative role identifying pertinent

biomarkers for disease diagnosis and treatment. Numerous

clinical and basic studies in recent years have reported the effects

of lipid metabolism on PCOS. Lipid metabolism disorders and

PCOS can form a detrimental cycle, which can be responsible for

the main pathological features of PCOS, including insulin resistance

and hyperandrogenism (7).Moreover, certain lipid metabolites’

aberrant changes are implicated in the chronic low-grade

inflammation process of PCOS, consequently influencing oocyte

maturation and exacerbating ovulation disorders (8, 9). Yu et al.

(10) reported that the blood lipid metabolites of PCOS differed

significantly from those of healthy controls. They also observed
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alterations in related pathway profiles, such as fatty acid

degradation and ether lipid metabolism. Additional, Buszewska-

Forajta et al. (11) found a deterioration of lipid metabolism in PCOS

patients, with higher sphingolipids and lower fatty acids. These

studies are, however, mostly cross-sectional or observational,

rendering their conclusions susceptible to confounding factors.

Currently, there is no detailed and in-depth study exploring

whether blood lipid metabolites are causally associated with PCOS.

Genetic causality can be determined by Mendelian randomization

(MR), an emerging and effective scientific technique. The genetic

variants or single nucleotide polymorphism (SNPs) may be used as

an useful instrument to assess causal link between exposure and

outcome (12). By circumventing reverse causality and confounding

factors encountered in traditional epidemiological studies, MR can

provide scientifically reliable results for elucidating disease pathogenesis

(13). Therefore, it has gained widespread adoption for investigating

PCOS pathology (14). In this study, we utilized extensive GWAS data

to explore the genetic relationship between blood lipid metabolites and

PCOS through bidirectional two-sample MR. Our findings aim to

provide innovative insights directed towards the prevention and

treatment of PCOS.
2 Methods

2.1 Study design

In our study, we utilized validated genetic variants from publicly

available GWAS data as instrumental variables (IVs) to investigate

their causal relationship with outcome by replacing exposure. Blood

lipid metabolites were preliminarily considered as “exposure”, while

PCOS was considered the “outcome”. Our study design adhered to

the three fundamental assumptions of MR outlined by Bowden et al.

(15): (1) The IVs should exhibit a strong connection with the blood

lipid metabolites; (2) IVs should not be influenced by any

confounding factors between blood lipid metabolites and PCOS;

(3) IVs must solely impact PCOS through blood lipid metabolites.

These assumptions ensure that the genetic variants randomly

assigned during meiosis are strongly linked to lipid metabolites,
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unaffected by confounding factors or reverse causality, thereby

ensuring the validity of causal inferences. Figure 1 illustrates the

three hypotheses and the research methodologies employed. We

established stringent criteria for IV selection to fulfill hypothesis 1.

Primary and supplementary analyses in MR were used to

systematically assess the causal effects of lipid metabolites on

PCOS. A series of sensitivity analyses were performed to confirm

that hypotheses 2 and 3 were not violated. Following preliminary

analysis, we utilized another PCOS GWAS dataset (Number:

GCST90044902) to conduct replication and meta-analysis for

further screening of target lipid metabolites. Metabolic pathway

analysis and reverse analysis were also performed to make findings.
2.2 GWAS data for 122 blood lipid
metabolites and PCOS

Blood lipid metabolite GWAS data were identified by Shin et al.

using genome-wide association scans and high-throughput

metabolic measurements. They assessed the genetic relevance of

122 lipid metabolites in 7824 individuals of European ancestry

using nearly half a million SNPs (16). Access to the metabolomics

GWAS server was made (http://metabolomics.helmholtz-

muenchen.de/gwas).

PCOS GWAS stem from a comprehensive meta-analysis

conducted by Day et al. that utilized Rotterdam criteria, National

Institutes of Health (NIH) criteria, or self-reported criteria to

diagnose PCOS. 10,074 patients and 103,164 controls of
Frontiers in Endocrinology 03
European descent were enrolled in this study (17). The data

accessing code is GCST007089 and access is available via the

GWAS catalog (https://www.ebi.ac.uk/gwas).

It is important to highlight that weak instrument bias resulting

from sample overlap can influence the observational association

between exposure and outcome, potentially leading to inflated type

I error rates for causal effects (18). In our study, we selected samples

from different datasets to mitigate the bias caused by

overlapping samples.
2.3 Instrumental variables selection

A rigorous set of criteria was set to screen for excellent IVs

related to exposure. 1) We extracted IVs with significance

thresholds below 1×10−5 in GWAS data of exposure, which are

considered to be highly correlated with exposure. Our linkage

disequilibrium (LD) was set at 0.01 within 500 KB to ensure

independence of IVs.2) F-statistic was used to quantify the

strength of genetic variation for individual SNP. IVs with F-

statistic <10 were removed to reduce the possibility of weak

instrument bias. F = (n-k-1) R2/k (1-R2) (n represents the sample

size, k represents the number of IVs included, and R2 represents the

instrumental variable explaining the degree of exposure) (19).3) IVs

were extracted from outcome GWAS data, and the alleles of

exposure- and outcome-SNPs were harmonized. We then

eliminated palindromic SNPs with intermediate effect allele

frequencies (EAF > 0.42).
FIGURE 1

Overview of this Mendelian randomization (MR) analysis. Abbreviations: IV, instrumental variables; SNPs, single nucleotide polymorphisms; IVW,
inverse variance weighted; LD, linkage disequilibrium; LOO analysis, leave- one- out analysis; MR- PRESSO, MR- Pleiotropy Residual sum and outlier.
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2.4 Primary analysis and sensitivity analysis

When all included SNPs are valid instrumental variables, the IVW

method can provide accurate and unbiased estimates of causality

(20).So IVW method was considered as the primary method to

evaluate the causal relationship between lipid metabolites and PCOS

(P <0.05 was considered significant). Additionally, we employed the

weighted median (WM), MR-Egger, simple mode, and weighted mode

methods as supplementary analyses. The WM grants robust outcomes

for causal analyses when less than half of the SNPs are deemed invalid

(21). MR-Egger can access the horizontal pleiotropy of all invalid IVs

(22). Weighted mode and simple mode were also employed to address

bias resulting from a limited number of IVs that do not meet MR’s

causal inference criteria (23). Significance estimates provided by the

primary analysis were considered to be significant if they were in the

same direction as those provided by the supplementary analysis. Five

methods are helpful to achieve the comprehensive evaluation of

causal effects.

A series of sensitivity analyses were conducted to verify that the

findings did not violate the core MR assumptions and to enhance

the reliability of causal effects. Cochran’s Q statistic was conducted

to quantify the heterogeneity among IVs. The egger-intercept

method can assess whether instrumental variables are related to

confounding factors and test whether causal effects are biased by

horizontal pleiotropy (20, 24) (P >0.05 indicated no significant

heterogeneity and horizontal pleiotropy). Furthermore, the MR-

PRESSO method was utilized to identify and correct for any

significant outliers and to address the limited statistical power of

the Egger-intercept method in order to reduce pleiotropic bias (25).

Leave-one-out sensitivity analysis involved systematically excluding

individual SNPs one by one to assess the impact on effect estimates

and to ensure that the causal inference was not heavily reliant on a

single SNP, thus ensuring the robustness of the overall causal

conclusions. Finally, We also performed the Steiger method to

verify that the selected SNPs explained greater variability in the

exposure than in the outcome(P <0.05), which is important to avoid

reverse causality bias in the study (26).
2.5 Replication and meta-analysis

To further validate the identification of lipid metabolites based on

the mentioned criteria, we conducted a repeat IVW analysis using

data from another GWAS in the GWAS catalog involving 141,355

individuals of European ancestry (GCST90044902) (27). The results

from both the initial and replication analyses were then combined in

a meta-analysis to strengthen the evidence supporting the genetic

association of protective and pathogenic lipid metabolites with PCOS.
2.6 Metabolic pathway analysis

The KEGG database metabolic pathway analysis was conducted

using MetaboAnalyst 5.0 (https://www.metaboanalyste.ca/) (28) to

explore the potential pathogenesis of lipid metabolites affecting the

pathology of PCOS. P<0.1 was considered statistically significant (29).
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2.7 Reverse MR analysis

In order to in-depth and comprehensive analysis of blood lipid

metabolites and PCOS genetic causality, we regarded PCOS as

“exposed”, and the identified blood lipid metabolites as “outcome”.

Similarly, we set the significance threshold at 1×10−5 and LD

r2<0.01 within 500KB to screen for IVs strongly associated with

PCOS. Palindromic SNPs were removed and weak IVs interference

was excluded. Then, we applied IVW methods to investigate

whether the PCOS onset contributes to genetic changes in lipid

metabolites. Results were robustly tested using sensitivity analysis.
3 Results

3.1 IVs selection

Following meticulous selection of SNPs strongly associated with

every lipid metabolite, SNPs for caprate (10:0) and butyrylcarnitine

were not found in harmonizing with the PCOS GWAS.

Consequently, MR of these two metabolites were abandoned.

Details of the corresponding SNPs for the remaining 120 lipid

metabolites for MR analysis are provided in Supplementary Table

S2. These SNPs contains no palindrome SNPs and F statistic > 10,

be deemed to be valid IVs.
3.2 Primary analysis and sensitivity analysis

Nine lipid metabolites were preliminarily identified to be

associated with PCOS using the IVW method (IVW P<0.05)

(Supplementary Table S3). The direction of the odds ratio (OR>1

or OR<1) indicates the positive or negative correlation trend of the

causal effect. Further analysis revealed inconsistent OR values among

the five methods, leading us to conclude that the causal relationship

between dehydroisoandrosterone sulfate (DHEA-S), 2-

linoleoylglycerophosphocholine, and PCOS may be a false positive.

Therefore, after preliminary analysis, we identified 2-tetradecenoyl

carnitine(IVW OR=0.55, 95% CI=0.32–0.95, P=0.032) and 7-alpha-

hydroxy-3-oxo-4-cholestenoate (7-Hoca) (IVW OR=0.16, 95%

CI=0.04–0.69, P=0.014)had causal relationship with the decreased

risk of PCOS. While the remaining 5 metabolites had causal

relationship with the increased risk of PCOS: hexanoylcarnitine

(IVW OR=2.85,95%CI=1.25–6.50,P=0.013), 3-dehydrocarnitine

( I VW OR= 3 . 5 3 , 9 5%C I = 1 . 2 3 – 1 0 . 1 0 , P = 0 . 0 1 9 ) , 1 -

arachidonoylglycerophosphoethanolamine(IVW OR=3.97,95%

CI=1.61–9.76,P=0.033), hexadecanedioate(IVW OR=1.92, 95%

CI=1.10–3.37, P=0.022) and dihomo-linolenate (20:3n3 or n6)

(IVW OR=3.17, 95% CI=1.18- 8.49, P=0.022) (Figure 2). Scatter

plots show the MR effects of the seven metabolites estimated by the

different methods with PCOS (Supplementary Figure S1). The results

of a series of sensitivity analyses ensured the robustness of causal

effects. These seven metabolites did not appear to be linked to PCOS

by horizontal pleiotropy or heterogeneity according to Cochran’s Q

statistics and MR-Egger (all P>0.05) (Table 1). The results of MR-

PRESSO did not support the presence of outlying SNPs (all P>0.05)
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TABLE 1 The results of heterogeneity, horizontal pleiotropy and MR-PRESSO of the 7 lipid metabolites and PCOS in the MR analysis.

Exposure Outcome
Pleiotropy test

Heterogeneity
test

MR-PRESSO

Intercept p-value Q Q_ p-value Sd Global Test p-value

Hexanoylcarnitine PCOS -0.04 0.21 15.82 0.67 0.384 0.72

3-dehydrocarnitine PCOS 0.02 0.46 33.80 0.21 0.536 0.23

1-arachidonoylglycerophosphoethanolamine PCOS -0.01 0.73 28.20 0.45 0.460 0.50

2-tetradecenoyl carnitine PCOS 0.01 0.73 12.94 0.79 0.234 0.82

Hexadecanedioate PCOS 0.02 0.07 31.37 0.18 0.286 0.18

Dihomo-linolenate (20:3n3 or n6) PCOS -0.02 0.41 21.50 0.49 0.497 0.47

7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) PCOS 0.03 0.45 11.69 0.70 0.650 0.67
F
rontiers in Endocrinology
 05
MR, Mendelian randomization; Q, heterogeneity statistic Q.
FIGURE 2

Forest plot of the causal relationship between 7 lipid metabolites and PCOS in the result of primary and supplementary analyses The blue dots
represent the estimates of five methods, and the blue bars represent the 95% confidence intervals of estimates. The OR > 1 indicates increased risk
while< 1 indicates decreased risk.
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(Table 1). The distribution of SNPs for each metabolite is presented

using funnel plots. IVW showed that SNPs were distributed roughly

symmetrically, indicating that the results of the MR analysis were not

biased by outlying SNPs (Supplementary Figure S2). The plot of

leave-one-out analysis showed that when one snp was removed, the

overall causal effect of the remaining SNPs on the outcome did not

deviate substantially, supporting that individual SNPs were not

responsible for biasing estimates of the MR total effects (Figure 3).

The Steiger test revealed that the results of lipid metabolites and

PCOS causality were not interfered by reverse causality effect (all

P<0.05) (Supplementary Table S4).
Frontiers in Endocrinology 06
3.3 Replication and meta-analysis

Based on the PCOS GWAS data from the FinnGen database, we

used 7 identified lipid metabolites as “exposures” to conduct

replication analysis and meta-analysis of their causal relationship

with PCOS. Common effect model and random effect model

ultimately confirmed a strong causal association between two lipid

metabolites and PCOS (Supplementary Table S5). Specifically,

Hexadecanedioate (OR=1.85,95%CI=1.27–2.70, P=0.001) and

dihomo-linolenate (20:3n3 or n6) (OR=2.45,95%CI=1.30–4.59,

P=0.005) were found to be pathogenic lipid metabolites in PCOS
A B

D E F

G

C

FIGURE 3

Leave-one-out analysis of causal estimates of exposure (Specific lipid metabolites) on polycystic ovarian syndrome(PCOS). Calculate the MR results of the
remaining IVs after removing the IVs one by one. (A):Hexanoylcamitine; (B): 3-dehydrocarnitine; (C): 1-arachidonoylglycerophosphoethanolamine; (D): 2-
tetradecenoyl carnitine; (E): Hexadecanedioate; (F): Dihomo-linolenate; (G): 7-alpha-hydroxy-3-oxo-4-cholestenoate;.
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(Figure 4). However, the meta-analysis did not reveal a significant

causal relationship between the remaining five metabolites and PCOS

onset, such as 3-dehydrocarnitine and 2-tetradecenoyl carnitine (P

value>0.05). This may be explained by the limited sample size of the

PCOS GWAS data used in the replication analysis and the difference

in the two PCOS GWAS samples.
3.4 Metabolic pathway analysis

The selected 7 lipid metabolites were used to explore their

possible metabolic pathways involved in PCOS pathology. Despite

not identifying any metabolic pathways at the 0.05 significance

level, the researcher adjusted the significance threshold to P<0.1 to

consider findings as statistically significant (29). The results

highlighted two significant metabolic pathways: biosynthesis of

unsaturated fatty acids (P=0.068) and primary bile acid

biosynthesis (P=0.086), which are believed to contribute to the

development and progression of PCOS.
3.5 Reverse MR analysis

According to the reverse MR analysis, we identified the genetic

association between PCOS and 2-tetradecenoyl carnitine (IVW

OR=1.025, 95% CI=1.003–1.048, P=0.026) (Supplementary Table

S6). Heterogeneity and horizontal pleiotropy were not significant in

the sensitivity analysis (P>0.05).
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4 Discussion

The polycystic ovary syndrome is an endocrine and metabolic

disorder with genetic heterogeneity that affects reproductive health

(30).Metabolic disorders, particularly lipid metabolism disorders,

are prominent clinical manifestations and key mechanisms of

PCOS (31). Recent research has highlighted the significance of

identifying differential blood metabolites in understanding the

pathogenesis of PCOS (32). However, the specific blood lipid

metabolites that may have protective or pathogenic effects on the

development of PCOS remain unclear. GWAS from publicly

available sources were used in this study to provide the first

comprehensive and in-depth exploration of the gene-level link

between blood lipid metabolites and PCOS. Through IVW and

sensitivity analysis, we identified 7 lipid metabolites that are causally

relate to PCOS. Subsequent replication and meta-analysis further

confirmed the link between hexadecanedioate, dihomo-linolenate

and the increased risk of PCOS, ensuring the robustness of the

findings. Additionally, we identified two metabolic pathways that

may contribute to PCOS’ biological mechanisms. These findings

provide ideas for diagnosing and treating PCOS with specific

lipid metabolites.

Hexadecanedioate, a long-chain dicarboxylic acid, is synthesized

via the w-oxidation pathway (33). Raji’s early studies linked

hexadecanedioate to increased all-cause mortality in women and

highlighted its negative impact on women’s health (34). However,

there is a current lack of studies investigating the role of

hexadecanedioate in the development of PCOS. Hexadecanedioate is
A

B

FIGURE 4

Meta-analysis of the causal associations between lipid metabolites and PCOS. GCST007089: GWAS for PCOS used in the primary analysis;
GCST90044902: GWAS for PCOS used in the replication analysis. (A) Meta-analysis results of MR analysis of hexadecanedioate and different PCOS
GWAS; (B) Meta-analysis results of MR analysis of dihomo-linolenate (20:3n3 or n6) and different PCOS GWAS. Abbreviations: SE: Standard Error;
95%- CI: 95% confidence interval; OR: odds ratio.
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recognized as a natural substrate for the organic anion-transporting

polypeptide (OATP) (35). Francisca et al. (36) observed elevated OATP

levels in women with PCOS compared to those without. OATP

regulates the uptake of dehydroepiandrosterone sulfate (37),which

may be involved in the metabolic process of hyperandrogenism in

PCOS. This provides a possible explanation for the mechanism of

hexadecanedioate as a pathogenic lipid metabolite in PCOS. Among

the 26 SNPs identified as instrumental variables for hexadecanedioate,

rs11045916(b=0.0605, SE=0.0069, P=1.424E-18) (Supplementary

Table S2) (Supplementary Figure S3) showed the strongest

association. However, the specific role of this genetic variant in

PCOS pathogenesis remains unclear.

Zhang et al. (38) reported an increase in dihomo-linolenate

levels in plasma phospholipids in individuals with PCOS. Our study

also confirmed the relationship between dihomo-linolenate and

PCOS, but the exact mechanism by which dihomo-linolenate

contributes to PCOS pathogenesis is still unknown. In a recent

review, dihomo-linolenate and its derivatives were discussed as

possible mediators of inflammation (39). It can be converted to

arachidonic acid, which exhibits proinflammatory properties and

may contribute to the chronic inflammatory state observed in

PCOS. A cross-sectional study revealed that higher linolenic acid

was link to glucose and lipid metabolism disorders, as well as

increased insulin resistance (40). However, more research is

necessary to determine if linolenic acid directly increases the risk

of PCOS by aggravating insulin resistance. Additionally, in

the dihomo-linolenate GWAS data, we identified a causal

relationship between rs4978407, rs10842318, rs1816995, and

PCOS (Supplementary Figure S3). These genetic loci should be

further investigated as potential key factors in the pathogenesis of

PCOS. Inverse MR analysis revealed interesting results, indicating a

decrease in 2-tetradecenoyl carnitine levels with the onset of PCOS.

Despite the negative results in the meta-analysis for 2-tetradecenoyl

carnitine, this lipid metabolite remains significant. The statistical

significance of bidirectional causal studies suggests that it could be a

promising target for PCOS treatment.

In the pathways analysis, it has been reported that the

biosynthesis of unsaturated fatty acids is crucial to the metabolic

pathway of lipid metabolites that affect the risk of PCOS.

Polyunsaturated fatty acid metabolism has been found to improve

sex hormone disorders, reduce oxidative stress, and reduce

inflammation in PCOS, according to a meta-analysis (41). Ma

et al.’s animal experiment confirmed that polyunsaturated fatty

acids can enhance oocyte quality in PCOS mice by reducing

oxidative stress level and improving spindle abnormalities (42).

The lipid metabolites identified in our study may serve as important

targets in the biosynthetic pathway of unsaturated fatty acids that

affect PCOS. We also found that the primary bile acid biosynthesis

pathway is of substantial significance. Bile acids contribute greatly

to cholesterol metabolism and are known to be important endocrine

regulators (43). This pathway has been associated with metabolic

diseases such as diabetes mellitus and non-alcoholic fatty liver

disease (44, 45). Yu et al. (46) investigated the bile acid profiles in

PCOS and controls, and discovered that the bile acid anabolic

pathways were crucial for glucose metabolism disorder in PCOS.

The next phase of research in this field should focus on the
Frontiers in Endocrinology 08
exploration of the downstream molecules in this pathway and the

underlying mechanisms involved in PCOS pathology.

Our study has certain advantages. Firstly, we utilized the most

comprehensive published GWAS, covering large populations to

ensure the objectivity of our results. Secondly, after strict screening

effective IVs, rational MR and sensitivity analyses were used to

thoroughly evaluate the causal effects to avoid reverse causality and

confounding, and to ensure the accuracy and robustness of the

results. Thirdly, additional GWAS data used for replicate analysis

and meta-analysis were further validated, supporting the reliability

of causal inference of certain metabolites with PCOS. In summary,

genetic associations identified at the level of genetic variation will

provide a metabolomics perspective for screening and identifying

significantly altered metabolites that influence PCOS pathogenesis.

This is expected to provide new markers for predicting those at

increased risk of PCOS. Besides, Studies have confirmed that

metabolic interventions by diet, exercise and lipid-lowering drugs

are important treatments for PCOS, which can change the blood

metabolites of PCOS (47). Our findings may provide preliminary

evidence for the mechanistic targets of metabolic interventions in

the treatment of PCOS, providing valuable insights for the design of

future clinical studies.

However, some limitations need to be considered. Firstly, Due

to the insufficient IVs, we relaxed the p-value threshold (P<1×10

−5) for screening SNPs related to lipid metabolites. This is

considered reasonable threshold in some studies (48, 49). This

would lead to weak IVs bias that should be considered, although

the F-statistics > 10. Secondly, although we used sensitivity

analyses to exclude horizontal pleiotropy, we don’t have the

strict screening and eliminate potential confounding factors

related IVs. Besides, our study may be biased by associations of

unknown confounders with IVs. Thirdly, age and weight are

recognized as significant factors affecting the onset and

treatment of PCOS. However, individual patient details were not

available from publicly available GWAS databases, so subgroup

analyses for age, weight, and underlying diseases could not be

performed in the MR study. Differences in lipid metabolites in

different phenotypes of PCOS may cause an overall causal effect

bias. Finally, exposure and outcome GWAS data consisted of

individuals of European ancestry, which while reducing ethnic

heterogeneity, but restrict the applicability of our findings to other

ethnic groups. This demographic bias may bias the findings and

findings should be validated in different ethnic groups.
5 Conclusion

Our study confirmed the robustness of the causal effect of

hexadecanedioate and dihomo-linolenate on PCOS risk at the

genetic level. Blood lipid metabolites may potentially regulate the

progression of PCOS by interfering with the biosynthesis of

unsaturated fatty acids and primary bile acid biosynthesis

pathways. The findings of MR provide a reference direction for

the study of the pathogenesis of PCOS mediated by metabolomics.

Clinical and mechanism studies in the future are needed to confirm

the significance of the identified metabolites as clinical biomarkers
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for modulating PCOS risk and their potential target roles

in treatment.
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