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Introduction: Cardiovascular disease (CVD) is the leading cause of death in

patients with chronic kidney disease (CKD). This study aimed to develop CVD risk

prediction models using machine learning to support clinical decision making

and improve patient prognosis.

Methods: Electronic medical records from patients with CKD at a single center

from 2015 to 2020 were used to develop machine learning models for the

prediction of CVD. Least absolute shrinkage and selection operator (LASSO)

regression was used to select important features predicting the risk of developing

CVD. Seven machine learning classification algorithms were used to build

models, which were evaluated by receiver operating characteristic curves,

accuracy, sensitivity, specificity, and F1-score, and Shapley Additive

explanations was used to interpret the model results. CVD was defined as

composite cardiovascular events including coronary heart disease (coronary

artery disease, myocardial infarction, angina pectoris, and coronary artery

revascularization), cerebrovascular disease (hemorrhagic stroke and ischemic

stroke), deaths from all causes (cardiovascular deaths, non-cardiovascular

deaths, unknown cause of death), congestive heart failure, and peripheral

artery disease (aortic aneurysm, aortic or other peripheral arterial

revascularization). A cardiovascular event was a composite outcome of

multiple cardiovascular events, as determined by reviewing medical records.

Results: This study included 8,894 patients with CKD, with a composite CVD

event incidence of 25.9%; a total of 2,304 patients reached this outcome. LASSO

regression identified eight important features for predicting the risk of CKD

developing into CVD: age, history of hypertension, sex, antiplatelet drugs, high-

density lipoprotein, sodium ions, 24-h urinary protein, and estimated glomerular

filtration rate. The model developed using Extreme Gradient Boosting in the test

set had an area under the curve of 0.89, outperforming the other models,

indicating that it had the best CVD predictive performance.
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Conclusion: This study established a CVD risk prediction model for patients with

CKD, based on routine clinical diagnostic and treatment data, with good

predictive accuracy. This model is expected to provide a scientific basis for the

management and treatment of patients with CKD.
KEYWORDS

chronic kidney disease, cardiovascular disease, electronic medical records, prediction
model, machine learning
1 Introduction

Chronic kidney disease (CKD) affects more than 10% of the

global population and is closely associated with increases in the

incidence and mortality rates of cardiovascular disease (CVD) (1,

2). Therefore, effective prediction and management of the

cardiovascular risk in this group are of paramount importance (3).

However, there are few established prediction tools developed

specifically for this population, and classical models, such as the

Framingham prediction model and the Systematic Coronary Risk

Evaluation (SCORE) tool, perform poorly in patients with CKD (4–

6). Hence, predicting the risk of cardiovascular events in patients

with CKD is an important research area that still requires

refinement and the development of more accurate and reliable

prediction tools tailored for patients with CKD.

After conducting a literature review, we identified several

modeling techniques commonly used in predictive modeling tasks.

These include Logistic Regression (LR), Cox Model, Support Vector

Machine (SVM), Random Forest (RF), K-Nearest Neighbor (KNN),

Extreme Gradient Boosting (XGBoost), and Back propagation Neural

Network (BPNN). Of note, XGBoost has emerged as a prevalent

machine learning method that has demonstrated effective outcomes

in various risk prediction models.Zelnick et al. (7) used a predictive

model developed using gradient boosting machines, which

demonstrated superior performance in forecasting atrial fibrillation

events among patients with CKD compared to previously published

predictive models.

This study utilized data from patients’ medical records to identify

risk factors associated with cardiovascular events in patients with CKD.

Subsequently, machine learning was employed to construct artificial

intelligence models to predict disease occurrence and assist clinicians in

the timely detection of cardiovascular events.
2 Materials and methods

2.1 Study population

This was a single-center retrospective study of data sourced

from the electronic medical record system of a large tertiary hospital
02
for inpatients with CKD at the Chinese People’s Liberation Army

general Hospital(PLAGH). Data were collected from patients who

received treatment at the Nephrology Department of the PLAGH

between January 1, 2015, and December 31, 2020, totaling 8,894

cases. The inclusion criteria were as follows (1): diagnosis of CKD

according to the 2012 Kidney Disease: Improving Global Outcomes

guidelines or a clinical diagnosis of CKD; (2) age ≥18 years; and (3)

complete data on key clinical indicators including creatinine and

routine urine indicators. Patients with acute kidney failure

were excluded.

This study was approved by the Ethics Committee of the

General Hospital of the Chinese People’s Liberation Army

(S2021–696-01). The study was conducted in accordance with the

Declaration of Helsinki and was approved by the ethics committee,

the informed consent may be exempted from signing.
2.2 Definitions

2.2.1 Study outcome
CVD was defined as a composite of cardiovascular events,

including coronary heart disease (coronary artery disease,

myocardial infarction, angina pectoris, and coronary artery

revascularization), cerebrovascular disease (hemorrhagic stroke

and ischemic stroke), death from all causes (cardiovascular death,

non-cardiovascular death, and unknown cause of death), congestive

heart failure, and peripheral artery disease (aortic aneurysm, aortic,

or other peripheral arterial revascularization) (8–10). A

cardiovascular event was defined as a composite outcome of

multiple cardiovascular events, as determined by reviewing

medical records.
2.2.2 Other definitions
The specific definition of CKD depended primarily on the

pathological diagnosis of biopsy findings in the medical records,

on a clinical diagnosis by a nephrologist, or according to the Kidney

Disease Outcomes Quality Initiative (KDOQI) guidelines, which

define renal injury as an estimated glomerular filtration rate (eGFR)

<60 mL/min/1.73 m² for 3 months or more. Renal injury was

defined as the presence of pathological abnormalities or injury
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markers, including abnormal blood or urine test results, or imaging

findings. The eGFR was calculated using the Chronic Kidney

Disease Epidemiology Collaboration equation (11).
2.3 Clinical data extraction

We collected patients’ demographic information, vital signs,

and clinical data, including the following: age, sex, history of

hypertension, C-reactive protein, serum creatinine (SCr), eGFR,

blood urea nitrogen (BUN), total cholesterol, triglycerides, high-

density lipoprotein (HDL), low-density lipoprotein, serum cystatin

C, serum albumin, hemoglobin, blood potassium, blood sodium,

blood calcium, blood chlorine, blood phosphorus, blood

magnesium, plasma D-dimer, interleukin 6 activated partial

thromboplastin time, prothrombin time, and medication

treatment measures, including whether antiplatelet drugs were

taken. The 24-h urine protein, body mass index (BMI),

neutrophil and lymphocyte ratio, monocyte count/lymphocyte

ratio, platelet count/lymphocyte ratio, and platelet count ×

(neutrophil/lymphocyte count) were also calculated using

information from the medical records.
2.4 Statistical analysis

Data were computed and statistically analyzed using software

SPSS version 26, R software version 4.3.2, and Python version 3.4.

Variables with >25% missing values were excluded, and missing

data were imputed using the KNN. For continuous variables,

comparisons were made using Student’s t-test (for normally

distributed variables) or the Wilcoxon rank-sum test (for non-

normally distributed variables). Continuous variables conforming

to normal or approximately normal distributions were expressed as

mean ± standard deviation and were compared using the t-test.

Continuous variables not conforming to normal distributions were

expressed as median (M) (quartile 1 [Q1], quartile [Q3]) and were

compared using the Mann–Whitney U test. Categorical variables

were described using counts (%), and comparisons were made using

the chi-square test. A P-value<0.05 was considered significant.
2.5 Data augmentation

Data augmentation was used to balance the number of patients

with and without CVD, with 6,640 cases each. To address data

imbalance, we employed the synthetic minority over-sampling

technique (12) for data augmentation.
2.6 Model construction

The dataset was divided into training and testing sets in an 8:2

ratio. Least absolute shrinkage and selection operator (LASSO)

regression analysis was used to select variables that could predict

CVD risk. After a thorough literature search, we carefully selected
Frontiers in Endocrinology 03
the currently used modeling methods. Seven models were built

using machine learning including LR, Naive Bayes (NB), KNN,

XGBoost, RF, and Back propagation neural network (BPNN) to

evaluate the model performance.
2.7 Evaluation metrics for machine learning

Receiver operating characteristic (ROC) curves were drawn to

assess the model performance using the accuracy, sensitivity,

specificity, F1-score (13) and area under the curve (AUC) as

indicators to evaluate the model’s ability to predict cardiovascular

events. The formulas for the model evaluation index are as follows:

where TP represents the number of true positives; FP, number of

false positives; FN, number of false negatives; and TN, number of

true negatives.

Accuracy  =
TP   +  TN

TP   +  TN   +   FP   +   FN

Sensitivity=recall  =  
TP

TP   +   FN

Specificity  =
TN

TN + FP

Precision =
TP

TP + FP

F1 − score  =
2  �  f(Precision*Recall)
(Precision + Recall)g

These indicators were used to validate the results, evaluate their

ability to predict cardiovascular events, and select the best model.
2.8 Model interpretation

Shapley Additive explanations (SHAP) was used to interpret the

model results. SHAP (14) values are used to explain the output of

any machine learning model by quantifying the impact of each

feature on the prediction.
3 Results

3.1 Study population

Data from 8,894 patients with CKD were collected; patients

were divided based on the presence (n=2,304) or absence (n=6,640)

of CVD. As there was an imbalance in the data, data augmentation

was used to balance the number of patients with or without CVD to

6,640 cases each. The dataset was divided into a training set

(n=10,624) and a testing set (n=2,656) at an 8:2 ratio. Data

collected from the training dataset were used to evaluate

important variables related to CVD and to establish prediction

models. The data from the test set was utilized to assess the
frontiersin.org
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performance of the prediction models trained on the training set.

The data collection process is illustrated in Figure 1.
3.2 Clinical characteristics of the
included patients

As shown in Table 1, a total of 13,280 patients were enrolled in

the study following data augmentation. The median age of the

participants was 52 years. Among them, 69.1% were male, and

30.9% were female. The incidence of composite CVD events was

50% (6640/13280), with 6,640 patients reaching the outcome. The

average age of patients with CVD was significantly higher than that

of patients without cardiovascular disease. BMI and prevalence of

hypertension were higher in the CVD group than in the non-CVD

group. The proportion of males was significantly higher in the CVD

group. Nearly all laboratory indicators including hemoglobin, SCr,

eGFR, 24-h urinary protein, HDL, BUN, and inflammatory markers

such as the neutrophil-to-lymphocyte ratio were significantly

different between the CVD and non-CVD groups (P<0.05).
3.3 Feature selection

LASSO regression was used to select the important variables

associated with CVD. The optimal parameter (lambda) in the LASSO

regression model was determined using five-fold cross-validation. A

dotted vertical line was drawn at the value of lambda that represents

the best trade-off according to the minimum criterion, and another at

the most regularized model within one standard error of the

minimum (Figure 2A), while a vertical line was drawn at the value
Frontiers in Endocrinology 04
selected by five-fold cross-validation, where the optimal lambda

produced eight features with non-zero coefficients (Figure 2B).

Eight variables were found to be predictors of CVD occurrence

(Figure 2), with the corresponding model risk factors being age,

history of hypertension, sex, antiplatelet medication, HDL, sodium,

24-h urinary protein, and eGFR.
3.4 Model construction and evaluation

We evaluated seven machine-learning models for predicting

CVD using training and testing datasets, including the SVM, LR,

NB, KNN, XGBoost, RF, and BPNN to evaluate model

performance. The training set was used to train the models, and

the testing set was used to test their accuracy and generalizability.

The performances of the different models is shown in Figure 3 and

Table 2. The test set had the following AUC values: SVM algorithm,

0.817; LR model, 0.817; KNN, 0.784 (lowest AUC); RF, 0.829;

BPNN, 0.808; and NB algorithm, 0.796; and XGBoost algorithm,

0.893. The XGBoost model had the highest AUC, which was

significantly higher than that of the other models. This indicates a

good ability to distinguish between the presence and absence of

CVD. Besides, the XGBoost model exhibited the highest accuracy

(0.806), specificity (0.8), and F1 score (0.806), which suggests that it

is the best performing model among those listed. The ranking of

this CVD prediction model as one of the best models indicates that

it has strong predictive ability and can be used in clinical settings.
3.5 Model interpretation

SHAP was used to interpret the predictions of the XGBoost

machine learning model by calculating the contribution of each

feature to the CVD prediction (14). Figure 4B shows the rankings of

the top eight risk factors; the importance decreases with age, history

of hypertension, sex, 24-h urinary protein, antiplatelet medication,

eGFR, sodium, and HDL. Age was found to be the most influential

feature, followed by history of hypertension and sex, which had the

strongest predictive impact on the model. SHAP summary plots

(Figures 4A, 5) were used to visually represent the impact of each

variable on the model’s output. The position of the SHAP value (x-

axis) indicates the impact of the feature on prediction, with each

point representing a sample, and the redder (bluer) color indicating

higher (lower) feature values. If the SHAP value increases with an

increase in the feature value, it indicates a positive correlation

between the feature and the predicted outcome; otherwise, it

indicates a negative relationship (Figures 4A, 5). The results show

that for age, history of hypertension, being male, and a lower GFR,

many patients’ SHAP distributions are positive, indicating that an

increase in age, having a history of hypertension, being male, and

lower eGFR increase the risk of cardiovascular events. Higher levels

of HDL and the use of antiplatelet medications reduce the risk of

cardiovascular events. The prediction results of the XGBoost model

are displayed using a confusion matrix, where the positive

predictive value is 80.7% and the negative predictive value is

80.5% (Figure 6).
FIGURE 1

Flowchart of participant screening. CKD, chronic kidney diseases;
CVD, cardiovascular disease.
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4 Discussion

This study retrospectively analyzed clinical data from the

electronic medical records of 8,894 Chinese patients with CKD

and successfully constructed a risk prediction model for the

occurrence of CVD in these patients. To our knowledge, this is

the first large-sample risk prediction model for cardiovascular

events in CKD based on a Chinese population using clinical

indicators, including adult patients with CKD. The demographic

characteristics of these patients, including age and sex, were

representative of patients with CKD, showing good model efficacy

and a strong clinical application value.

Previous studies have explored the construction of prediction

models for CVD in CKD (15–18). R. Avram et al. conducted a

cohort study in which elastic net regression was employed to

develop a proteomic risk model for predicting cardiovascular risk

among 2,182 participants from a chronic kidney dysfunction cohort

(19), with AUC values ranging from 0.84 to 0.89 over 1 to 10 years,
Frontiers in Endocrinology 05
yet the clinical model performed poorly, with AUCs between 0.70

and 0.73. In addition, the Chronic Renal Insufficiency Cohort study

constructed a 10-year atherosclerotic cardiovascular disease risk

prediction model for patients with CKD( (20)); the AUC of the

Chronic Renal Insufficiency Cohort model developed using

clinically available variables was 0.760, which targeted

atherosclerotic cardiovascular disease and not composite

cardiovascular events. A cohort study aimed to predict atrial

fibrillation events in CKD with models developed using machine

learning methods in the CKD population, which were compared to

previously published prediction models; however, the C-index of

the model using clinical variables was only 0.67 (7).

This study utilized clinical variables to construct a risk

prediction model for cardiovascular events in CKD with superior

performance. Among the seven machine learning models, most

artificial intelligence models have shown a higher predictive

performance than traditional LR and Cox regression models.

Artificial Neural Networks (21) are highly suitable for extensive
BA

FIGURE 3

Performance of 7 types of predicting models of training dataset (A) and testing dataset (B); SVM, support vector machine; Log Reg, logistic
regression; XGBoost, extreme gradient boosting; KNN, k-nearest neighbor neighbor; NB, naïve Bayesian; RF, Random Forest; BPNN,
Backpropagation Neural Network.
BA

FIGURE 2

Features selection using the LASSO binomial regression model. LASSO, least absolute shrinkage and selection operator. (A) The partial likelihood
deviance (binomial deviance) curve was plotted versus log (lambda).LASSO coefficient profiles of the 31 baseline features. (B) Tuning parameter (A)
selection in the LASSO model used 5-fold cross validation via minimum criteria variable selection. LASSO coefficient profiles of the 8 features.
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datasets rich in sequential and unstructured features, requiring the

estimation of a large number of parameters, and thus necessitating

substantial data to avoid overfitting. Machine learning, using

routine clinical data, can accurately predict CVD in CKD. For

this study, which primarily involves straightforward numerical
Frontiers in Endocrinology 06
variables, simpler machine learning models would be more

appropriate. XGBoost, developed from RF, is not affected by

multicollinearity and is characterized by its flexibility and efficiency.

In our study, we compared the performance of prediction

models generated by seven machine learning algorithms and used
TABLE 1 Clinical characteristics of patients following data augmentation.

Number ALL(n=13280) Non-CVD(n=6640) CVD(n=6640) P-Value

AGE(years) 52.0 (40.0,62.0) 44.0 (32.8,54.0) 57.9 (50.0,65.3) <0.001

Gender, n (%)

Female 4107 (30.9) 2651 (39.9) 1456 (21.9) <0.001

Male 9173 (69.1) 3989 (60.1) 5184 (78.1)

BMI(kg/m2) 25.2 (22.8,27.7) 24.8 (22.2,27.5) 25.6 (23.3,27.9) <0.001

Hypertension, n(%) 9871 (74.3) 3971 (59.8) 5900 (88.9) <0.001

Hb (g/L) 114.3 (92.8,134.0) 120.0 (97.0,139.0) 108.1 (89.8,129.0) <0.001

Scr (umol/L) 150.5 (85.6,403.4) 115.9 (77.4,286.1) 206.5 (101.1,463.2) <0.001

eGFR, mL/min/1.73 m2 44.6 (13.0,87.8) 62.5 (20.4,99.8) 30.8 (11.0,70.1) <0.001

Urine protein (g/day) 2.5 (1.2,4.4) 2.1 (0.9,4.2) 2.8 (1.5,4.5) <0.001

BUN (mmol/L) 9.1 (5.6,17.1) 7.2 (4.9,13.9) 11.7 (6.6,19.1) <0.001

HDL (mmol/L) 1.0 (0.8,1.3) 1.1 (0.9,1.3) 1.0 (0.8,1.2) <0.001

LDL (mmol/L) 2.8 (2.2,3.7) 2.9 (2.3,3.9) 2.7 (2.2,3.6) <0.001

TC (mmol/L) 4.5 (3.8,5.6) 4.7 (3.9,5.8) 4.4 (3.7,5.4) <0.001

TG (mmol/L) 1.8 (1.3,2.5) 1.8 (1.2,2.6) 1.8 (1.3,2.5) 0.504

ALB (g/L) 34.6 (28.7,39.0) 35.3 (28.2,40.1) 33.9 (28.9,37.9) <0.001

Na (mmol/L) 142.0 (139.5,144.6) 141.8 (139.4,144.2) 142.1 (139.7,145.3) <0.001

K (mmol/L) 4.0 (3.7,4.4) 4.0 (3.7,4.3) 4.1 (3.8,4.5) <0.001

lv(mmol/L) 104.2 (101.5,106.6) 104.3 (101.6,106.8) 104.2 (101.5,106.5) 0.014

Ca (mmol/L) 2.0 (1.1,2.2) 2.0 (1.1,2.2) 2.0 (1.1,2.2) 0.283

Mg (mmol/L) 0.9 (0.8,0.9) 0.9 (0.8,0.9) 0.9 (0.8,1.0) <0.001

P (mmol/L) 2.8 (1.4,58.2) 2.2 (1.3,57.4) 8.5 (1.5,59.2) <0.001

NLR 2.4 (1.7,3.7) 2.3 (1.6,3.4) 2.7 (1.8,4.0) <0.001

MLR 0.2 (0.2,0.3) 0.2 (0.2,0.3) 0.2 (0.2,0.3) <0.001

PLR 852.7 (631.9,1193.5) 838.0 (618.9,1179.3) 865.4 (642.4,1203.6) <0.001

SII 538.2 (365.7,824.8) 525.7 (356.3,815.2) 551.1 (376.1,834.6) <0.001

IL_6(pg/ml) 4.1 (2.1,8.6) 3.1 (2.0,6.4) 5.3 (2.9,10.6) <0.001

CRP, n (%) 0.3 (0.1,0.5) 0.3 (0.1,0.3) 0.3 (0.1,0.8) <0.001

CysC(mg/L) 2.0 (1.1,3.8) 1.5 (1.0,3.2) 2.5 (1.4,4.2) <0.001

D-Dimer (ug/mL) 0.7 (0.4,1.5) 0.5 (0.3,1.2) 0.8 (0.5,1.8) <0.001

APTT (s) 36.9 (34.1,40.2) 36.6 (33.8,39.9) 37.1 (34.4,40.5) <0.001

PT (s) 13.3 (12.8,13.9) 13.2 (12.7,13.8) 13.4 (12.8,14.0) <0.001

antiplatelet, n (%) 1544 (11.6) 1144 (17.2) 400 (6.0) <0.001
fr
BMI, body mass index; Hb, hemoglobin; Scr, serum creatinine; eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen; HDL, high-density lipoprotein; LDL, low-density
lipoprotein; TC, total cholesterol; TG, triglycerides; ALB, albumin; NLR, neutrophil-to-lymphocyte ratio; MLR, Monocyte-lymphocyte count ratio; PLR, Platelet-lymphocyte count ratio; SII,
systemic immune-inflammation index; IL_6, interleukin 6; CRP, Creactive protein; CysC, Cystatin C; D-Dimer, D-dimer; APTT, plasma-activated partial thromboplastin time; PT,
prothrombin time.
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the XGBoost ensemble machine learning method to construct the

model. The results showed that the model had the highest AUC

(0.89), sensitivity, and F1 score, indicating a good predictive effect

on the risk of CVD in patients with CKD. This may be due to the

effectiveness of XGBoost in handling complex patterns for disease

prediction, outperforming other models.

Machine learning is often referred to as a “black box.” To

explain the decision-making process of the XGBoost model

algorithm, we employed the SHAP visualization method to

interpret our predictions (14). The combination of machine

learning and SHAP can provide clear explanations for

individualized risk predictions and allow doctors to intuitively

understand the impact of key features in the model (22). This

study explained the contribution of the model and risk factors using

SHAP values, which showed that age, hypertension, sex, and

dyslipidemia can determine the risk of CVD in patients with

CKD. Specifically, patients with CKD who are older, male, and

have hypertension, lower eGFR, and lower high-density lipoprotein

levels have a higher risk of CVD. The risk factors mentioned in the

prediction model can be used to predict the CVD risk. This finding

supports previous research and emphasizes the importance of risk

factors for the occurrence of CVD events later in life. Starting from

the mid-20th century with the Framingham Study (23), previous

research has proven that older age, hypertension, male sex, and

dyslipidemia are traditional independent risk factors for CVD in

patients with CKD (24–27), which were also factors included in the

Framingham prediction model (28). Sodium accumulates in tissues,

potentially causing systemic inflammation and directly affecting
Frontiers in Endocrinology 07
myocardial and vascular structures. High sodium levels lead to

blood pressure changes and sodium retention in patients with CKD,

thereby increasing the risk of CVD (29). Compared with individuals

without CKD, higher sodium content in the muscles and skin was

observed in patients undergoing dialysis (30), which was positively

correlated with systemic inflammation.

Previous research has identified multiple risk factors for CVD,

while recent studies have focused on using artificial intelligence or

regression-based models to identify new risk factors and provide

insights into disease mechanisms, thereby improving the accuracy

of CVD predictions in patients with CKD. These computational

models attempt to overcome the limitations of the traditional

models by incorporating a broader range of variables and using

advanced techniques. The integration of novel CKD-specific

markers and the use of complex computational techniques are

expected to resolve this issue. The new models combine

traditional and CKD-specific risk factors, recognizing the complex

interactions between CKD progression and cardiovascular health.

Many studies have confirmed that a decline in eGFR and

albuminuria are independent risk factors for an increased risk of

CVD death (31, 32). Kunihiro Matsushita et al (15) added unique

kidney indicators, such as eGFR and the urine albumin–creatinine

ratio (UACR) to the CKD supplement model, verifying that their

inclusion significantly improves the risk prediction of CVD in

patients with CKD. This is also relevant as the primary clinical

guidelines for CVD prevention are yet to adopt CKD in CVD risk

prediction; SCr is recommended as a primary marker of the eGFR

in the current KDOQI guidelines, and eGFR-defined CKD is related
TABLE 2 Performance metrics for seven models in testing dataset.

Model AUC SE SP AC F1-score

SVM 0.817 0.770 0.727 0.745 0.744

LR 0.817 0.773 0.726 0.748 0.748

NB 0.796 0.745 0.736 0.736 0.736

KNN 0.784 0.840 0.608 0.717 0.716

XGBoost 0.893 0.814 0.800 0.806 0.806

RF 0.829 0.776 0.734 0.751 0.751

BNPP 0.808 0.788 0.708 0.742 0.742
SE, sensitivity; SP, specificity; AC, accuracy.
BA

FIGURE 4

(A) SHAP summary plot in XGBoost model with 8 variables. (B) A importance matrix plot of the XGBoost.
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to adverse CVD outcomes (33). This study incorporated 24-h

proteinuria into the model, which differs from the previously used

albuminuria and the UACR. Considering the higher cost of albumin

measurement compared to total protein measurement, using UACR

or urine protein–creatinine ratio for population screening is

reasonable (33). However, despite the convenience of urine

protein–creatinine ratio (UPCR) and UACR in quantifying

proteinuria, their use has limitations. The random measured

UPCR or UACR may not always reflect the 24-h excretion rate

because protein or albumin excretion varies with the time of the

day, stress levels, fatigue, and other factors. Therefore,

incorporating the 24-h quantitative measurement of proteinuria

into models, as illustrated by SHAP graphs, shows that an increase

in 24-h proteinuria can lead to an increased risk of CKD. As

traditional CVD risk factors may have different weights in the

prediction factors among the CKD population (34), other indicators

can serve as valuable supplements to enhance the predictive
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capability of such models. SHAP visualizations provide

information for clinical decision making, highlighting the

complexity of predictive models. Factors included in the

predictive model are rooted in established and emerging evidence.

New indicators of kidney disease risk are integrated into relevant

predictive models as complements, offering better possibilities for

clinicians to accurately assess patients’ cardiovascular risk and take

appropriate intervention measures to reduce the incidence of

cardiovascular events.

This study has some limitations. First, the model was not

validated externally and was based on retrospective data,

necessitating prospective cohort studies to verify the accuracy and

stability of the model. Second, only routine clinical indicators were

included in this study, and the addition of novel biomarkers from

multi-omics studies may further enhance the model. However, this

study was based on a large sample of the Chinese population and

had a good model effect. Additionally, the use of clinically accessible

indicators to build a CVD prediction model has strong clinical

application value.

Moving forward, we may consider integrating our predictive

model into clinical practice via mini-programs and mobile

applications. This approach may facilitate precise diagnosis and

treatment in clinical settings.

In conclusion, this study successfully established a risk-

prediction model for CVD in patients with CKD. The risk

prediction model is expected to serve as a practical tool for

clinicians to identify high-risk individuals at an early stage and

initiate targeted interventions in a timely manner, thus improving

the scientific accuracy of clinical decision-making.
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