
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Eliza Russu,
George Emil Palade University of Medicine,
Pharmacy, Sciences and Technology of Târgu
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Background: Carotid atherosclerosis (CAS) is a significant risk factor for cardio-

cerebrovascular events. The objective of this study is to employ stacking

ensemble machine learning techniques to enhance the prediction of CAS

occurrence, incorporating a wide range of predictors, including endocrine-

related markers.

Methods: Based on data from a routine health check-up cohort, five individual

prediction models for CAS were established based on logistic regression (LR),

random forest (RF), support vector machine (SVM), extreme gradient boosting

(XGBoost) and gradient boosting decision tree (GBDT) methods. Then, a stacking

ensemble algorithm was used to integrate the base models to improve the

prediction ability and address overfitting problems. Finally, the SHAP value

method was applied for an in-depth analysis of variable importance at both the

overall and individual levels, with a focus on elucidating the impact of endocrine-

related variables.

Results: A total of 441 of the 1669 subjects in the cohort were finally diagnosed

with CAS. Seventeen variables were selected as predictors. The ensemble model

outperformed the individual models, with AUCs of 0.893 in the testing set and

0.861 in the validation set. The ensemble model has the optimal accuracy,

precision, recall and F1 score in the validation set, with considerable

performance in the testing set. Carotid stenosis and age emerged as the most

significant predictors, alongside notable contributions from endocrine-

related factors.

Conclusion: The ensemble model shows enhanced accuracy and generalizability

in predicting CAS risk, underscoring its utility in identifying individuals at high risk.
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This approach integrates a comprehensive analysis of predictors, including

endocrine markers, affirming the critical role of endocrine dysfunctions in CAS

development. It represents a promising tool in identifying high-risk individuals for

the prevention of CAS and cardio-cerebrovascular diseases.
KEYWORDS

carotid atherosclerosis, endocrine-related markers, prediction, stacking,
machine learning
1 Introduction
Carotid atherosclerosis (CAS) is a multifaceted disease

characterized by the progressive accumulation of atherosclerotic

plaques within the carotid arteries (1). As a manifestation of

atherosclerosis in local blood vessels, the continuous development

of CAS is a major and potentially preventable cause of ischaemic

stroke (2). Early manifestations of CAS such as intermittent

dizziness or mild headaches are subtle, often leading to missed

diagnoses. As CAS progresses, it severely impacts the physical and

psychological well-being of individuals, imposing substantial

financial strains on their families. Therefore, early prediction and

prevention of CAS are crucial to mitigate the risk of subsequent

cardio-cerebrovascular events.

Current research on CAS has mainly focused on the analysis of

risk factors, the most common of which include age, smoking

status, physical inactivity, abnormal blood glucose levels,

hypertension and others (3–7). These factors, particularly

hyperglycemia and hypertension, indicative of underlying

metabolic and hormonal imbalances, contribute to the endothelial

dysfunction, inflammation, and subsequent plaque formation

characteristic of atherosclerosis. Despite numerous studies on

CAS risk factors, there is a scarcity of research dedicated to

developing predictive models for CAS, with existing models

primarily using cross-sectional data for disease diagnosis rather

than predicting its onset.

Machine learning methods offer the potential to achieve precise

predictive ability to assess diagnostic and prognostic outcomes (8–

11). Among various machine learning approaches, ensemble

learning, which includes techniques like bagging (e.g., random

forests), boosting (e.g., XGBoost, GBDT), and stacking, stands out

by integrating multiple weak classifiers to form a robust classifier,

thereby improving prediction accuracy and model generalizability

(12–15). Stacking ensemble models, which train different weak

learners in parallel, have shown superior performance across

various domains, from healthcare to financial forecasting (16–20).

However, they also present significant challenges such as

computational complexity and a lack of interpretability, often

referred to as the “black box” phenomenon, which can obscure

understanding of decision-making processes (21).
02
In this study, we employ a stacking ensemble learning algorithm

to construct a risk prediction model for the occurrence of CAS

based on a routine health checkup cohort. The predictive

performance of the ensemble model was compared with that of

the individual models. We utilize the SHapley Additive exPlanation

(SHAP) method (22) to elucidate the predictive relationships

between CAS and various risk factors, with a particular focus on

endocrine-related markers.
2 Materials and methods

2.1 Study design and data collection

The study cohort was derived from the routine health check-up

system of the First Affiliated Hospital of Shandong First Medical

University in Jinan, China. All the participants were free of CAS at

the first check-up and underwent three health checks during the

follow-up. Individuals who had been diagnosed with coronary heart

disease, previous coronary heart disease, cerebral ischaemia,

cerebral infarction, cerebral artery stenosis, cerebral artery spasm,

coronary artery stenosis, coronary atherosclerotic heart disease, and

those with missing information were excluded. CAS was diagnosed

by carotid B-mode ultrasonography as a carotid intima-media

thickness of 1.0 mm or greater or plaque formation. The study

was approved by the Ethics Committee of the First Affiliated

Hospital of Shandong First Medical University, and informed

consent was obtained from all eligible participants.
2.2 Study variables

The study variables consisted of three sets of data: demographic

data, laboratory indicators, and clinical history. All the individuals in

this study cohort underwent anthropometric and laboratory tests.

The height and weight of the participants were measured while they

were wearing light clothing and no shoes. Peripheral blood samples

were collected from the subjects after an overnight fast, and the

variables included blood urea nitrogen (BUN), lymphocyte

percentage (LYM), aspartate aminotransferase (AST), red cell

volume distribution width standard deviation (RDW-SD), red
frontiersin.org
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blood cell count (RBC), mean corpuscular haemoglobin

concentration (MCHC), mean platelets (MPV), fasting blood

glucose (GLU), platelet count (PLT), eosinophil percent (PEOS),

white blood cell count (WBC), and carcinoembryonic antigen (CEA).

Disease history was also collected, such as carotid stenosis (CS),

diabetes mellitus (DM), and hypertension. All the measurements

were collected following the same standard procedures.
2.3 SMOTE sampling

To address the issue of data imbalance, we applied the synthetic

minority oversampling technique (SMOTE) in our study. Since the

number of individuals without CAS was larger than those with CAS,

SMOTE was employed to generate synthetic samples of the

minority class (22). The new synthetic records were generated

using the existing samples of the minority class via linear

interpolation. After we obtain new minority sample data, a

balanced dataset can be obtained by merging with majority samples.
2.4 Variable selection

Variable selection is an important step in the application of

machine learning to ensure that the most relevant predictors are used.

Both filtering and embedded feature selection methods were used to

select the predictors. The variables were first selected using univariate

logical regression with a threshold P value of 0.1. Second, we applied

three tree-based machine learning methods-random forest (RF),

eXtreme Gradient Boost (XGBoost), and gradient boosting decision

tree (GBDT))-to assess the importance of each variable. These

methods are well-suited for identifying important variables due to

their ability to capture complex interactions and non-linear

relationships. Variables were ranked based on their importance

scores from these models. Finally, the correlation coefficients of the
Frontiers in Endocrinology 03
continuous variables were calculated to address multicollinearity,

which can distort the model’s estimates and reduce interpretability.

Features with low importance among the highly related variables

were eliminated for determining the predictors.
2.5 Statistical analysis

The baseline characteristics were assessed for CAS and non-

CAS patients during the follow-up. Continuous variables were

described by the mean and standard deviation (SD), and

categorical features were described as proportions; we compared

the baseline features using the t test and the chi-square test. To

predict the probability of CAS, we employed five machine learning

models: logistic regression (LR), support vector machine (SVM),

RF, XGBoost, and GBDT (11, 23–26). We then used a stacking

ensemble model, specifically the super learner, which combines

these individual models by assigning them different weights to

optimize predictive performance (27). The final predicted value is a

weighted sum of the individual model predictions, where the

weights are determined to minimize the cross-validation risk (28).

Figure 1 shows the framework of the super learner ensemble model.

We compared the predictive performance of the super learner

against the individual models (LR, RF, SVM, XGBoost, and GBDT).
2.6 Hyperparameter tuning

We optimized the hyperparameters using a random search

method, which is a traditional and efficient technique for tuning in

classification methods (29).This process was conducted within a 5-fold

cross-validation framework. Specifically, each model configuration was

trained on four folds and validated on the remaining fold. This cycle

was repeated five times, with each fold serving as the validation set

once, to ensure a comprehensive evaluation across the entire dataset.
FIGURE 1

Framework of the stacking ensemble model. (LR, logistic regression; RF, random forest; SVM, support vector machine; XGBoost, extreme gradient
boosting; GBDT, gradient boosting decision tree.
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We performed the random search 1,000 times, selecting the

hyperparameter combination with the highest average areas under

the receiver operating characteristic curve (AUC).
2.7 Predictive performance assessment

The performance of the prediction model was validated using both

the testing and hold-out validation set. Several metrics were used to

evaluate the performance of the prediction models: accuracy, precision,

recall, F1 score, and AUC. Compared to commonly used performance

metrics, the AUC better reflects model performance in unbalanced

datasets. Hence, the AUC was the main metric, while the others were

considered of secondary priority.
2.8 Model interpretation

To solve the “black box” problem in machine learning, we report

the feature importance ranking of each predictor based on SHAP

values (22). SHAP values are useful for explaining the prediction of a

machine learning model by computing the contribution of each feature

to the prediction. Kernel-based SHAP values were used to rank the

variables in terms of their ability to predict the CAS, which is an

additive feature attribution method using kernel functions enabling

consistent explanation of feature importance (30).
3 Results

3.1 Data description

A total of 1669 participants were included in this study, including

1426 (85.4%) males and 243 (14.6%) females. A total of 441

participants were diagnosed with CAS during the follow-up,

including 395 men and 46 women. A total of 1228 participants

were not diagnosed with CAS. The SMOTE method was used to

address the sample imbalance problem. Figure 2 shows the roadmap
Frontiers in Endocrinology 04
of the data processing. All the samples were first divided into a

training set and a hold-out validation set. Specifically, 5% of the

subjects were randomly selected in advance as the validation set, and

the remaining 95% were used for model construction; 419 patients

with CAS and 1167 non-CAS patients were included. Of the

remaining data, 70% of the data were used as the training set

where SMOTE resampling was applied to address class imbalance.

The remaining 30% was used as the testing set. In the original dataset,

the ratio of non-CAS to CAS was approximately 2.78 to 1, which was

adjusted in the training set to approximately 1 to 1.
3.2 Variable selection results

A total of 28 variables with a P value < 0.1 were retained in the

univariate logistic regression and subsequently included in the three

machine learning models. Supplementary Figure S1 shows the

variable importance rankings for RF, GBDT, and XGBoost. A total

of 22 of these variables were common among all three machine

learning algorithms (please see the Supplementary File). The

correlations between the selected continuous variables are shown in

Supplementary Figure S2 in the Supplementary File. Variables with

high correlations and the lowest importance were removed; thus, five

variables were excluded. Finally, 17 variables were selected, including

age, sex, BUN, LYM, AST, RDW-SD, RBC, MCHC, MPV, GLU,

PLT, PEOS, WBC, CEA, CS, hypertension and DM.

Table 1 summarizes the baseline characteristics of the incident

CAS status. Overall, individuals who developed CAS were more

likely to be male CS, DM, hypertension, older age, MCHC, BUN,

RDW-SD, MPV, GLU, PEOS, WBC, and CEA and lower PLT,

LYM, AST, and RBC at baseline; these variables were significantly

different at a level of 0.1.
3.3 Model comparison

The super learner algorithm creates an optimal weighted

average of the five models (LR, RF, SVM, XGBoost, and GBDT).
FIGURE 2

Dataset partitioning in the modelling process.
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Supplementary Table S1 in the Supplementary File depicts the

weight coefficients of the super learner model. Supplementary

Table S2 shows the hyperparameters used in the models. The

weight coefficients of LR and SVM are 0, indicating that they

were not used in the super learner model, while the coefficient of

RF is 0.820, which is much greater than that of the other four

models , indicat ing that RF contr ibutes most in the

prediction model.

Table 2 shows the predictive performance of the six models on

the testing set and the hold-out validation set. It can be seen that the

predictive performance varies across the five models. SVM has the

highest precision, while its performance in the validation set is

inferior. Logistic regression had the lowest performance in the

testing set. These results also indicate the reason that the two

methods are not selected in the super learner model. Combined

with the advantages of RF, XGBoost and GBDT, the performance of

the super learner was improved. The super learner model had the
Frontiers in Endocrinology 05
optimal performance measures in the validation set, with

considerable performance in the testing set. The ROC curves of

the different machine learning models are shown in Supplementary

Figure S3. The super learner has the largest ROC curve area in the

validation set, and its AUC is 0.861. Overall, the predictive

performance of the super learner model is superior to that of the

other five models, especially regarding the overfitting problem.
3.4 Model interpretation

In this paper, the SHAP value was used to quantify the impact

of each variable on the prediction of CAS, and the results are shown

in Figure 3. Figure 3A shows the contribution of all the features to

the prediction, which was sorted according to the average SHAP

values. CS and age are the two most important predictors with the

largest SHAP values, followed by RDW-SD, GLU and hypertension.

To further explain how each variable affects the occurrence of

CAS, we illustrate two sample cases. Figures 3B, C depict the SHAP

value of each variable for individuals I and II. The blue bars on the

left (SHAP value less than 0) indicate variables that reduce the

probability of the individual being predicted as CAS; the orange

bars on the right (SHAP value greater than 0) indicate variables that

increase the probability of the individual being predicted as CAS.

Larger areas indicate greater impacts of that factor. For individual I,

diabetes and an increase in glucose are the main reasons for the

increased risk of CAS. Due to the absence of CS, relatively young

age and other variables with negative impacts, the predicted

probability of CAS for individuals is low. In contrast, for

individual II, CS is the main reason for the increased risk of CAS,

and most of the variables have a positive impact in predicting CAS.

The probability of CAS for individual II is only slightly reduced by

the absence of hypertension, diabetes and young age; thus, this

individual is more likely to develop CAS in the future. Therefore,

through the SHAP framework, we can directly determine the main

causes for the increased individual probability of CAS; thus,

corresponding interventions could be taken to reduce the risk.
TABLE 1 Baseline characteristics by incident CAS status.

Variables N=1669

Non-
CAS

N=1228
(73.6%)

CAS
N=441
(26.4%)

t/X2 P

Age 55.1 ± 7.6 53.7 ± 6.2 59.1 ± 9.4 -11.28 <0.001

MCHC
339.4
± 10.1

339.0 ± 10.4 340.3 ± 9.3 -2.29 0.022

PLT
221.1
± 50.9

222.6 ± 50.2
216.9
± 52.7

1.98 0.048

BUN 5.2 ± 1.3 5.2 ± 1.3 5.4 ± 1.3 -2.39 0.017

LYM 0.4 ± 0.1 0.4 ± 0.1 0.3 ± 0.1 3.29 0.001

AST 20.0 ± 8.0 20.4 ± 8.5 19.0 ± 6.0 3.72 <0.001

RDW-SD 42.4 ± 2.7 42.2 ± 2.7 42.8 ± 2.6 -3.63 <0.001

RBC 4.9 ± 0.4 4.9 ± 0.4 4.8 ± 0.4 2.46 0.014

MPV 10.3 ± 0.9 10.3 ± 0.9 10.4 ± 0.8 -2.52 0.012

GLU 5.7 ± 1.3 5.6 ± 1.1 5.9 ± 1.7 -4.43 <0.001

EOS
0.026
± 0.022

0.025
± 0.020

0.028
± 0.026

-1.87 0.061

WBC 6.3 ± 1.6 6.2 ± 1.5 6.4 ± 1.7 -2.29 0.023

CEA 2.0 ± 1.4 1.9 ± 1.3 2.1 ± 1.6 -2.93 0.004

Sex: n (%)
0
1

1426
(85.4%)

243(14.6%)
1031(84.0%)
197(16.0%)

395(89.6%)
46 (10.4%)

8.21 0.004

CS: n (%)
0
1

1088
(65.2%)
581

(34.8%)
895(72.9%)
333(27.1%)

193(43.8%)
248(56.2%)

121.24 <0.001

DM: n (%)
0
1

1475
(88.4%)

194(11.6%)
1115(90.8%)
113(9.2%)

360(81.6%)
81(18.4%)

26.53 <0.001

Hypertension:
n (%)

0
1

1150
(68.9%)

519(31.1%)
895(72.9%)
333(27.1%)

255(57.8%)
186(42.2%)

34.34 <0.001
TABLE 2 Predictive performance of the six machine learning models.

Models
Performance metricsa

accuracy precision recall F1 AUC

LR 0.734(0.783) 0.732(0.563)
0.701
(0.818)

0.716
(0.667)

0.797
(0.857)

SVM 0.825(0.602) 0.793(0.359)
0.859
(0.636)

0.825
(0.459)

0.909
(0.639)

RF 0.805(0.759) 0.783(0.528)
0.822
(0.864)

0.802
(0.655)

0.891
(0.848)

XGBoost 0.777(0.723) 0.761(0.487)
0.780
(0.864)

0.770
(0.623)

0.872
(0.817)

GBDT 0.789(0.759) 0.771(0.529)
0.797
(0.818)

0.784
(0.642)

0.866
(0.828)

Super
learner

0.795(0.795) 0.785(0.571)
0.788
(0.909)

0.786
(0.701)

0.893
(0.861)
fron
aThe predictive performance values for the hold-out validation set are shown in parentheses.
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4 Discussion

In this study, based on a routine health check-up cohort, we

constructed a stacking ensemble prediction model for quantifying

the risks of incident CAS. Demographic information, such as age

and sex, and clinical factors, including BUN, LYM, AST, RDW-SD,

RBC, MCHC, MPV, GLU, PLT, PEOS, WBC, CEA, CS,

hypertension and DM, were important predictors of CAS.

We established five machine learning models to predict CAS

and found that the performance of the individual models varied in

the testing and validation sets. Most of the models performed better

on the testing set and inferiorly on the hold-out validation set,

indicating the overfitting problem. Therefore, we used the super

learner algorithm to integrate the models, which significantly

improved their performance. The super learner model not only

demonstrated superior discrimination but also effectively managed

overfitting, with AUC scores of 0.893 and 0.861 in the testing and

validation sets, respectively. Our findings align with recent research

that demonstrates the superior performance of stacking models in

various biomedical applications (31–33). Studies like those

conducted by Zhou have shown that stacking models provide

enhanced accuracy in predicting diabetes which is consistent with

our results (34).

In accordance with several studies (4, 5, 35), age was identified as

a risk factor for CAS. According to the results of the feature

importance analysis for the three machine learning models and the

SHAP explanatory framework, we found that age and CS were the

two most important factors affecting the occurrence of CAS. The

demographic shift towards an aging population warrants increased

societal attention, given the anticipated rise in CAS incidence (36).

Additionally, since CS is a symptom of CAS, its presence is an

important signal of CAS, and these two groups of people in particular

need to take corresponding measures to prevent CAS. Moreover, our
Frontiers in Endocrinology 06
analysis extends beyond conventional risk factors by incorporating

endocrine-related markers within the predictive framework. The

integration of these markers, including but not limited to abnormal

blood glucose levels and hypertension, underscores the intricate

relationship between endocrine dysfunctions and atherosclerosis.

Through the SHAP framework, the contribution of each feature to

the CAS risk is quantified, offering a personalized risk assessment. It

underscores the necessity of a multifaceted risk assessment strategy

that not only considers traditional factors like age and CS but also

gives weight to the underlying endocrine dysfunctions contributing to

the disease’s pathogenesis.

The SHAP score becomes an invaluable tool for clinicians,

enhancing the interpretability of machine learning predictions and

enabling personalized preventive measures. For instance, older

individuals with CS may benefit from increased screening and

early intervention strategies, facilitating early detection and

management of CAS. Similarly, for individuals with abnormal

blood glucose or hypertension, personalized medical interventions

including adjustments in medication and lifestyle changes such as

diet and exercise could be advised based on their specific risk

profiles. Regular monitoring of blood pressure and glucose levels

can further aid early intervention and management, demonstrating

the dynamic utility of predictive models in clinical settings.

One of the limitations of our study was that information about

important risk factors for CAS, such as lifestyle, was not available.

However, the model in our study still achieved acceptable

performance without these predictors. Moreover, study subjects

in the routine check-up cohort were limited to a single source area,

and the prediction model was only internally validated. External

validation with an independent population is needed to evaluate the

generalizability of the model. Future studies will aim to collaborate

with various institutions across different geographic regions to

ensure that our models are robust and applicable to a broader
B CA

FIGURE 3

Results of the SHAP analysis. (A) Mean (|SHAP value|) of each variable; (B) the contribution of each variable in non-CAS individual I; (C) the
contribution of each variable in CAS individual II.
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population. This approach will not only help in validating our

current model externally but also in assessing its effectiveness across

different demographic settings.
5 Conclusion

In this study, we developed a stacking model to predict the risk of

incident CAS, enhancing the application of machine learning in the

disease prediction. This approach not only provides a new method for

the risk calculation of CAS but also highlight the critical role of

endocrine dysfunctions in CAS development. By integrating a

comprehensive analysis of predictors, and utilizing SHAP for model

interpretation, our model effectively identifies high-risk individuals.

This allows for targeted interventions that could substantially reduce

the health and economic burdens associated with CAS. The study

demonstrates the potential of advancedmachine learning techniques to

enhance preventive healthcare strategies.
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