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Broadening horizons: the role of
ferroptosis in polycystic
ovary syndrome
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Dong-Hai Zhao3, Jing-Shun Zhang1, Chun-Jin Li2*, Xu Zhou2*

and Lian-Wen Zheng1*

1Department of Obstetrics and Gynecology, The Second Hospital of Jilin University,
Changchun, China, 2College of Animal Sciences, Jilin University, Changchun, China, 3Department of
Pathology, Jilin Medical College, Jilin, China
Polycystic ovarian syndrome (PCOS) is a common heterogeneous reproductive

endocrine metabolic disorder in women of reproductive age characterized by

clinical and biochemical hyperandrogenemia, ovulation disorders, and polycystic

ovarian morphology. Ferroptosis is a novel type of cell death driven by iron

accumulation and lipid peroxidation. Ferroptosis plays a role in maintaining redox

balance, iron metabolism, lipid metabolism, amino acid metabolism,

mitochondrial activity, and many other signaling pathways linked to diseases.

Iron overload is closely related to insulin resistance, decreased glucose

tolerance, and the occurrence of diabetes mellitus. There is limited research

on the role of ferroptosis in PCOS. Patients with PCOS have elevated levels of

ferritin and increased reactive oxygen species in ovarian GCs. Studying

ferroptosis in PCOS patients is highly important for achieving personalized

treatment. This article reviews the progress of research on ferroptosis in PCOS,

introduces the potential connections between iron metabolism abnormalities

and oxidative stress-mediated PCOS, and provides a theoretical basis for

diagnosing and treating PCOS.
KEYWORDS

ferroptosis, polycystic ovary syndrome, oxidative stress, metabolic disorders,
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1 Introduction

PCOS is a complex endocrine and metabolic disorder (1). The primary characteristics

of PCOS patients are long-term anovulation or infrequent ovulation, insulin resistance

(IR), hyperandrogenemia, polycystic ovarian morphology, and decreased female fertility

(2–4). In addition to having abnormal reproductive function, many PCOS patients suffer

from metabolic syndrome, IR, impaired glucose tolerance, obesity, atherosclerosis, and

other metabolic abnormalities (5). At present, it is believed that the occurrence of PCOS is

mainly related to genetic factors, environmental factors, and metabolic factors (6, 7). The
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specific causes of PCOS have not been fully elucidated (8, 9).

Ferroptosis is caused by iron buildup and lipid peroxidation. It

differs from cell apoptosis and necrosis (10). Ferroptosis is involved

in regulating the occurrence and progression of diseases such as

cancer, respiratory system diseases, cardiovascular system diseases,

diabetes mellitus, and urinary system diseases and plays a key role

in disease treatment (11) (Figure 1). There is limited and incomplete

research on ferroptosis in the reproductive system. The role of

ferroptosis in the reproductive system deserves further investigation

(12, 13). Ferroptosis in PCOS is accompanied by the dysregulation

of mitochondrial dynamics, the promotion of an inflammatory

response, and the intensification of oxidative stress (14–16). This

article reviews the correlation between ferroptosis and PCOS,

providing ideas for exploring the underlying mechanisms of PCOS.
2 Ferroptosis

In 2012, Dixon et al. proposed ferroptosis as a novel iron-

dependent programmed cell death mechanism that is distinct from

apoptosis, necrosis, and autophagy (17) (Table 1). Its main

characteristics are as follows (1): During the process of cell death,

a large amount of iron accumulates, and lipid peroxidation occurs,

activating signaling pathways such as oxidative stress (18) (2); In the

ultrastructure, cell atrophy, membrane rupture, and mitochondrial

membrane wrinkling, and no significant nuclear morphological

changes are observed (19). Ferroptosis is a nonenzymatic and

enzymatic reaction that occurs under iron catalysis, leading to

lipid peroxidation of cell membranes (20). Polyunsaturated fatty

acids (PUFAs) are the main targets of lipid peroxidation of cell

membranes (21). Glutathione peroxidase 4 (GPX4) regulates
Frontiers in Endocrinology 02
ferroptosis (22). Under antioxidant conditions, GPX4 can reduce

the accumulation of intracellular reactive oxygen species (ROS) and

reduce the sensitivity of cells to ferroptosis, thus affecting the

occurrence of ferroptosis (23).

The Fenton reaction first removes a hydrogen atom from poly-

unsaturated fatty acid-phosphatidyl ethanolamine (24). This leads

to the formation of carbon-centered phospholipids, which then

react with molecular oxygen to generate PLOO·, which can remove

hydrogen from another PUFA and form phospholipid

hydroperoxides (25). If antioxidants such as GPX4 are unable to

promptly convert phospholipid hydroperoxides to the appropriate

alcohols, phospholipid hydroperoxides and lipid free radicals will

react with polyunsaturated fatty acid-phosphatidyl ethanolamine to

further promote the production of phospholipid hydroperoxides

(26). Ultimately, this leads to the production of many secondary

products, such as lipid peroxidation products, leading to ferroptosis

(27). Ferroptosis mainly causes oxidative metabolic disorders of cell

membrane phospholipids through iron metabolism, lipid

metabolism, and amino acid metabolism (28) (Figure 2).
2.1 Ferroptosis and iron metabolism

2.1.1 Iron uptake, storage, and release
Ferroptosis requires the involvement of iron (29). The

sensitivity of cells to ferroptosis depends on the input, output,

storage, and transport of iron. There are two forms of iron in cells:

Fe2+ and Fe3+ (30). A large amount of ROS is generated during the

mutual conversion of Fe3+ and Fe2+ through redox reactions,

leading to tissue damage and ferroptosis (31). Fe3+ has strong

stability and is responsible for the storage and transportation of
FIGURE 1

Ferroptosis is involved in regulating the occurrence and progression of various diseases, including those of the nervous system, respiratory system,
cardiovascular system, diabetes mellitus, urinary system, and female reproductive system.
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iron in the body; Fe2+ has an electron transport ability, and proteins

containing Fe2+ can participate in various redox reactions (32).

Transferrin (TF) carries Fe3+ in the bloodstream and transfers iron

in cells through transferrin receptor 1 (TFCR1). Fe3+ is reduced to

Fe2+ by the six-transmembrane epithelial antigen of prostate 3,
Frontiers in Endocrinology 03
which is stored in the ferritin heavy chain (FTH) and ferritin light

chain (FTL) (33). Fe2+ is stored in ferritin (Fn) and becomes a part

of the labile iron pool, which plays a dominant role in ferroptosis.

TFCR1 is considered a marker protein for ferroptosis, and knocking

out TFCR1 can block ferroptosis. In the absence of enough iron in
TABLE 1 Comparison of cell death pathways.

Cell
death

pathway

Morphological changes Biochemical characteristics

Ferroptosis
Rupture of the outer mitochondrial membrane, reduction or loss of mitochondrial ridges, and
mitochondrial membrane density Increased, normal nucleus.

Iron ion and lipids Peroxide, ROS accumulation, system
Xc- activation, GSH consumption.

Cuprotosis The outer membrane of mitochondria is normal, with narrow and twisted cristae;
Mitochondrial concentration, separation of inner and outer membranes, and increased matrix
density; Mitochondrial envelope

Excessive intercellular copper and TCA cycle disorders

Pyroptosis The main form of inflammatory necrotic cell death is membrane pore formation. Organelle
loss, cell membrane rupture, release radioactive pro-inflammatory cytokines

Activation of caspase and gasdemin, release of
neutrophil elastase and myeloperoxidase by alarge
number of proinflammatory factors, activation
of PAD4.

Necrosis Plasma membrane rupture, cytoplasmic organelle swelling, chromatin concentration. ATP depletion, protein hydrolysis and DAMP release
involving calpain and cathepsin.

Apoptosis Agglutination of chromatin, formation of apoptotic bodies, disintegration of cytoskeleton,
reduction of cell and nuclear volume.

Caspase activation, PS exposure, mitochondrial
membrane potential.

Autophagy Damage or dysfunctional organelles and macromolecules are cleared from cells through
autophagosome fusion, and enzymatic digestion. Formation of double membrane
autolusosomes, including large autophagy, microautophagy and partner mediated autophagy

LC3-I to LC3-II conversion and substrate degradation.
ROS, reactive oxygen species; GSH, glutathione; DNA, deoxyribonucleic acid; PAD4, peptidylarginine deiminase 4; ATP, adenosine triphosphate; DAMP, damage-associated molecular pattern;
PS, phosphatidyl serine; LC3, microtubule-associated protein light chain 3.
FIGURE 2

The main regulatory mechanisms of ferroptosis. SLC7A11, solute carrier family 7 member 11; PUFAs, polyunsaturated fatty acids; TFCR1, transferrin
receptor 1; FPN, ferroportin; NCOA4, nuclear receptor coactivator 4; FTH, ferritin heavy chain; FTL, ferritin light chain; GSH, glutathione; GPX4,
glutathione peroxidase 4; HO-1, heme oxygenase-1; NRF2, nuclear factor-erythroid 2-related factor 2; ROS, reactive oxygen species; LACS4, acyl-
CoA synthetase long-chain family member 4.
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cells, an “iron starvation response” begins, increasing iron

availability by increasing TFCR1 and decreasing the levels of FTH

and ferroportin (FPN) (34).

2.1.2 Iron homeostasis
Under normal circumstances, intracellular iron maintains a

subtle balance through the iron transport system (35). Some iron

is used for the biosynthesis of hemoglobin and iron sulfur clusters

and for DNA synthesis. Cellular iron homeostasis also depends on

iron regulatory proteins and iron-responsive elements (36). Iron

regulatory proteins can bind to iron-responsive element mRNAs,

regulating their translation process. Aberrant expression or

dysfunction of the divalent metal transporter 1, TFRC1, and Fn

genes and FPN leads to intracellular iron imbalance (37). Iron

regulatory protein 2 can enhance the sensitivity of cells to erastin-

induced ferroptosis by inhibiting the expression of FTH and FTL

(38). When the plasma iron level meets the systemic iron demand,

the liver will increase the secretion of hepcidin into the blood,

reducing the plasma iron level and maintaining iron homeostasis in

the body (39). Although every cell requires iron to generate energy,

high iron levels can induce inflammation, oxidative stress, and lipid

peroxidation in the cell membrane, leading to ferroptosis (40).

Iron homeostasis dysregulation is involved in ferroptosis, and

multiple iron metabolism regulatory factors work together to

maintain iron homeostasis (41). As mentioned, Fn autophagy is

crucial for regulating ferroptosis (42). Nuclear receptor coactivator

4 (NCOA4) helps lysosomes breakdown intracellular Fn through

autophagy, which releases free iron and causes oxidative damage

(43). This selective autophagy process is called iron autophagy.

Knockout of NCOA4 can inhibit ferroptosis caused by decreased

amino acid or cysteine levels (44). Research has shown that

knocking out autophagy-related genes 5 (ATG5) and ATG7 can

reduce intracellular Fe2+ levels and lipid peroxidation, inhibiting

ferroptosis (45). In addition to selective autophagy, activating the

ubiquitin−proteasome system can promote Fn degradation. As an

antioxidant, ubiquitin captures lipid peroxidation free radicals,

prevents lipid peroxidation generation, and inhibits ferroptosis.

Tang et al. reported that in treated rat hearts, ubiquitin-specific

protease 7 increases iron uptake and promotes ferroptosis by

activating the P53/TFRC1 pathway (46).
2.2 Ferroptosis and lipid metabolism

The conversion of lipids into membrane phospholipids and the

occurrence of peroxidation are necessary conditions for ferroptosis

(47). Lipid metabolism is closely related to ferroptosis. Most ROS

related to ferroptosis originates from the Fenton and Haber-Weiss

reactions, which then interact with PUFAs on the lipid membrane

to form ROS (48). Phosphatidylethanolamine and arachidonic acid

are essential membrane phospholipids that cause ferroptosis in the

cell membrane. Lipoxygenases are nonheme iron-dependent

dioxygenases that target polyunsaturated fatty acids (PUFAs).

With the participation of iron in the cytoplasm, lipid free radicals

are formed, which can directly oxidize PUFAs and PUFA-
Frontiers in Endocrinology 04
containing lipids in the biofilm, leading to cell damage (49). A

decrease in lipoxygenase expression can also effectively improve

ferroptosis induced by erastin (50). However, lipoxygenases cannot

prevent ferroptosis induced by RSL3 (51). Although lipoxygenases

do not have extensive regulatory effects on ferroptosis, they play

essential roles in specific ferroptosis mechanisms.

Acyl-CoA synthetase long chain family member 4 (ACSL4) and

lysophosphatidylcholine acyltransferase 3 are key enzymes involved

in the process of lipid peroxidation (52). ACSL4 and

lysophosphatidylcholine acyltransferase 3, which are involved in

the synthesis of PUFAs, play essential roles in the ferroptosis

pathway (53). ACSL4 binds PUFA to coenzyme A through

acylation and further undergoes an esterification reaction with

phosphatidylethanolamine under the action of LPCAT to

generate PUFA-PE (54). Continuous oxidation reactions and

consumption of PUFAs may alter the fluid structure of cell

membranes, thereby increasing membrane permeability and

ultimately leading to cell death. Inhibiting the expression of

ACSL4 can increase the resistance of cells to ferroptosis and can

be a target for inhibiting ferroptosis, which may provide new ideas

for diagnosing and treating PCOS. Ferroptosis may play a role not

only in pathological conditions but also in physiological processes.

The normal development of the human fetal immune system

depends on sufficient dietary intake of PUFAs (55). To

summarize, studying the correlation between lipid metabolism

and ferroptosis has essential research value (56).
2.3 Ferroptosis and amino acid metabolism

Ferroptosis is closely related to amino acid metabolism (57).

The consumption of glutathione (GSH) can lead to the inactivation

of GPX4 (58). Cysteine synthesizes GSH in the body through the

cystine/glutamic acid reverse transporter (System Xc -) and the

transsulfuration pathway (59). System Xc -, located on the cell

membrane, is a heterodimer linked by disulfide bonds and contains

the heavy chain subunits solute carrier family 3 member 2 and

solute carrier family 7 member 11 (SLC7A11) (60). System Xc - is

responsible for transporting extracellular cysteine into the cell.

Glutamate exchanges cysteine at a 1:1 ratio, transporting

intracellular glutamate to the outside of the cell (61). Cysteine

provides the raw material for intracellular GSH synthesis (62).

Another source of cysteine is cysteine sulfide, which is formed

through the reverse sulfurization of methionine (63).

2.3.1 Negative regulatory factors of System Xc -
Inhibiting cysteine uptake by System Xc - can inhibit the

synthesis of GSH, leading to the accumulation of peroxides in the

body and the induction of ferroptosis (64). System Xc—inhibitors

such as erastin, sulfasalazine, sorafenib, and glutamate—are

considered class I ferroptosis inducers, and inhibition of System

Xc - leads to compensatory transcriptional upregulation of

SLC7A11 (65). SLC7A11, an essential component of System Xc -,

is an upstream regulatory factor of ferroptosis (66). SLC7A11 can

reduce lipid peroxidation accumulation and prevent cells from
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entering the ferroptosis program by introducing cysteine and

promoting GSH synthesis (67). Song et al. reported that Beclin 1

directly stops System Xc - activity by attaching to the core region of

SLC7A11 and encouraging ferroptosis (68). Nuclear factor

erythroid 2-related factor 2 (NRF2) is a crucial antioxidant

transcription factor. Silencing NRF2 can significantly reduce the

expression of SLC7A11 and heme oxygenase-1 (HO-1) and inhibit

ferroptosis (69).

2.3.2 GPX4: a core regulator of ferroptosis
Ferroptosis is related to the inactivation of GPX4 (70). As an

important antioxidant in cells, GPX4 is a key ferroptosis regulator.

GSH is used as a reducing substrate to promote the transformation

of lipid peroxidation products into hydroxyl compounds,

preventing ferroptosis in cells and protecting the structure and

function of cell membranes from interference and damage (71).

Under normal circumstances, fatty acid hydroperoxides can be

converted into fatty acid alcohols through GPX4 mediation (72).

Inhibiting GPX4 can interfere with intracellular iron homeostasis

and reduce lipid peroxidation. The ferroptosis inducers RSL3 and

erastin can both inactivate GPX4. RSL-3 blocks GPX4, which

increases the levels of ROS and malondialdehyde (MDA) inside

cells and promotes ferroptosis by blocking the SLC7A11/GSH/

GPX4 pathway (73). Erastin indirectly inhibits GPX4 by

inhibiting cysteine input, leading to cell membrane damage and

death. Selenocysteine is an amino acid found in the active center of

GPX4 (74). It can maintain GPX4 activity and help eliminate lipid

peroxidation, which stops ferroptosis. Therefore, selenium

deficiency can inhibit GPX4 activity and induce ferroptosis. GPX4

can also be turned off directly by squalene synthase, HMG CoA

reductase, and other enzymes, which can change reduction

reactions (75).
2.4 Ferroptosis and antioxidant pathways

Under physiological conditions, when cells undergo lipid

peroxidation, multiple antioxidant pathways counteract this

change. Research has shown that the intracellular ferroptosis

antioxidant system is related to the SLC7A11/GSH/GPX4

signaling pathway (76). GPX4 reacts with GSH and lipid

peroxidation products, efficiently clearing accumulated lipid

peroxidation products and maintaining normal physiological

functions. Ferroptosis suppressor protein 1 (FSP1) is a newly

discovered inhibitory protein that inhibits GPX4 deficiency (77).

The NAD(P)H/CoQ10/FSP1 signaling pathway is a crucial

ferroptosis regulatory pathway (78). GTP cyclohydrolase 1 is

involved in ferroptosis resistance, and its mechanism involves the

generation of tetrahydrobipterin (BH4), which has redox activity,

from GTP (79). BH4, a powerful antioxidant that captures free

radicals, can promote CoQH2 regeneration and combat lipid

peroxidation by activating downstream molecules such as GTP

cyclohydrolase 1. These results indicate that the NADH-FSP1

CoQ10 and GTP cyclohydrolase 1/BH4 pathways work together

with the SLC7A11/GPX4/GSH pathway to inhibit ferroptosis (80).
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Mao et al. reported that there is a ferroptosis system in

mitochondria mainly composed of dihydrolactate dehydrogenase,

which also induces lipid peroxidation in the mitochondrial

membrane by promoting the reduction of CoQ10 to combat

ferroptosis (81).
2.5 Ferroptosis and other
regulatory mechanisms

2.5.1 p53-mediated ferroptosis
Research has shown that p53 has a complex dual mechanism for

regulating cellular ferroptosis through transcription and translation

(82). P53 can inhibit cysteine uptake by downregulating SLC7A11,

reducing GPX activity and GSH synthesis and subsequently causing

intracellular ROS accumulation and ferroptosis (83). On the other

hand, p53 can promote the activity of glutaminase 2 and

spermidine/spermine N1-acetyltransferase 1 (SAT1). Glutaminase

2 catalyzes the degradation of glutamine to glutamic acid, and the

activation of SAT1 induces lipid peroxidation. The overexpression

of glutaminase 2 and SAT1 promotes PUFA oxidation and lipid

peroxidation, leading to ferroptosis. The transcription target gene

cyclin-dependent kinase inhibitor 1A is used to reduce GSH and

ROS and delay ferroptosis (84). The specific mechanism by which

P53 regulates ferroptosis needs further study.

2.5.2 The Keap1-NRF2 pathway
mediates ferroptosis

The NRF2 transcription factor stimulates the production of

NADPH by blocking the expression of antioxidant genes and

increasing the expression of enzymes in the pentose phosphate

pathway, which decreases the sensitivity of cells to ferroptosis (85).

Under normal physiological conditions, activation of the Keap1-

NRF2 signaling pathway promotes the activation of System Xc - and

the expression of GPX4 and accelerates cysteine glutamate

transport, thereby clearing accumulated lipid peroxidation and

inhibiting ferroptosis (86). Activation of NRF2 reduces iron

absorption, limits ROS production, and enhances cellular

antioxidant capacity (87). P62 strictly controls NRF2 and can

inhibit ferroptosis. P62 is an autophagic receptor that directly

inhibits Keap1 while promoting NRF2 activation (88). NRF2

regulates multiple targets, such as genes regulating GSH synthesis

and encoding antioxidant proteins (89). The iron-chelating

enzymes HO-1, FTH, and FTL are all strictly controlled by NRF2

(90). Glutamate cysteine ligase, GSH synthase, and SLC7A11 are

also transcriptional targets of NRF2 (91).
2.6 The interaction between ferroptosis
and other types of cell death

Ferroptosis may interact with other types of cell death (92).

Anthraquinone modifications can significantly upregulate the

expression of glucose-regulated protein 78, activate transcription

factor 4, and downregulate the expression of the essential
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ferroptosis protein GPX4. Endoplasmic reticulum stress induces

apoptosis and accompanies ferroptosis. The autophagy pathway can

degrade ferritin, while ferroptosis regulatory proteins can regulate

autophagy (93). Ferritin autophagy and lipid autophagy can

promote ferroptosis by regulating iron metabolism and lipid

peroxidation (94). Under oxidative stress, autophagy protects

mitochondrial integrity by clearing ROS, preventing cell

apoptosis, and exerting a protective effect (95). Excessive ROS-

induced autophagy can also lead to cell death (96). Lipid

peroxidation can attach to particular mitochondria and

autophagy-related proteins, leading to autophagic cell death and

cellular dysfunction (97). In summary, ferroptosis interacts with

and promotes other types of cell death.
3 The role of ferroptosis in female
reproductive disorders

3.1 The impact of ferroptosis on the
process of follicular development

ROS and antioxidants in the ovaries play critical regulatory

roles during oocyte maturation, fertilization, and embryonic

development and implantation (98). Studies have shown that

excessive iron in follicular fluid significantly increases ROS levels

in mouse oocytes, leading to a decrease in the maturation rate of

oocytes (99). Recurrent bleeding from ovarian lesions can lead to

iron overload, increased ferroptosis, and decreased ovarian

function, affecting follicular development and oocyte quality. ROS

in follicles promotes apoptosis in most follicular cells (100). Studies

have shown that blocking the production of GSH increases antral

follicular atresia in rats (101). Research has shown that the

expression of TF in early follicular atresia is significantly reduced,

while the expression of the iron chaperone protein PCBP is

increased considerably. During follicular development, Basonclin1

maintains lipid metabolism and redox homeostasis in oocytes.

Research has confirmed abnormal levels and pathways of

ferroptosis-related indicators in basonclin1-truncated mouse

oocytes (102). Neurofibromin 2 expression was significantly

reduced in basonclin1-deficient oocytes, while the expression

levels of yes-associated protein, TFR, and ACSL4 increased

considerably, triggering oocyte ferroptosis (103).
3.2 Ferroptosis of GCs leads to
immature oocytes

Oogenesis is achieved through the interaction between the

oocyte and the microenvironment of the follicle (104). The

production of various cytokines and hormones in follicular fluid

mainly relies on ovarian GCs, which play an essential role in

oogenesis (105). Excessive iron in the internal environment can

cause ferroptosis in ovarian GCs, which slows oocyte maturation

and follicle development, increasing the risk of infertility (106, 107).

Researchers have shown that a TFR-mediated increase in iron
Frontiers in Endocrinology 06
uptake in GCs induces the release of ROS, mitochondrial

autophagy, and lipid peroxidation (108). The levels of FTH, TF,

and TFRC in the ovarian GCs of infertile women are much lower

than those in the ovarian GCs of healthy women (109). This finding

suggested that FTH is a crucial regulator of ovarian follicle

development and atresia (110). CircRHBG competes with

SLC7A11 for binding to miR-515-5p, inhibiting GC ferroptosis.

There fore , the knockout of c i rcRHBG can promote

ferroptosis (111).
3.3 Oxidative stress impairs
reproductive function

Mitochondrial dysfunction and excessive ROS production are

characteristics of ferroptosis, and mitochondrial dysfunction further

promotes ROS production, leading to oxidative stress, which

induces the development and exacerbation of ferroptosis (112,

113). The other key indicator of ferroptosis is an increase in the

levels of MDA, the final product of lipid oxidation (114). MDA can

affect the activity of respiratory chain complexes and critical

enzymes in mitochondria and aggravate membrane damage. A

reduction in mitochondrial DNA is correlated with IR,

hyperandrogenemia, and polycystic ovarian morphology in

women with PCOS (115–117). Oxidative stress, ferroptosis, and

PCOS interact with each other (118). An imbalance in total

antioxidant levels in the serum of women with PCOS can

exacerbate cell damage and reduce cellular defense ability (119).

By comparing the oxidative stress indices of women with PCOS and

healthy women, it was found that women with PCOS have

significantly greater GPX and GSH reductase activities (120). The

concentration of these substances directly affects the maturation

and quality of oocytes, fertilization, and embryonic development

(121). Metabolomic analysis of follicular fluid from clinical PCOS

patients revealed mitochondrial dysfunction, oxidation−reduction

potential imbalance, and increased oxidative stress in cumulus cells

(122). The elevated levels of autoantibodies and ROS in the serum of

PCOS patients suggest that oxidative stress may be one of the

critical reasons for the abnormal endometrial environment in PCOS

patients (123). Insulin is the primary regulator of oxidative

phosphorylation, and its secretion can directly affect

mitochondrial function (124, 125).
3.4 The impact of ferroptosis on
pregnancy outcomes

Iron homeostasis plays an essential role in maintaining

pregnancy. In vitro experimental studies have shown that

appropriate iron in protein-free embryo culture medium can

promote embryonic development, while iron overload is not

conducive to embryonic development. Ferroptosis is associated

with placental injury or miscarriage (126). During the abortion

process, the large amount of ROS generated increases the

generation of lipid peroxidation at the maternal-fetal interface,

providing a primary condition for ferroptosis. Ferroptosis is
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triggered in the uterus and placenta of PCOS rats with

hyperandrogenemia and IR. Compared with those in the control

group, the expression levels of GPX4 and GSH in the uterus and

placenta of PCOS rats were lower, and the expression levels of the

ferroptosis-related genes ACSL4, TFCR1, SLC7A11, and glutamate

cysteine ligase C were significantly increased (127). Ferroptosis is

closely related to spontaneous preterm birth, and PLA2G6 can

alleviate ferroptosis caused by GPX4 inhibition during pregnancy in

mice (128).
4 Ferroptosis in PCOS

PCOS is a reproductive endocrine disorder that not only affects

women’s reproductive and physiological health but also leads to

complications such as diabetes mellitus type 2 (T2DM), obesity,

familial cardiovascular disease, and cardiovascular disease (129).

PCOS has transcended the field of obstetrics and gynecology and

affects various significant systems throughout the body, seriously

threatening women’s physical and mental health, affecting their

quality of life, and causing lifelong endocrine and metabolic diseases

(130, 131) (Figure 3). The etiology of PCOS has not yet been

clarified, although much work has been done on this topic over the

past few decades (132). The onset of PCOS involves multiple

factors, such as hyperandrogenemia, IR, and abnormal follicular

development (133–135). Ferroptosis affects the proliferation and

apoptosis of granulosa cells (GCs), affecting endocrine and

metabolic processes (Figure 4).
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Iron is an essential trace element for life and an important

component of hemoglobin, myoglobin, and various enzymes (136).

Iron participates in multiple critical physiological and biochemical

processes in the body, including oxygen transport, DNA

biosynthesis, and ATP synthesis (137). Research has shown that

regardless of obesity, the serum Fn levels in PCOS patients are

significantly greater than those in control individuals, indicating

that abnormal iron metabolism may be involved in the occurrence

and development of PCOS (138). Iron overload occurs in PCOS

patients, potentially due to chronic oligomenorrhea and decreased

hepcidin concentration (139). Research has shown that the serum

Fn concentration is directly proportional to the severity of

menstrual dysfunction, suggesting that the iron retention effect of

chronic oligomenorrhea may be associated with increased iron

storage in some PCOS patients (140). The compensatory

hyperinsulinemia caused by PCOS may promote iron absorption

(141, 142). Additionally, with the combined action of IR and

excessive androgen in PCOS patients, TF inhibition is decreased,

iron absorption in the intestine is increased, and iron release from

macrophages is decreased, leading to iron overload (143).
4.1 Ferroptosis is involved in endocrine and
metabolic disorders in PCOS

Iron overload can affect glucose metabolism, leading to IR and

exacerbating metabolic abnormalities in PCOS patients (144). On the

one hand, iron can affect the secretion and sensitivity of insulin and
FIGURE 3

The main regulatory mechanisms of ferroptosis in PCOS. PCOS, polycystic ovarian syndrome; SHGB, sex hormone-binding globulin; LH, luteinizing
hormone; FSH, follicle-stimulating hormone.
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inhibit liver glycogen production, and insulin secretion decreases with

increasing liver iron storage, leading to systemic hyperinsulinemia. On

the other hand, insulin can promote iron absorption and Fn synthesis

while also promoting glucose transport. Excessive androgen and insulin

resistance can activate ferroptosis in the uterus and placenta of

pregnant women with PCOS (145). The plasma levels of leucine,

isoleucine, methionine, glutamine, and arginine were much lower in

PCOS patients than in healthy controls (146). Compared to those in

healthy women, serum bioactive lipid levels are much lower in women

with PCOS (147). Arachidonic acid levels in the serum of PCOS rats

were significantly greater than those in the serum of control rats (148).

Phosphatidylethanolamine combined with arachidonic acid is an

essential phospholipid that causes ferroptosis, which means that

there are appropriate conditions for ferroptosis in PCOS patients (149).
4.2 Oxidative stress mediates metabolic
abnormalities in PCOS

Oxidative stress is closely related to obesity, IR, and HA in

PCOS, and the induced apoptosis of ovarian GCs leads to follicular

atresia, which is one of the mechanisms of ovulation disorders in

PCOS (150). SOD is an important antioxidant enzyme for

scavenging oxygen-free radicals and catalyzes the dismutation

reaction of ROS to eliminate oxygen-free radicals and reduce

damage to ovarian cells (151). MDA levels are positively
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correlated with BMI, triglyceride levels, low-density lipoprotein

levels, systolic blood pressure, diastolic blood pressure, and

HOMA-IR (152). Research has shown that ROS produced by

monocytes in the pancreas plays an essential role in the abnormal

development of cells (153). ROS-induced NF-kB can enter the

nucleus and bind to chromatin to promote tumor necrosis factor-a
(TNF-a) (154). Transcription can activate the PI3K/Akt/mTOR

pathway to inhibit insulin secretion (155). In PCOS animal models,

free fatty acids in ovarian tissue increase, glucose oxidation is

inhibited, free fatty acid oxidation is enhanced, and ROS increase

through the TCA cycle, leading to IR (156).
4.3 Ferroptosis and a high-fat diet

Obesity is closely related to PCOS and plays a crucial role in the

occurrence and development of PCOS (157). In obese PCOS

patients, long-term high-fat diets can induce inflammatory

reactions and oxidative damage and exacerbate iron deposition,

which is an essential factor influencing ferroptosis (158). A long-

term high-fat diet can cause low-density lipoprotein, which is

deposited in the endothelium of tissues. The prolonged

accumulation of low-density lipoprotein can induce an oxidative

stress response (159). Oxidative stress is one of the pathogenic

mechanisms of PCOS, and many studies have confirmed that

oxidative stress indicators are positively correlated with obesity.
FIGURE 4

The main regulatory mechanisms of ferroptosis in PCOS. PCOS, polycystic ovarian syndrome; GCs, granulosa cells; GPX4, glutathione peroxidase 4;
FTH, ferritin heavy chain; TF, transferrin; TFRC, transferrin receptor; IVF-ET, in vitro fertilization and embryo transfer; PUFA, polyunsaturated fatty
acid; ACSL4, acyl-CoA synthetase long chain family member 4; IR, insulin resistance; ROS, reactive oxygen species; MDA, malondialdehyde; GSH,
glutathione; NRF2, nuclear factor-erythroid 2-related factor 2.
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Compared with those in nonobese patients, the serum levels of the

antioxidant substances MDA, SOD, GSH, and GPX were

significantly greater in the obese PCOS group (160). In the

environment of mature follicles, oxidative damage can further

trigger chronic inflammatory reactions in the ovaries. ROS plays a

crucial role in follicular development disorders (161). In follicular

fluid containing high levels of ROS, a large amount of highly toxic

MDA is produced, which can exacerbate cell damage in the ovaries.

Therefore, obesity, ferroptosis, and the development of PCOS are

closely related.
5 Ferroptosis contributes to the
diagnosis and treatment of PCOS

Follicular development is a complex biological process of

continuous change involving multiple hormones and regulatory

factors, and the loss of oocytes from the ovary is irreversible (162).

Abnormal follicular development can cause a wide range of female

disorders and lead to reduced female fertility (163). Early preventive

measures could mitigate the development of PCOS (164). The

substances that regulate ferroptosis can serve as targets for

diagnosing and treating PCOS, exhibiting broad research

prospects. Zheng et al. reported that unexplained liver injury in

PCOS patients and animal models was accompanied by increased

Fe deposition and downregulation of hepcidin and GPX4

expression in the liver, indicating the importance of iron

metabolism in this type of unexplained liver injury (165). Tang

et al. reported that NEDD4L promotes ferroptosis in GCs and

promotes the occurrence of PCOS by promoting GPX4

ubiquitination and degradation. NEDD4L decreased the viability

of KGN cells and increased the levels of MDA and ROS. Moreover,

ferroptosis inhibitors can block NEDD4L-induced KGN cell death,

suggesting that NEDD4L regulates ferroptosis in KGN cells (166).

Jiang et al. reported that KGN cells treated with DHEA exhibited

ferroptosis characterized by decreased viability, inhibited GPX4 and

SLC7A11 expression, increased ACSL4 expression, increased MDA

levels and ROS accumulation, and increased lipid peroxidation.

These findings may provide new insights into the pathophysiology

and treatment of PCOS (167).

Zhang et al. noted that differentially expressed ferroptosis-related

genes are associated with reproductive outcomes in infertile POCS

patients, and they constructed a FerSig risk prognosis model (168).

Lin et al. identified five essential differentially expressed ferroptosis-

related genes (NOX1, ACVR1B, PHF21A, FTL, and GALNT14) that

may be related to the pathogenesis of PCOS, providing a new

perspective for the clinical diagnosis and treatment of PCOS (169).

Research has shown that miR-93-5p regulates the NF-kB signaling

pathway and promotes apoptosis and ferroptosis in GCs (170).

Silencing miR-93-5p can prevent GC dysfunction and provide new

molecular targets for diagnosing and treating PCOS. N-3 PUFAs

activate Hippo, promote yes-associated protein 1 exocytosis, weaken

cross-talk between yes-associated protein 1 and Nrf2, and ultimately

activate ferroptosis sensitivity in ovarian GCs. N-3 PUFAs also

inhibit excessive proliferation of GCs in ovarian follicles, by which

n-3 PUFAs weaken PCOS, and identifying yes-associated protein 1
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(Nrf2) as a potential therapeutic target for regulating GCs in PCOS

(171). Transferrin receptor-mediated ROS promote ferroptosis in

KGN cells by regulating NADPH oxidase 1/PTEN-induced kinase 1/

acyl-CoA synthetase long-chain family member 4 signaling, and the

inhibitory effects of TFRC/NOX1/PINK1/ACSL4 signaling on

folliculogenesis could be a potential target for PCOS treatment

(172). Peng et al. reported that metformin regulates ferroptosis

through the SIRT3/AMPK/mTOR pathway to improve weight,

metabolic disorders, and ovarian dysfunction in PCOS mice (173).

Therefore, exploring the role of ferroptosis in the occurrence and

development of PCOS can provide more ideas for mechanistic

research on PCOS and more potential targets for PCOS treatment.
6 Conclusions

In recent years, substantial progress has been made in exploring

ferroptosis. The regulatory network of iron homeostasis, lipid

metabolism, amino acid metabolism, and antioxidant pathways

provides new ideas for diagnosing and treating human diseases.

Ferroptosis is expected to become a new biomarker for the

development, treatment efficacy, and prognostic evaluation of PCOS.

Research on ferroptosis in PCOS is still lacking. Further research on

PCOS animal models with larger sample sizes is needed to validate the

potential effects of ferroptosis on ovarian GCs, follicles, ovaries, and

even the entire female reproductive system. More clinical studies are

urgently needed. Assessing whether ferroptosis and its related

molecules play essential roles in infertility, metabolic abnormalities,

and other aspects of clinical PCOS and whether the administration of

antioxidants can prevent ferroptosis, lipid peroxidation, and adverse

maternal and fetal outcomes caused by maternal hyperandrogenemia

and IR will provide insights and directions for future clinical diagnosis

and treatment. Based on existing prevention and treatment methods

for PCOS, interventions targeting different nodes of the ferroptosis

regulatory network combined with other treatment methods for

various patient etiologies, treatments, and prognoses are expected to

be effective and reasonable in the future, thus achieving personalized

treatment of PCOS.
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Glossary

PCOS polycystic ovarian syndrome

IR insulin resistance

PUFAs poly-unsaturated fatty acids

GPX4 glutathione peroxidase 4

ROS reactive oxygen species

TF transferrin

TFCR1 transferrin receptor 1

FTH ferritin heavy chain

FTL ferritin light chain

Fn ferritin

FPN ferroportin

NCOA4 nuclear receptor coactivator 4

ATG5 autophagy-related genes 5

ACSL4 acyl-CoA synthetase long chain family
member 4

GSH consumption of glutathione

System Xc - the cystine/glutamic acid
reverse transporter

SLC7A11 solute carrier family 7 member 11

NRF2 nuclear factor-erythroid 2-related
factor 2

HO-1 heme oxygenase-1

MDA malondialdehyde

FSP1 ferroptosis suppressor protein 1

BH4 tetrahydrobiopterin

SAT1 spermidine/spermine N1-
acetyltransferase 1

T2DM type 2 diabetes mellitus

GCs granulosa cells

SOD superoxide dismutase

TNF-a tumor necrosis factor-a
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