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Changting Sheng, Luyao Wang, Caiyi Long and Rensong Yue*

Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
The increasing prevalence of Diabetes Mellitus (DM) as a global health concern

highlights the paramount importance of accurately predicting its progression.

This necessity has propelled the use of deep learning’s advanced analytical and

predictive capabilities to the forefront of current research. However, this

approach is confronted with significant challenges, notably the prevalence of

incomplete data and the need for more robust predictive models. Our research

aims to address these critical issues, leveraging deep learning to enhance the

precision and reliability of diabetes progression predictions. We address the issue

of missing data by first locating individuals with data gaps within specific patient

clusters, and then applying targeted imputation strategies for effective data

imputation. To enhance the robustness of our model, we implement strategies

such as data augmentation and the development of advanced group-level

feature analysis. A cornerstone of our approach is the implementation of a

deep attentive transformer that is sensitive to group characteristics. This

framework excels in processing a wide array of data, including clinical and

physical examination information, to accurately predict the progression of DM.

Beyond its predictive capabilities, our model is engineered to perform advanced

feature selection and reasoning. This is crucial for understanding the impact of

both individual and group-level factors on deep models’ predictions, providing

invaluable insights into the dynamics of DM progression. Our approach not only

marks a significant advancement in the prediction of diabetes progression but

also contributes to a deeper understanding of the multifaceted factors

influencing this chronic disease, thereby aiding in more effective diabetes

management and research.
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1 Introduction

Diabetes Mellitus (DM) stands as a global health crisis,

characterized by its widespread prevalence and significant health

hazards Association (1) Alam et al. (2) Tomic et al. (3). The

disease’s impact on quality of life and its association with various

complications Nathan (4); Cole and Florez (5) underscore the

urgency for effective management and intervention strategies. In

recent years, the integration of deep learning models in medical

diagnostics has shown promising results Litjens et al. (6) Ayon and

Islam (7) Liu et al. (8) Pal et al. (9), offering innovative approaches

to disease detection and progression prediction. In the realm of

diabetes, deep learning techniques have been applied to electronic

medical records and hospitalization data for diagnosing and

predicting diabetes, prediabetes, and its complications Arcadu

et al. (10) Ljubic et al. (11) Refat et al. (12) Gupta et al. (13).

Additionally, these methods have seen some success in real-time

blood glucose monitoring Zhu et al. (14) Freiburghaus et al. (15, 16).

In this work, we focus on employing deep learning techniques

to predict the progression of DM (taking blood glucose

concentration as an example) based on common clinical data and

physical examination indicators, which can significantly enhance

the ability to identify disease risks, thereby enabling early warning

for patients. This approach not only aids in timely intervention to

reduce the risk of complications but also provides critical

information for the formulation of personalized treatment plans,

thus improving long-term health outcomes for patients Ljubic et al.

(11) Yahyaoui et al. (17). In addition, precise prediction of the

trajectory of diabetes allows healthcare providers to allocate

resources more effectively and optimize treatment strategies Choi

et al. (18) Li et al. (19), ultimately enhancing the quality of life and

disease management capabilities for patients.

However, this endeavor faces several critical challenges. First, a

key challenge lies in the inevitable occurrence of missing data, as the

range of medical tests conducted can vary across different

populations. Designing effective methods for data imputation to

enhance the model’s ability to cope with data gaps is crucial.

Second, the values of individual examination indicators are prone

to fluctuation due to changes in diet and lifestyle Pala et al. (20) Du

et al. (21). Designing a robust system for DM progression prediction

that remains unaffected by minor variations in these indicators is also

important. Lastly, utilizing effective and interpretable deep learning

models to analyze and explain the impact of various indicators on

diabetes progression, as well as the interrelationships among these

indicators, is crucial and presents a significant challenge. Such

interpretability is essential for providing meaningful guidance to

medical and informatics researchers and practitioners. It enables a

deeper understanding of the disease mechanisms and supports the

development of more targeted and effective diabetes management

strategies. Achieving this level of clarity and explanation in model

outputs is key to advancing the field and enhancing the practical

utility of predictive analytics in healthcare.

In response to the aforementioned challenges, our study makes the

following contributions: (i) To tackle the problem of missing data, we

initially cluster the samples in the dataset based on clinical indicators.

Subsequently, we utilize the indicative information from these clusters
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to enhance the effectiveness of our data imputation algorithm; (ii) To

improve the stability of the predictive model, we introduce methods of

sample augmentation with permutation injection and group-level

feature augmentation. These methods aim to minimize the impact of

minor fluctuations in indicators on the model and expand the model’s

training environment, thereby enhancing its robustness and predictive

performance; (iii) We leverage a deep attentive transformer, i.e., the

TabNet model Arik and Pfister (22), which allows for both static and

dynamic analysis of the impact and importance of different indicators

onmodel predictions through feature weights andmasks. Additionally,

by applying group masking to the inherent grouping of clinical data

features, we analyze and interpret the influence of different categories

of test indicators on the model. The grouping of clinical data features

also indirectly provides the predictive model with information about

the interrelationships between features, thereby improving

prediction accuracy.

We have opted for blood glucose concentration (BG) as the

primary indicator for monitoring the progression of diabetes

mellitus (DM), rather than glycated hemoglobin (HbA1c)

Sherwani et al. (23). This decision is based on a key

consideration: BG provides immediate feedback on glucose levels,

which is crucial for acute diabetes management. Our model is

designed to capture and respond to rapid changes in glucose levels

to prevent and manage acute complications such as hypoglycemia

or ketoacidosis. In contrast, HbA1c offers an average blood glucose

level over the past two to three months and is better suited for long-

term diabetes management and monitoring the risk of chronic

complications, rather than for situations requiring immediate

decision-making Weykamp (24).

In summary, this work explores methods of DM progression

prediction, aiming to reveal the impact of various indicators on the

predictive task. It conducts multifaceted analysis and exploration of

population and features at the group level. By delving deeper into

the interpretation of how different group information influences

DM prediction, the study also significantly enhances the model’s

predictive capabilities. Detailed individual and group-level analyses

are believed to bring new insights to related research. We have

named our predictive model the Group-informed Attentive

framework for Diabetes Mellitus progression Prediction (GADMP).
2 Materials and preliminaries

In this section, we first provide a detailed analysis of the dataset

employed in this study, followed by a brief introduction to the deep

attentive transformer, which is the primary methodology used1.
2.1 Dataset

In this study, our dataset is sourced from the public dataset of

the 2018 Tianchi Precision Medicine Competition1, which is

curated to explore the correlation between various common
frontiersin.org
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indicators and the progression of diabetes mellitus. Specifically, it

facilitates the prediction of the progression of DM in a population

(using blood glucose concentration as the key indicator), by

analyzing clinical data and physical examination indicators from

diabetic patients. Intelligent prediction of blood glucose levels aids

in diagnostic support, while an interpretable predictive model, by

analyzing the relationships between different indicators and blood

glucose levels, can help expand medical and research perspectives.

The dataset comprises 6,642 rows and 42 columns, representing 42

attributes for 6,642 patients, including ID, gender, age, date of

physical examination, various indicators, and so forth. The last

column is filled with blood glucose concentration, which is our

target for prediction. BG is measured after an overnight fast and is

often used to gauge the effectiveness of diabetes management on a

somewhat longer scale.

In Table 1, we present a detailed list of the attributes from the

dataset used for our prediction task. These attributes are typical of

tabular data and can be broadly divided into two categories:

categorical features, such as gender, and numerical features,

including age and various medical test indicators. We have

excluded attributes like user ID and physical examination date

from the model building process, as they do not have a direct

correlation with health conditions. Apart from basic demographic

information like age and gender, the dataset includes 37 medical test

indicators. These indicators are further categorized into six groups

(B-G) based on the specific bodily functions they assess, such as

liver function tests and lipid profiles. Table 1 also shows the extent

of missing data for each feature. We observe that, besides basic

demographic data, all medical indicators have some level of missing

data, with the number of patients missing these data ranging from

21 (e.g., WBC) to 5110 (e.g., HBsAg). The presence of missing data

in this dataset highlights a key challenge in our research. That is,

how to develop effective algorithms to address widespread data

gaps, thereby enabling the creation of a universally applicable

diabetes progression prediction model.
2.2 Modeling tabular data

In the realm of tabular data processing for predictive tasks

(regression or classification), traditional approaches have

predominantly relied on tree-based ensemble learning algorithms,

such as Random Forest Svetnik et al. (25), Gradient Boosting

Machines (GBM) Friedman (26), XGBoost Chen and Guestrin

(27), and LightGBM Ke et al. (28). These algorithms excel with

structured data due to their effective handling of non-linear

relationships between features Nguyen and Byeon (29).

Additionally, tree-based models are generally more interpretable,

a quality of significant importance in various business and decision-

making contexts. In contrast, deep learning algorithms are more

adept at managing large-scale unstructured data Shwartz-Ziv and

Armon (30), such as images Shen et al. (31), text Chatterjee et al.

(32), and audio Purwins et al. (33). Deep learning models are

capable of autonomously extracting complex, hierarchical features,

which is particularly crucial when dealing with intricate data types

like pixel data or natural language.
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TABLE 1 Statistics of clinical data.

Group
(Group Index)

Attribute
Index

Attribute Name Missing
Count

Basic Demo-
graphics (A)

A1

A2

Age
Gender

0
0

Liver Function
Tests (B)

B1

B2

B3

B4

B5
B6
B7
B8

Aspartate
Aminotransferase

(AST)
Alanine

Aminotransferase
(ALT)

Alkaline Phosphatase
(ALP)

Gamma-Glutamyl
Transferase (GGT)

Total Protein
Albumin
Globulin
Albumin/

Globulin Ratio

1406

1406

1406

1406

1406
1406
1406
1406

Kidney Function
Tests (C)

C1

C2

C3

Urea
Creatinine
Uric Acid

1572
1572
1572

Lipid Profile (D)

D1

D2

D3

Triglycerides (TG)
Total Cholesterol (TC)

High-Density
Lipoprotein

Cholesterol (HDL-C)

1395
1395
1395

D4 Low-Density
Lipoprotein

Cholesterol (LDL-C)

1395

Hepatitis B Virus
Markers (E)

E1

E2

E3

Hepatitis B Surface
Antigen (HBsAg)
Hepatitis B Surface
Antibody (HBsAb)

Hepatitis B e
Antigen (HBeAg)

5110

5110

5110

E4 Hepatitis B e
Antibody (HBeAb)

5110

E5 Hepatitis B Core
Antibody (HBcAb)

5110

Complete Blood
Count (F)

F1

F2

F3
F4
F5

F6

F7

White Blood Cell
Count (WBC)

Red Blood Cell Count
(RBC)

Hemoglobin (HGB)
Hematocrit (HCT)
Mean Corpuscular
Volume (MCV)

Mean Corpuscular
Hemoglobin (MCH)
Mean Corpuscular

Hemoglobin
Concentration

(MCHC)

21

21

21
21
21

21

21

F8

F9

Red Cell Distribution
Width (RDW)
Platelet Count

21

21

F10 Mean Platelet
Volume (MPV)

29

F11 29

(Continued)
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In recent years, with the advent of the TabNet model Arik and

Pfister (22), the application of deep learning in processing tabular

data has seen a notable increase Li et al. (19) Yan et al. (34) Chen

et al. (35). TabNet, a deep learning model specifically designed for

tabular data, stands out for its integration of the Attentive

Transformer and significant interpretability. The Attentive

Transformer enables TabNet to dynamically select and focus on

the most crucial input features, thereby enhancing predictive

performance and the ability to handle complex datasets.

Furthermore, TabNet’s design emphasizes model interpretability,

primarily due to its dynamic feature selection and attention mask

mechanism. This allows for effective identification and utilization of

the most predictive features, improving both the model’s

performance and interpretability. Such capabilities are particularly

vital for applications requiring high levels of transparency

and interpretability.

However, the direct application of the existing standard TabNet

model to predict blood glucose concentration encounters several

practical issues: (i) How can we effectively tackle the issue of missing

data in tabular datasets, as exemplified by the data missingness

detailed in Table 1? (ii) How can the robustness of the TabNet

model’s predictive accuracy be enhanced to ensure reliable

predictions, even in the face of fluctuations in individual

indicators? (iii) How can the TabNet model be optimized to
Frontiers in Endocrinology 04
better mine and utilize the inherent associations within data

features? As Table 1 demonstrates, common test indicators can be

naturally grouped into different feature sets based on the bodily

functions they assess. Applying heuristic information from these

sets not only has the potential to enhance the model’s predictive

power but also provides a basis for set-level analysis and

interpretation of the significance of various features. This aspect

is crucial for a deeper understanding of the model’s decision-

making process and for improving its applicability in

clinical settings.

In the following section, we will delve into a detailed exposition

of how we build upon the standard TabNet to construct our Group-

informed Attentive Framework for Diabetes Mellitus Progression

Prediction (GADMP) model. This discussion will encompass the

methodologies employed to adapt the TabNet architecture to our

specific research context.
3 Methodology

Figure 1 provides a succinct depiction of our GADMP model,

which is built upon TabNet. As illustrated, TabNet employs a

unique multi-step architecture, where each step processes a

distinct subset of features and makes individual decisions that

cumulatively contribute to the final prediction. The Feature

Transformer, a core component of TabNet, transforms the input

features through a series of learnable, non-linear transformations,

enabling the model to uncover intricate patterns and interactions.

Additionally, the Attentive Transformer applies an attention

mechanism to selectively focus on the most relevant features at

each step, using learned attention masks that dynamically highlight

and prioritize specific features based on their task relevance. In

Figure 1, the components of Imputation, Augmentation, and Group

Mask specifically address the three issues we previously mentioned.

Imputation tackles the challenge of missing data, Augmentation

enhances the robustness of the model against fluctuations in

individual indicators, and Group Mask leverages the inherent

associations within data features, aligning with the natural

groupings of common test indicators. These enhancements to the

standard TabNet architecture are pivotal in tailoring our GADMP
TABLE 1 Continued

Group
(Group Index)

Attribute
Index

Attribute Name Missing
Count

Basic Demo-
graphics (A)

A1

A2

Age
Gender

0
0

Platelet Distribution
Width (PDW)

F12 Plateletcrit (PCT) 29

White Blood Cell
Differential Count (G)

G1

G2

G3

G4

G5

Neutrophils
Percentage
Lymphocytes
Percentage

Monocytes Percentage
Eosinophils Percentage
Basophils Percentage

21

21

21
21
21
FIGURE 1

Graphical representation of DM progression prediction.
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model to effectively predict diabetes progression, ensuring both

high accuracy and interpretability.
3.1 Imputation

In related work, two primary methods have been employed to

address the issue of missing features: one approach involves filling

in missing values with the mean or mode of the corresponding

columns in the training dataset Jerez et al. (36) Neves et al. (37),

while the other leverages machine learning algorithms, such as

Random Forest or k-Nearest Neighbors, to predict these missing

values Pantanowitz and Marwala (38) Tang and Ishwaran (39).

However, given the severity of missing features in medical

examination data, as evidenced in Table 1, relying on simplistic

mechanisms or algorithms for data imputation can be ineffective

under the constraint of limited known information, potentially

impacting the accuracy of target outcome predictions.

In this work, we adopt a group information-inspired multi-

stage strategy to achieve as accurate data imputation as possible.

Our approach is as follows: (i) We use feature columns with less

significant missing phenomena in tabular data (i.e., the 19 features

in Table 1: A1, A2, F1 − F12, and G1 − G5) as clustering features and

apply the DBSCAN algorithm Ester et al. (40) to divide all patients

into different groups; (ii) For each patient, we calculate the mean

values of all other features (excluding clustering features) within

their group to create m additional cluster-level features (averaged

indicators of patients in the corresponding cluster); (iii) Using these

augmented features and the existing non-missing feature values, we

progressively predict missing values using the LightGBM algorithm

Ke et al. (28). Specifically, we first predict the missing values of the

B1 feature, then use the predicted B1 values as known information to

predict the next set of missing values, and continue this process

until all missing feature values have been predicted.

We answer two key questions to elucidate the motivation

behind adopting a group information-inspired multi-stage

strategy for missing data imputation: (i) Why is clustering

performed initially? In medical examination cohorts, individuals

within the same group often exhibit similarities in various

indicators Sakib et al. (41) Wahlqvist et al. (42). This implies that

the missing feature values of a patient in a group might be similar to

the corresponding indicators of other patients in the same group.

Therefore, we utilize the feature values of corresponding feature

columns within the group as additional information, providing a

more comprehensive basis for predicting missing values. (ii) Why

predict missing values in a stepwise manner? As Table 1 shows,

there is a tendency for missing data to occur across all tests within

the same category, likely because patients tend to choose tests based

on the bodily functions that these tests are intended to assess,

leading to entire categories (like Lipid Profile, feature group D)

being skipped. Directly using a unified model to predict multiple

missing indicators for a patient might not yield optimal results.

Hence, we adopt a stepwise filling approach, where each prediction

cycle uses the values predicted in the previous cycle as known

information to build a new model for predicting the next

missing indicator.
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Our strategy for missing data imputation employs the DBSCAN

clustering algorithm and the LightGBM prediction algorithm. This

choice is driven by: (i) DBSCAN’s ability to cluster based on data

point density, automatically determine the number of clusters,

robustness to noise, and suitability for tabular data; (ii)

LightGBM’s efficiency in handling complex relationships and

large-scale data, particularly apt for datasets with numerous

features and in scenarios with missing data. The results of our

experiments further validate the effectiveness of our proposed group

information-inspired multi-stage data imputation strategy.
3.2 Augmentation

To enhance the robustness of predictions for tabular data,

existing work has primarily focused on the design of machine

learning Shah and Pradhan (43) Kudari (44) or deep learning

algorithms Rajkomar et al. (45) Somepalli et al. (46), with a lack

of solutions targeting underlying factors at the data level.

Considering the unique nature of medical examination indicators,

where patients’ metrics can fluctuate within a certain range,

fluctuations in individual indicators at the data level can

fundamentally affect the predictions of a trained model, thereby

impacting its robustness. In this work, we propose a dual-layer data

augmentation approach, encompassing both sample augmentation

and feature augmentation, to further enhance the robustness of the

TabNet model in predicting blood glucose levels.

Sample augmentation involves adding random perturbation

values Df to specific features f of a patient, where −ϵf < Df < ϵf.
This method allows us to create augmented samples, expanding the

training environment and enhancing the model’s robustness against

fluctuations in indicators. Feature augmentation involves adding

group-level features to each sample. Assuming that samples within

the same group share similar test indicator values to some extent,

incorporating group-level features can help mitigate the impact of

minor fluctuations in individual indicators within the group on the

model. During the augmentation process, all features are used as

clustering features, followed by clustering using the DBSCAN

algorithm. We then select specific feature sets within each group

and use their averaged indicator values to augment the feature

columns of every patient in the group. This two-pronged

augmentation strategy is designed to bolster the model’s

resilience to variations in data, thereby improving its overall

predictive robustness.

In practical implementation, for sample augmentation, we

randomly select n features (perturbed features) from the feature

columns (excluding gender and age) and add perturbation to them.

The corresponding ϵf is set to one-twentieth (1/20) of the average

value of each selected feature column. For each patient, we generate

two augmented samples. The experimental results indicate that our

proposed augmentation method not only bolsters the robustness of

the TabNet model but also enhances its predictive accuracy. This

strategy effectively counters the inherent variability in medical data,

ensuring that the model remains reliable and precise, even in the

presence of individual feature value fluctuations. By introducing

controlled variability through augmentation, the model is trained to
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be more resilient to the variations commonly encountered in real-

world data, thereby improving its applicability and effectiveness in

clinical scenarios.

Current aggregation methods in diabetes management, such as

those proposed by Sampath et al. Sampath et al. (47), primarily

focus on combining glycemic control indices like the Low Blood

Glucose Index (LBGI) to predict outcomes such as nocturnal

hypoglycemia. These methods typical ly uti l ize l inear

combinations of individual glycemic indices derived from daily

glucose measurements to enhance prediction accuracy. In contrast,

our approach significantly advances these methodologies by

integrating a more diverse array of clinical data across various

categories. This broader spectrum of data allows our model to

capture complex interactions between different health indicators,

enhancing its applicability to various diabetes progression

scenarios. Our innovative use of a deep attentive transformer to

integrate features at an earlier stage and dynamically weigh their

importance marks a substantial improvement over the traditional

linear aggregation methods. Furthermore, we proactively address

the challenge of missing data with sophisticated imputation

strategies, ensuring robust performance across datasets with

incomplete information. This comprehensive and advanced

approach not only aligns with but also significantly advances

current methodologies, offering a more effective tool for diabetes

management in clinical settings.
3.3 Group masking

In the standard TabNet model, individual-level feature masking

is typically employed during the modeling process to learn and

interpret the importance of each independent feature for model

predictions. This individual-level masking mechanism has achieved

commendable results in various prediction and classification tasks

Arik and Pfister (22). However, for tasks like predicting diabetes

progression based on physical examination and medical test

indicators, this approach might actually impede model

effectiveness. This is because medical test indicators,

corresponding to different bodily functions, are naturally divided

into distinct sets. Indicators within the same set, indicating the same

bodily function, tend to have similar effects on diabetes progression

prediction. Individual-level feature masking could lead to

inconsistencies in the importance assigned to indicators within

the same set, potentially causing conflicts in model predictions.

Therefore, in this paper, we explore the uniform impact of the

same group of indicators on the model, that is, applying the same

mask to features within the same set (group), guiding the model’s

learning process. This group masking strategy prevents the model

from overly relying on any single feature during training, thereby

enhancing its generalization capability. Additionally, it allows the

model to perceive heuristic information between feature groups,

further leveraging the natural and tight correlations among features

to improve the model’s predictive performance. This approach not

only addresses the limitations of individual-level masking in the

context of diabetes progression prediction but also harnesses the
Frontiers in Endocrinology 06
collective strength of feature groups to achieve more accurate and

reliable predictions.

During our experimental process, we selectively applied group

masking to different sets of medical test indicators. This approach

allowed us to further analyze and summarize the impact of various

bodily function indicators on the progression of diabetes. By

implementing group-level masking, we aimed to facilitate

researchers in understanding the influence of different bodily

functions on diabetes at a group level. This method not only

enhances the interpretability of the model but also provides

valuable insights into how different sets of indicators, each

representing specific bodily functions, contribute to the overall

prediction of diabetes progression. Such an approach is

instrumental in advancing the understanding of diabetes from a

more holistic and function-oriented perspective.
4 Experiments

We split the data into 80%, 10%, and 10% for training,

validation, and test splits, respectively. For all experiments, we use

the same training, validation and testing data. The test performance

reported in this work of all compared methods is based on peak

validation results.

In this study, we employ a comprehensive set of competitive

baselines to ensure a robust comparison and evaluation of our

model’s performance. Specifically, we utilize Standard TabNet Arik

and Pfister (22), a deep learning-based approach designed for

tabular data; LightGBM Ke et al. (28) and XGBoost Chen and

Guestrin (27), both of which are highly efficient gradient boosting

frameworks known for their speed and accuracy; MLP (Multi-Layer

Perceptron), a classic type of neural network from Mocanu et al.

(48) used in numerous deep learning tasks; and Adaptive Neural

Trees Tanno et al. (49), a powerful ensemble technique that

combines multiple weak prediction models to form a strong

predictor. The selection of these diverse and well-established

baselines allows for a thorough and fair assessment of our

model’s capabilities in comparison to the current state-of-the-

art methods.
4.1 Evaluation metrics

In evaluating the performance of all compared methods, we

employ two standard metrics: Mean Absolute Error (MAE), Mean

Squared Error (MSE), and Root Mean Squared Error (RMSE). MAE

is defined as the average of the absolute differences between the

predicted and actual values, mathematically represented as MAE  =
1
non

i=1jyi − ŷij, where yi and yi denote the actual and predicted

values, respectively, and n is the number of observations. This

metric is particularly useful for its interpretability and robustness to

outliers. On the other hand, MSE, defined as MAE  = 1
n

on
i=1(yi − ŷi)

2, provides a measure that penalizes larger errors

more severely by squaring the differences between predicted and

actual values. RMSE, given as RMSE  =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
noi = 1n(yi − ŷi)

2
q

, is
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essentially the square root of MSE and provides a more

interpretable scale of error magnitude. The employment of these

metrics facilitates a thorough assessment of model accuracy,

considering both the magnitude of errors and the significance of

larger deviations in predictions.

The aforementioned metrics (i.e., MAE, MSE, and RMSE) are

selected for their ability to quantify the precision of blood glucose

predictions at specific time points.While our approach focuses on the

accuracy of predictions rather than tracking diabetes progression over

time, these metrics are critical for assessing the current state of

diabetes in patients. High accuracy in these predictions can indicate

stability, improvement, or deterioration in the patient’s diabetic

condition, which is crucial for effective disease management. By

reliably determining the state of diabetes at each measured point,

these metrics facilitate informed clinical decisions, helping to tailor

interventions and adjust treatment strategies.
4.2 Results and analysis

In this section, we conduct a comprehensive analysis and

comparison on the method we proposed from multiple perspectives.

4.2.1 Cluster analysis
Prior to engaging in experimental comparisons, an initial

analysis of the data’s group dynamics is conducted. Utilizing 19

features, as mentioned in Section 3.1, as clustering attributes, the

DBSCAN algorithm is applied to cluster patients, resulting in the

formation of 19 distinct groups. These groups are then ordered by

size, and a detailed analysis is conducted on the five largest and five

smallest groups, the results of which are presented in Figure 2. The

analysis reveals that, with the exception of the smallest group, the

majority of samples in each group has missing features, highlighting

the severity of the data missingness issue. Furthermore, it is

observed that at least 20% of patients in each group possessed

complete feature columns. This finding indicates that, despite

the significant data missingness, it is still feasible to utilize the

samples with complete medical test indicators within each group to

provide additional group-level insights for samples with missing

features. This approach can potentially aid in more accurately
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predicting missing information, leveraging the available complete

data within the groups to mitigate the challenges posed by

data incompleteness.

4.2.2 Performance comparison
The experimental results for diabetes progression prediction

(using blood glucose concentration as an example) are presented in

Table 2 with respect to three evaluation metrics. The best-

performing results are highlighted in bold. It is evident that our

proposed group-informed attentive framework for diabetes mellitus

progression prediction GADMPmethod achieves the most accurate

performance across all three metrics. Even when compared with

multiple state-of-the-art baselines, our method demonstrates

significant improvements, underscoring its superiority. This

indicates that the GADMP not only effectively addresses the

challenges inherent in diabetes progression prediction but also

sets a new benchmark in terms of accuracy and reliability in

this domain.

The results presented in Table 2 are the averages of multiple

experimental runs. In our experiments, we initially utilized grid

search techniques to explore various configurations and found that

23 cluster features and 8 perturbed features provided optimal

results. However, the primary focus of our research is to

demonstrate how cluster-level features effectively address issues of

missing data, and how sample augmentation enhances model

robustness. Therefore, to better highlight the model ’s

generalizability and practical application, we standardized the

number of cluster features at 20 (m) and perturbed features at 10

(n). This decision ensures our results emphasize the utility of our

approach across different scenarios, rather than delving into

detailed feature optimization. This standardization supports our

goal of showcasing the broad applicability and effectiveness of

our model.

4.2.3 Ablation study
To validate the contribution of different modules of our method

to diabetes progression prediction, we conduct an ablation study,

the results of which are displayed in Figure 3. The variants ‘Our’,

‘−Imp’, ‘−AugS’, ‘−AugF’, and ‘−GM’ represent our complete group-

informed approach, the removal of grouplevel features-aided
FIGURE 2

Proportional distribution of samples with missing features across different clusters.
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imputation, the exclusion of sample augmentation, the omission of

group-level feature augmentation, and the exclusion of group

masking, respectively. The comparative results of these variant

methods demonstrate that the full GADMP model achieve the

lowest prediction error (highest accuracy). The increase in error

rates upon removing different functional components indicates the

usefulness of the various strategies proposed in the GADMP model

for predicting diabetes progression. Notably, the removal of group-

level features-aided imputation and the exclusion of group masking

have the most significant

impact on the model’s predictive performance. This further

underscores the significant importance of group-level features in

predicting missing values and the role of group masking in

uncovering the interrelationships among medical test indicators.

4.2.4 Robustness study
We assess the robustness of the model by randomly adding

permutations to the indicator features of test samples and then

comparing the predictions with those of the original samples. The

experimental results are displayed in Table 3, where the subscript of

each original sample’s prediction value indicates the change in the

experimental results after adding permutation Df to 10 randomly

selected continuous numerical features. It is observed that, even

with fluctuations in the test sample data, the complete GADMP

model demonstrated the most stable experimental outcomes

compared to the variants and standard TabNet, while the variant

without sample augmentation is most affected. This comparative

result aligns with the rationale behind our implementation of

sample augmentation and further validates the robustness of our
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model. The ability of GADMP to maintain consistent performance

under data variability highlights its efficacy and reliability in real-

world scenarios.

Aligning with Figure 3 and Table 3, we can find that the

integration of group-level features significantly improved the

predictive accuracy and robustness of our model. This

enhancement is primarily due to the rich biological context and

group-level perspectives these features provide, allowing the model

to capitalize on interconnected physiological processes.

Additionally, the sample augmentation process where

perturbations are introduced to randomly selected features has

proven essential in further enhancing the robustness and

effectiveness of our model, preparing it to handle real-world

clinical variations effectively. These modifications collectively

ensure that our framework not only achieves high accuracy but

also maintains consistent performance across varied and

unpredictable clinical settings.

4.2.5 Importance analysis
The feature selection masks of standard TabNet can shed light

on the selected features at each step. If Mb,j[i]=0, then jth feature of

the bth sample should have no contribution to the decision. TabNet

aims to quantify an aggregate feature importance in addition to

analysis of each step. Combining the masks at different steps

requires a coefficient that can weigh the relative importance of

each step in the decision.

In our practical experiments, two important discoveries are

made: (i) After clustering all samples, we find that adding group-

level features of all numerical features as augmented features (i.e.,

adding 37 additional features for each sample) does not yield

optimal results. This is because some test indicators inherently

have a minimal impact on blood glucose concentration prediction.
FIGURE 3

Results of ablation experiments.
TABLE 2 Performance comparison.

Method MSE MAE RMSE

MLP 1.639 0.807 1.295

LightGBM 1.630 0.790 1.286

XGBoost 1.619 0.765 1.279

Adaptive Neural Trees 1.625 0.781 1.284

Standard TabNet 1.614 0.756 1.269

GADMP 1.589 0.714 1.260
The bold value indicates the best prediction result w.r.t. a specific evaluation metric.
TABLE 3 Robustness performance comparison.

Method MSE MAE RMSE

GADMP 1.589+0.006 0.714+0.013 1.260+0.004

GADMP−AugS 1.592+0.013 0.721+0.021 1.260+0.009

GADMP−AugF 1.597+0.009 0.725+0.018 1.260+0.008

TabNet 1.614+0.016 0.756+0.028 1.269+0.013
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Adding their corresponding group-level features can inadvertently

amplify their influence on the model, ultimately diminishing its

effectiveness. Through multiple comparative cross-experiments, we

discover that the best results were achieved by adding group-level

features of Liver Function Tests indicators (B1-B8) and Lipid Profile

indicators (D1-D4) as augmented features. The superior

experimental outcomes we report are obtained after incorporating

these 12 group-level augmented features; (ii) Our experimental data

comprise seven groups of indicators, and the specific results indicate

that applying group masking to all seven indicator groups, i.e., using

the same mask for indicators of a group, does not lead to optimal

outcomes. This may be due to the varying importance of different

groups of features in model prediction. Applying group masking to

an indicator group with a weak correlation to diabetes progression

might inadvertently increase its influence on the model, thereby

negatively impacting prediction accuracy. After multiple

experiments, we find that the highest prediction accuracy is

achieved when group masking is applied to Liver Function Tests

and Lipid Profile indicators. These findings indirectly highlight the

significance of Liver Function Tests and Lipid Profile indicators in

influencing the progression of diabetes.

Figures 4–6 respectively illustrate the feature importance of

GADMP without group masking nor augmented features, GADMP

using augmented features without group mask, and GADMP with

both group masking and augmented features. A comparison

between Figures 4, 5 reveals that, in the absence of augmented
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features and group masking (Figure 4), the model’s learned mask

values are relatively dispersed, indicating that it has not effectively

identified features significantly correlated with diabetes progression.

However, upon incorporating group-level augmented features

(Figure 5), the model increasingly emphasizes the impact of

certain indicators within Liver Function Tests, suggesting that the

addition of corresponding group augmented features has enabled

the model to recognize the importance of the indicators in this

group. This leads to two important findings: (i) Liver Function Tests

indicators are closely related to diabetes progression, aligning with

several existing medical research works Cho et al. (50) Leeds et al.

(51) Ni et al. (52). Our work further validates this relationship

through the attentive deep learning prediction model and a group-

informed approach; (ii) The group-level augmented features

we proposed are genuinely beneficial for the model ’s

predictions, demonstrating their inherent importance (as seen in

the first step in Figure 4) and enhancing the impact of related

individual indicators.

The comparison of Figure 6 with Figures 4 and Figure 5 shows

significant differences in mask importance when group masking

and augmented features are applied: (i) Indicators of Liver Function

Tests and Lipid Profile exhibit a unified importance in model

predictions; (ii) Lipid Profile indicators, known to significantly

impact diabetes progression Arora et al. (53) Uttra et al. (54)

Artha et al. (55), are effectively identified for the first time; (iii)

The importance of augmented features of Lipid Profile and Liver
FIGURE 4

Feature importance heatmap of our model without group mask nor group-level augmented features. Masks M[i] (that indicate feature selection at ith
step) and the aggregate feature importance mask Magg showing the global instance-wise feature selection.
FIGURE 5

Feature importance heatmap of our model using augmented features without group mask.
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Function Tests is further reinforced. These comparative findings

underscore the tight correlation between Lipid Profile and Liver

Function Tests with diabetes progression and their significant

influence on model predictions.
5 Conclusion

In conclusion, our Group-Informed Attentive Framework for

Diabetes Mellitus Progression Prediction (GADMP) model

represents a novel and effective approach in the realm of medical

research, particularly in the prediction of diabetes progression. The

model’s innovative design, which incorporates group-level

augmented features and group masking, has demonstrated

significant improvements in predictive accuracy and robustness,

as evidenced by our comprehensive experimental results.

The key findings from our experiments highlight the critical

role of Liver Function Tests and Lipid Profile indicators in diabetes

progression. By integrating these specific indicators into our model

through group-level augmentation and masking, we have not only

enhanced the model’s predictive capabilities but also provided new

insights into the complex relationships between these medical

indicators and diabetes progression. This approach has proven to

be particularly effective in identifying and emphasizing the

importance of these indicators, which aligns with and extends

existing medical research.

Furthermore, the GADMP model’s ability to handle data

variability and missingness through its advanced augmentation

strategies significantly contributes to its practical applicability in

clinical settings. The model’s performance in the presence of data

fluctuations underscores its reliability and potential as a tool

for healthcare professionals in managing and predicting

diabetes progression.

Overall, the GADMP model stands as a testament to the

potential of deep learning in medical research, offering a

promising direction for future studies in diabetes and other

related medical fields. Its success in accurately predicting diabetes

progression paves the way for more personalized and effective
Frontiers in Endocrinology 10
treatment strategies, ultimately contributing to better patient

outcomes and advancements in healthcare.
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