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Transforming body composition
with semaglutide in adults with
obesity and type 2
diabetes mellitus
Beatriz Rodrı́guez Jiménez*, Pablo Rodrı́guez de Vera Gómez,
Samuel Belmonte Lomas, Ángel Manuel Mesa Dı́az,
Irene Caballero Mateos, Irene Galán, Cristóbal Morales Portillo
and Marı́a Asunción Martı́nez-Brocca

Servicio de Endocrinologı́a y Nutrición, Hospital Universitario Virgen Macarena, Seville, Spain
Background: Glucagon-like peptide-1 receptor-agonists (GLP-1ra), such as

semaglutide, have emerged as promising treatments, demonstrating sustained

weight reduction and metabolic benefits. This study aims to assess the impact of

oral and subcutaneous semaglutide on body composition and metabolic

parameters in patients with T2DM and obesity.

Methods: A 24-week quasi-experimental retrospective study including adults with

T2DM and obesity (BMI ≥ 30 kg/m²) who were treated with either daily-oral or

weekly-subcutaneous semaglutide. Body composition was measured using

bioelectrical impedance analysis, evaluating fat mass, fat-free mass, total body

water, skeletal muscle mass, and whole-body phase angle. Analytical parameters

included lipid profile and glycaemic control. Statistical analyses were performed

using SPSS v.26.

Results: Participants (n=88) experienced significant weight loss after treatment with

semaglutide (9.5% in subcutaneous, 9.4% inoral, P<0.001).Weight reductionprimarily

resulted from fatmass reductionwithout substantial leanmass compromise. Visceral

fatareadecreased,whilesphase-angleremainedstable. Improvements in lipidprofiles

and glycaemic control were observed, with a decrease in both HbA1c and insulin

requirements. Multivariate analysis demonstrated comparable impacts of oral and

subcutaneous semaglutide on body composition.

Conclusion: Semaglutide, administered orally or subcutaneously, demonstrated

positive effects on body composition, metabolic and glycaemic control in

patients with T2DM and obesity. This real-world study highlights the potential

of bioelectrical impedance analysis in assessing antidiabetic drugs’ impact on

body composition, providing valuable insights for future research and

clinical applications.
KEYWORDS
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Rodrı́guez Jiménez et al. 10.3389/fendo.2024.1386542
Introduction

Treating type 2 diabetes mellitus (T2DM) with the aim of

avoiding its well-known long-term complications has been a

therapeutic challenge over the last century. Increasing knowledge

of hormones within the incretin family, has led to the identification

and development of a series of agents that expand therapeutic

options when treating patients with these pathologies. In particular,

glucagon-like peptide-1 (GLP-1) receptor agonist (GLP-1ra) has

demonstrated sustained, clinically significant body weight

reductions in patients with T2DM and obesity (1–3).

GLP-1 is a gut hormone secreted by distal enteroendocrine L-

cells, located in the small bowel and colon (4). It is released in

response to meal ingestion, stimulating glucose-dependent insulin

secretion by pancreatic beta-cells (5). Additionally, glucagon

secretion is suppressed by GLP-1 (4), leading to a glucose-

dependent reduction of hepatic glucose production (5). This

process is regulated by glucose levels, mitigating the risk of

hypoglycaemia (6). GLP-1 receptors are widely expressed in

tissues beyond the gastrointestinal tract, including the endocrine

pancreas, kidneys, cardiovascular system, and various regions of the

nervous system (4, 5, 7). Considering the broad expression of GLP-1

receptors throughout the body, GLP-1 serves multiple roles beyond

glucose homeostasis. For instance, gastric emptying rate is

decelerated in response to glucose increase. Modulation of satiety

is also mediated by GLP-1 (8), as well as regulation of energy intake

via hypothalamic feeding circuits (9, 10).

GLP-1ra mimic native GLP-1’s pancreatic actions, stimulating

weight loss and improving glycaemic control (5), as well as

promoting physiological effects such as cardiovascular risk

reduction (5, 11, 12), atherogenesis prevention through vascular

inflammation modulation (13, 14) and renoprotective and

neuroprotective effects (15–18), which enhance GLP-1ra’s beneficial

outcomes. This provides medical professionals a promising tool to

treat patients living with obesity and T2DM, beyond insulin and prior

diabetic management approaches. However, GLP-1 based treatments

can also entail adverse effects, which are mainly gastrointestinal,

notably nausea, vomiting, and diarrhoea (19). Such effects usually

decrease over time with continued therapy and can be mitigated by

adjusting the dosage (20).

Semaglutide is a GLP1-ra, with 94% amino acid sequence

homology with native GLP-1 (21). Structural modifications of the

molecule have enabled semaglutide to be less susceptible to

degradation by dipeptidyl peptidase-4, thus extending its half-life to

nearly a week (22). It is already known that semaglutide achieves

reduction in body weight which in turn improves glycaemic control

and thus reduces risk associated with poorly controlled T2DM (23),

but it is still necessary to expand the information regarding its effect

on body composition, which is why we performed this investigation.

Bioelectrical impedance (BIA) represents a non-invasive,

relatively fast and simple tool to estimate body composition,

providing information beyond body mass index (BMI) and other

anthropometric measurements.

Within this study, we aim to assess the impact of GLP-1ra

Semaglutide on body composition of patients with T2DM and
Frontiers in Endocrinology 02
obesity, as a reflection of their nutritional status, while evaluating

possible metabolic changes after a 24-week period of treatment.
Materials and methods

Design and subjects

We conducted a 24-week follow-up quasi-experimental

retrospective study to assess changes in body composition and the

effect of semaglutide on analytical parameters. Recruitment was

carried out systematically and consecutively in the Endocrinology

and Nutrition Department of our hospital, the Virgen Macarena

University Hospital in Seville, during the years 2020–2022.

Adults (18 years or older) with T2DM, insufficient glycaemic

control [glycated haemoglobin (HbA1c) ≥ 7%] and Obesity (BMI

≥30kg/m2) who underwent treatment with GLP1-ra, both in its

subcutaneous and oral forms, were included in our study. Those

who were already taking GLP1-ra or had in the past, subjects with a

follow-up period shorter than 12 months and those who had to

interrupt treatment due to adverse events or drug intolerance

(predominantly gastrointestinal symptoms), were excluded from

the study.

Subjects were divided into 2 groups depending on the intended

route of Semaglutide administration they were to receive: daily oral

semaglutide (OS) or weekly subcutaneous semaglutide (SS). Due to

significant differences in their baseline characteristics, both groups

were independently analysed within the context of the study, which

was conducted under real-life conditions (see Tables 1, 2, where

differences in baseline characteristics between treatment groups are

shown with *).

To ensure intervention homogeneity, we included patients who,

based on their tolerance, adhered to the subsequent therapeutic

regimen: following a 4-week dose escalation, medication was

administered with a starting dose of 0.25mg once weekly,

followed by 0.5mg weekly and finally 1 mg maintenance dose in

SS; the initial dosage in the OS group was 3 mg taken daily for 4

weeks, followed by an additional 4 weeks at 7mg, and finally

maintenance dose of oral semaglutide, 14 mg. Participants who

were unable to adhere to this therapeutic protocol due to

intolerance, adverse effects, or poor treatment compliance were

excluded from the study (Figure 1). The remaining concomitant

treatment (including hypoglycemic and hypolipidemic treatment)

was indicated according to standard clinical practice guidelines.

Participants who experienced adverse effects or drug

intolerance (mainly gastrointestinal symptoms including nausea,

diarrhoea, and abdominal discomfort), rendering them unable to

complete the prescribed treatment regimen, were excluded from

bioimpedance analysis and subsequently not included in our study.
Educational intervention

Patients were given general advice for incorporating physical

activity and adopting a healthy lifestyle, based on the Mediterranean
frontiersin.org
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diet and active living to discourage sedentary behaviour. These

guidelines were initially conveyed during the first visit and further

emphasized by our nursing team in a brief 15-minute session, in

which patients were instructed on the administration of semaglutide.

Regarding dietary habits, patients received recommendations

advocating for the consumption of fruits and vegetables, minimally

processed foods, legumes, fish, and whole grains, along with hydration

based on water over soft drinks and alcohol. Additionally, general

physical activity guidelines were provided, encouraging an active

lifestyle, avoiding sedentary behaviour, and recommending 30–60

minutes of daily aerobic exercise and 2–3 days per week of strength

training, adapted to individual physical capabilities. This educational

intervention was carried out as part of daily clinical practice, not with

the aim of evaluating its impact.
BIA measurement and
analytical parameters

Body composition was measured using multi-frequency BIA (MF-

BIA) (Inbody 770, Inbody Co., Ltd., Korea). All measurements were

performed in the morning, at baseline and at the end of follow-up.

Parameters including fat mass (FM), fat free mass (FFM), total body

water, skeletal muscle mass and phase angle (PhA) where registered.

Blood tests were performed after 8 to 10 hours of fasting;

samples were collected to measure analytical parameters such as

haemoglobin, platelet count, fasting plasma glucose and HbA1c,

creatinine, total cholesterol, and its lipoproteins.
Study endpoints and assessments

The main study variable was reduction in body FM from baseline

to week 24 of semaglutide treatment. Secondary efficacy end points at

week 24 included changes in body composition, such as body water,

skeletal muscle, and PhA; as well as modifications in analytical

parameters; particularly lipid profile and glycaemic control.
TABLE 1 Baseline characteristics of the sample divided into
treatment groups.

SUBCUTANEOUS
SEMAGLUTIDE

(n = 55)

ORAL
SEMAGLUTIDE

(n = 33)

Age (years)* 55.3 (10.4) 61.8 (7)

Gender

Male 29 (52.7%) 22 (66.7%)

Female 26 (47.3%) 11 (33.3%)

BMI* 40.1 (11) 33.2 (3.9)

Years with DM 7.2 (6.3) 9.6 (6.3)

Age at DM
diagnosis (years)

50.4 (10.9) 53.6 (6.5)

Severe
hypoglycaemia events

0 (0.0%) 1 (3%)

Diabetic retinopathy* 0 (0.0%) 3 (9.1%)

Hypertension 42 (76.4%) 26 (78.8%)

Dyslipidemia 39 (70.9%) 26 (78.8%)

Chronic Kidney disease 3 (5.5%) 6 (18%)

OSAS 9 (16.4%) 9 (27.3%)

Ischemic heart disease* 0 (0.0%) 6 (18.2%)

Heart failure* 1 (1.8%) 5 (15.2%)

Stroke 0 (0.0%) 1 (3%)

NAFLD 10 (18.2%) 9 (27.3%)

Smoker 10 (18.2%) 8 (24.2%)

Alcohol* 1 (1.8%) 4 (12.1%)

Metformin 39 (70.9%) 25 (75.8%)

iSGLT2 20 (36.4%) 15 (45.5%)

Sulfonylureas 8 (14.5%) 6 (18%)

DPP-4 inhibitors 10 (18.2%) 9 (27.3%)

Basal insulin 24 (43.69%) 17 (51.5%)

Prandial insulin 10 (18.2%) 7 (21.2%)

ACE inhibitors 39 (70.9%) 20 (60.6%)

b-Blockers* 9 (16.4%) 11 (33.3%)

a-Blockers 1 (1.8%) 2 (6.1%)

Diuretics 22 (40%) 14 (42.4%)

Calcium
channel blockers

9 (16.4%) 5 (15.2%)

Spironolactone 2 (3.6%) 3 (9.1%)

Statin therapy:

None 29 (52.7%) 13 (39.4%)

Low intensity 3 (5.5%) 1 (3%)

Moderate intensity 17 (30.9%) 10 (30.3%)

(Continued)
TABLE 1 Continued

SUBCUTANEOUS
SEMAGLUTIDE

(n = 55)

ORAL
SEMAGLUTIDE

(n = 33)

Statin therapy:

High intensity 6 (10.9%) 9 (27.3%)

Ezetimibe 6 (10.9%) 4 (12.1%)

Fibrates 5 (9.16 %) 7 (21.2%)

Anticoagulants 4 (7.3%) 2 (6.1%)

Antiaggregant therapy 9 (16.4%) 11 (33.3%)
*Baseline characteristics in which we found significant differences (p < 0.05) between
treatment groups.
DM, Diabetes Mellitus; OSAS, Obstructive sleep apnea syndrome; NAFLD, Nonalcoholic fatty
liver disease; iSGLT2i, sodium-glucose linked transporter inhibitors; DPP-4, Dipeptidyl
peptidase-4; b-Blockers, beta-blocker or b-adrenoreceptor antagonists; a-Blockers, alpha
blockers or a-adrenoreceptor antagonists.
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Statistical analysis

We estimated the required sample size to be 60 participants (30

for oral and 30 for subcutaneous semaglutide), assuming a two-

sided hypothesis test with a 95% confidence level and accounting for

a potential 10% loss. This estimation was based on a minimum

clinically relevant difference of -10% in fat body mass at the

conclusion of the follow-up (22, 23).

Categorical variables were expressed in numbers and

percentages. Continuous variables were expressed as mean and

standard deviation (SD) for normal distributions or median and

interquartile range (IQ) if distributions were skewed. We used t-

student test and Wilcoxon test for the comparison of continuous
Frontiers in Endocrinology 04
variables, normally distributed and nonnormally distributed

respectively. Normality of quantitative data was tested using the

Kolmogorov-Smirnov test. Homoscedasticity was evaluated using

Levene´s test.

We conducted a multivariate analysis using multiple linear

regression to adjust for predictor variables of FM loss percentage

(dependent variable). Independent variables were selected from

those that exhibited a significance level of p < 0.15 in the

univariate analysis (data not shown) and those where significant

differences were observed between treatment groups. The final

number of included variables was determined based on the

criteria of greater parsimony and better discrimination capacity,

with reference to an area under the curve (AUC) >0.75 in the ROC
TABLE 2 Variation in body composition parameters from baseline to end of follow-up (6 months) using bioelectrical impedance analysis.

SUBCUTANEOUS SEMAGLUTIDE (n=55) ORAL SEMAGLUTIDE (n = 33)

BASELINE
mean
(SD)

6
MONTHS
mean
(SD)

DIFFERENCE
[CI 95%]

P-
valuea

BASELINE
mean
(SD)

6
MONTHS
mean
(SD)

DIFFERENCE
[CI 95%]

P-
valuea

Weight (kg)* 109.2 (24.6) 98.5 (21.6) -10 [-11.9; -8.2] <0.001 94.8 (15.6) 86.2 (16.3) -8.6 [-10.3; -6.8] <0.001

BMI (kg/m2)* 40.1 (11) 36.1 (9.3) -3.7 [-4.4; -3] <0.001 34.2 (3.9) 31 (4.2) -3.1 [-3.7; -2.5] <0.001

Body Fat Mass (kg)* 50.5 (17.6) 41.3 (15) -8.5 [-10.2; -6.9] <0.001 39.9 (8) 31.9 (8.7) -8 [-9.7; -6.2] <0.001

Soft Lean Mass (kg) 56.4 (13.6) 54.1 (12.2) -1.7 [-2.4; -1] <0.001 51.9 (10.3) 51.2 (10.2) -0.7 [-1.5; 0.2] 0.112

Fat Free Mass (kg)* 59.3 (13.5) 57.1 (12.7) -1.7 [-2.5; -0.9] <0.001 54.9 (10.9) 54.3 (10.8) -0.6 [-1.5; 0.3] 0.162

Fat mass (%) 45.7 (9.3) 41.4 (9.1) -4 [-4.9; -3.1] <0.001 42.2 (5.6) 36.8 (6.1) -5.2 [-6.7; -3.6] <0.001

Fat free mass (%) 54.9 (9.2) 58.6 (9.1) 3.6 [2.8; 4.6] <0.001 57.8 (5.6) 63.2 (6.1) 5.2 [3.6; 6.7] <0.001

Fat Free Mass Index
(kg/m2)*

22.1 (10.1) 21.1 (7.7) -0.6 [-0.9; -0.4] <0.001 19.7 (2.2) 19.5 (2.3) -0.2 [-0.5; 0.1] 0.197

Fat Mass Index (kg/m2) 18.2 (6.4) 15.1 (5.6) -3.1 [-3.7; -2.5] <0.001 14.5 (3) 11.5 (3.1) -3 [-3.7; -2.3] <0.001

Visceral Fat Area
(cm2)*

227.1 (62.2) 196.5 (54.4) -30.2 [-37.5; -23.2] <0.001 203.6 (37.1) 161.3 (47.3) -42.3 [-52.9; -31.8] <0.001

Body Cell Mass (kg) 38.6 (9.4) 37 (8.4) -1.2 [-1.7; -0.7] <0.001 35.5 (7.2) 35 (7.1) -0.5 [-1.1; 0.1] 0.077

Skeletal Muscle
Mass (kg)

33.1 (8.5) 31.7 (7.7) -1.1 [-1.5; -0.6] <0.001 30.3 (6.5) 29.9 (6.4) -0.5 [-1; 0.1] 0.081

Skeletal Muscle Index
(kg/m2)

8.6 (8.4) 8.3 (1.3) -0.4 [-0.5; -0.2] <0.001 8.1 (1.2) 7.9 (1.2) -0.2 [-0.4; -0.1] 0.001

Basal Metabolic
Rate (Kcal)

1651.3(292.1) 1604.3(274.5) -36.3 [-53; -19.5] <0.001 1555.7 (234.8) 1542.2(232.9) -13.5 [-33; 5.9] 0.166

Bone Mineral
Content (kg)

3 (1.5) 3.1 (1) 0.03 [0; 0.1] 0.237 3 (0.6) 3.1 (0.6) 0.1 [0; 0.1] 0.06

Total body water (L) 44 (10.6) 42.2 (9.5) -1.3 [-1.9; -0.8] <0.001 40.5 (8) 40 (8) -0.5 [-1.2; 0.1] 0.117

Intracellular Water (L) 26.9 (6.5) 25.8 (5.9) -0.8 [-1.2; -0.5] <0.001 24.8 (5) 24.4 (4.9) -0.4 [-0.8; 0] 0.078

Extracellular Water (L) 16.2 (3.4) 16.4 (3.7) -0.2 [-0.9; 0.8] 0.684 16 (2.9) 15.6 (3.1) -0.4 [-1.8; 0.9] 0.525

50kHz Whole Body
Phase
Angle (°)

5.1 (0.6) 5.1 (0.7) -0.03 [-0.1; 0.1] 0.529 5 (0.8) 4.9 (0.7) -0.1 [-0.2; 0] 0.068
fron
*Parameters in which we found significant differences (p < 0.05) between treatment groups.
a Univariate analysis using Wilcoxon test for paired data.
SD, Standard Deviation; CI, Confidence Interval; BMI, Body Mass Index.
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curve analysis. The model’s goodness of fit was assessed using

Hosmer-Lemeshow’s test.

The statistical significance was set at p < 0.05 (two-tailed

hypothesis testing). The strength of association was presented as a

mean difference and 95% confidence interval (CI).

Statistical analyses were performed using the SPSS v.26/PC

software package (IBM Statistics).
Ethics statement

Written informed consent was obtained from all subjects. This

study was conducted in accordance with the Helsinki Declaration of

1975, as revised in 2008; and was approved by the Research Ethics

Committee of the Hospital Universitario Virgen Macarena

of Seville.
Results

Patients, baseline characteristics

A total of 203 patients were initially identified as potential

candidates to participate in this study, of whom 88 were selected; 55

patients in the SS wing and 33 patients who received OS.

The mean age in the SS group was 55.3 ± 10.4 years, of which

47.3% were women, and had a mean BMI of 40.1 ± 11 kg/m2. In the

OS group, mean age was 61.8 ± 7 years, 33.3% women and BMI 34.2

± 3.9kg/m2. Disease duration was 7.2 ± 6.3 years for SS and 9.6 ± 6.3

years for OS.

Regarding the hypoglycaemic treatment our patients had been

taking prior to the introduction of Semaglutide; a total of 64 patients

were taking metformin [39 (70.9%) in the SS group and 25 (75.8%)

in the OS group], and basal insulin was part of the glucose-lowering

treatment of 41 subjects [24 (43.69%) in the SS group and 17

(51.5%) in the OS group]. Their clinical characteristics,

comorbidities, and treatment they were receiving prior to the

introduction of Semaglutide are listed in Table 1.
Frontiers in Endocrinology 05
Impact of semaglutide in body
composition parameters

Throughout follow-up, participants experimented a significant

reduction of their weight, 9.5 ± 5.7% with SS and 9.4 ± 5.9% with

OS.We observed that weight loss was at the expense of reducing FM

percentage [-4% (IC 95% [-4.9; -3.1], p< 0.001) in SS and -5.2% (IC

95%[-6.7; -3.6], p< 0.001) in OS] while increasing the percentage of

FFM [3.6% (IC 95% [2.8; 4.6], p< 0.001) in SS and 5.2% (IC 95%

[3.6; 6.7], p< 0.001) in OS] (Figure 2).

Considering weight reduction in absolute numbers, in the SS

group, loss of FM was -8.5 kg (95% CI [-10.2; -6.9], p < 0.001), while

the reduction in lean mass was -1.7 kg (95% CI [-2.4; -1], p < 0.001).

These results were consistent in the OS group, where the loss of FM

was -8 kg (95% CI [-9.7; -6.2], p < 0.001), and that of lean mass -0.7

kg (95% CI [-1.5; 0.2], p = 0.112).

Nevertheless, PhA remained constant on average during follow-

up [-0.03° (CI 95% [-0.1; 0.1], p = 0.529) in SS and -0.1° (CI 95%

[-0.2; 0], p = 0.068) in OS].

Changes in other body composition parameters were also seen,

such as a decrease in total body water and visceral fat area (VFA),

which was -30.2cm2 (CI 95% [-37.5; -23.2], p <0.001) in SS and

-42.3 cm2 (CI 95% [-52.9; -31.8], p <0.001) in OS. Table 2 complies

information regarding these changes.
Effect on analytical and clinical parameters

In addition to the benefit observed on patients’ body

composition, their laboratory metrics also improved during the

follow-up period. For instance, lipid profile demonstrated positive

changes with a reduction in total cholesterol of -30mg/dl (CI 95%

[-44.5; -17.5], p < 0.001) in SS and -49.4mg/dl (CI 95% [-70; -28.8],

p < 0.001) in OS (Table 3). At the same time, metabolic control was

optimized with a reduction in HbA1c -3.8% (CI 95% [-4.5; -3], p <

0.001) in SS and -3% (CI 95% [-3.7; -2.2], p < 0.001) in OS;

achieving optimal metabolic control (HbA1c <7%) in 92.3% of

patients undergoing treatment with SS and 75.8% in those who
FIGURE 1

Study design–dose range administration. In order to obtain comparable data, only patients who followed a monthly dose escalation as represented
by d and h, were selected. In brackets are the number of patients who followed each treatment scheme. SS, subcutaneous semaglutide; OS, oral
semaglutide; mg, milligrams; M, months.
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Rodrı́guez Jiménez et al. 10.3389/fendo.2024.1386542
received OS. In both groups, we observed a decrease in insulin

requirements after 6 months, with statistical significance noted in

the SS group, where patients required 4 UI (IC 95% (–9, 0), p

=0.01) less.
Frontiers in Endocrinology 06
Multivariate analysis

Additionally, we performed a multivariate analysis using

multiple linear regression, with the percentage of mass loss at the
A

B

C

FIGURE 2

Changes in the composition parameters from baseline to end of follow-up.
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end of follow-up as the dependent variable for all study participants

(n=88). As independent variables, we included the administration

route of semaglutide, along with those variables where significant

differences were identified at baseline. We observed that percentage

of FM lost at the end of follow-up was determined by the initial

percentage of FM, baseline BMI and concomitant treatment with

iSGLT2 (sodium-glucose linked transporter inhibitors) and insulin.

Notably, no significant association was observed with the treatment

administration route (Table 4).
Discussion

T2DM is a highly prevalent disease accounting for nearly 95%

of all diabetes (24), with a rapidly increasing prevalence. Noticeably,

a substantial proportion of individuals with T2DM remain unaware

of their diagnosis, leading to lost opportunities in early

management. Meanwhile, the global prevalence of obesity has
Frontiers in Endocrinology 07
almost tripled since 1975 according to the World Health

Organization. We conducted a study that examines the changes

observed in an adult population with T2DM and obesity, focusing

on modifications in body composition evaluated through MF-BIA.

Assessing body composition is valuable for individual

evaluation and estimating changes over time. Beyond

anthropometry, MF-BIA provides insights into various body

components and their interrelations in a given person (25). Other

methods used to study body composition include dual-energy x-ray

absorptiometry (DXA) and magnetic resonance imaging (MRI)

among others. DXA offers accurate measurements of various

body components in addition to bone mineral density data.

Conducted with standardized protocols, these measurements

ensure consistency and comparability across diverse studies and

populations. Several studies have indicated comparable outcomes

between DXA and MF-BIA (26–29). For instance, Schoenfeld et al.

found no significant differences in mean changes between MF-BIA

and DXA scans for FM, percent body fat, and FFM (30). Similarly,
TABLE 3 Changes in analytical parameters from baseline to end of follow-up (6 months).

SUBCUTANEOUS SEMAGLUTIDE (n=55) ORAL SEMAGLUTIDE (n = 33)

BASELINE
mean
(SD)

6
MONTHS
mean (SD)

DIFFERENCE
[CI 95%]

P-
valuea

BASELINE
mean
(SD)

6
MONTHS
mean (SD)

DIFFERENCE
[CI 95%]

P-
valuea

HbA1C (%) 9.9 (2.1) 6 (0.7) -4 [-4.6; -3.3] <0.001 9.3 (1.9) 6.4 (0.9) -3 [-3.7; -2.2] <0.001

Fasting plasma
glucose
(mg/dl)

217.5 (75.8) 101.8 (23.8) -114 [-139; -92.5] <0.001 190.8 (57.7) 100.2 (25.5) -90.5 [-118; -66] <0.001

TC (mg/dl) 198.2 (49.6) 162.4 (33.6) -30 [-44.5; -17.5] <0.001 194.5 (52.4) 147 (35.8) -49.4 [-70; -28.8] <0.001

HDL cholesterol
(mg/dl)

43.3 (12.4) 45.9 (9.6) 2.4 [0; 4.7] 0.054 41.4 (11.9) 42.3 (11.5) 1.6 [07; 3.8] 0.16

LDL-cholesterol
(mg/dl)

110 (46.4) 89.2 (31.1) -16 [-28.5; -5.5] 0.006 107.9 (43.8) 71.4 (30.8) -38.1 [-54; -22.1] <0.001

non-HDL cholesterol
(mg/dl)

150.3 (49.2) 117.6 (30.4) -25 [-43; -14] <0.001 48.7 (153.8) 102.8 (33) -51 [-71.9; -30.1] <0.001

Triglycerides (mg/dl) 314.1 (569) 145.9 (48.8) -70 [-99.5; -45] <0.001 253.2 (168.5) 163.1 (70) -68 [-117; -28.5] 0.001

Creatinine (mg/dl) 0.8 (0.2) 0.81 (0.3) 0.02 [-0.02;
0.06]

0.287 0.9 (0.4) 0.9 (0.4) 0.01 [-0.04;0.05] 0.681

eGFR
(mL/min/1.73m²)

95.7 (18.8) 93.4 (19.4) -1.5 [-4.5; 0.5] 0.119 84.2 (21.1) 83 (21.8) 1 [-2; 3] 0.559

Uric acid (mg/dl) 4.87 (1.3) 4.94 (1.6) 0.2 [-0.4; 0.5] 0.35 5.8 (1.8) 3.8 (0.7) -0.9 [-2; 0.2] 0.07

Haemoglobin (mg/dl) 14.7 (1.7) 15.1 (1.8) 0.4 [0.1; 0.7] 0.012 14.4 (1.4) 14.6 (1.7) -0.2 [-0.8; 0.3] 0.387

Platelet count
(x 10^3/Ml)

314.9 (342.2) 264.4 (67.8) 16.5 [5.5; 28.5] 0.061 258.5 (78.8) 267.6 (88.5) 1.6 [-16.8; 20] 0.862

AST (U/L) 37.1 (33.5) 20.1 (7.5) -10.5 [-19; -4.5] <0.001 37.2 (28.8) 21.6 (10.4) -8 [-15; -3.5] 0.003

ALT (U/L) 43.6 (39.2) 21.5 (12) -14.5 [-23; -9] <0.001 43.7 (29.7) 22.4 (12.8) -15 [-25; -9.5] <0.001

TSH (mUI/mL) 6.9 (25.5) 2.1 (15) -0.3 [-0.7; -0.1] 0.005 2.6 (2.4) 1.9 (1.1) -0.3 [-0.9; 0] 0.056

FIB-4 1.2 (0.8) 0.9 (0.4) -0.2 [-0.3; 0] 0.026 1.6 (1.9) 1.4 (1.5) 0 [-0.6; 0.2] 0.856
fr
a Univariate analysis using Wilcoxon test for paired data.
SD, Standard Deviation; Cl, Confidence Interval; eGFR, Estimated Glomerular Filtrate Rate; TC, Total Cholesterol; HDL, High-Density Lipoprotein Cholesterol; LDL, Low-Density Lipoprotein
Cholesterol; Non-HDL, Non-High-density Lipoprotein Cholesterol; AST, Aspartate Aminotransferase; ALT, Alanine Aminotransferase; Hbalc, Giycated Haemoglobin; TSH, Thyroid-
Stimulating Hormone; FIB-4, Fibrosis-4 Index for Liver Fibrosis.
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other investigations comparing MF-BIA with DXA in body

composition evaluation reported similar findings for total body

and segmental soft tissue measures (31). Likewise, MRI’s precision

allows detailed visualization of various tissues, aiding accurate

assessment of fat distribution, muscle mass, and other

components. MRI’s whole-body imaging capability enables

comprehensive evaluation of adipose tissue and lean mass

distribution, offering valuable insights into overall health. It is

non-invasive, ensuring patient safety with high-resolution images

and no ionizing radiation. MRI’s quantitative analysis allows precise

measurements of tissue volumes and densities, facilitating

quantitative assessments of fat content and distribution. This

makes it valuable for diagnosing and monitoring conditions like

obesity, sarcopenia, and metabolic disorders. Its wide acceptance

among patients and versatility in research further highlight MRI’s

significance for assessing body composition and guiding clinical

decisions in medical settings (32).

In contrast, BIA offers several advantages for assessing body

composition in medical practice. Its non-invasive nature ensures

patient comfort and safety, being suitable for individuals of different

ages and health conditions. BIA devices are portable, affordable, and

easy to use, making them accessible in various healthcare settings.

The rapidity of BIA assessments allows for efficient incorporation

into clinical practice, providing quick insights into body

composition without significant time investment. Additionally,

BIA’s versatility permits detailed assessments of both total and

segmental body composition, offering valuable information on fat

and lean mass distribution. Longitudinal monitoring capabilities

enable clinicians to track changes in body composition over time,

aiding in the management of conditions such as obesity or muscle

wasting disorders (25).

BIA estimates body composition based on a series of predictive

equations developed for a specific population. Alongside data on the

different body compartments, BIA provides raw electrical values:

impedance, resistance, reactance and PhA (the arctangent of the

ratio of reactance to resistance (33)). BIA calculates secondary data

on fluid compartments, such as total body water, intracellular water,

and extracellular water. From these, fat-related compartments (FM
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and FFM) are derived, as the body’s water content primarily resides

in FFM (34). Consequently, achieving optimal outcomes for entire

body compartments, even in individuals with good health, relies on

choosing a suitable equation (35). Regardless of its inherent

limitations as an indirect method, BIA continues to be extensively

used in both epidemiological studies and individual assessments.

Regarding body composition, while the baseline characteristic

of the groups differed, our multivariate model revealed a similar

impact of oral versus subcutaneous semaglutide on weight loss. This

suggests that there may not be significant differences between the

two administration forms. Nonetheless, it is crucial to conduct

studies with a specific design to thoroughly evaluate this hypothesis.

Our cohort experimented a reduction in their body weight of -10kg

(-9.5%) and -8.6kg (-9.4%) depending on semaglutide’s route of

administration (SS and OS respectively), slightly higher than that

described in literature (23). Weight reductions ranging from 5–10%

are considered clinically significant and correlate with

cardiovascular risk improvement (36). We observed that weight

loss was to a greater extent due to a reduction in the percentage of

FM than the percentage of FFM, suggesting a decrease of FM

without significant losses in the lean mass component.

There has been ongoing discourse in the literature regarding a

potential association between Semaglutide use and the onset of

sarcopenia. However, most studies indicate that Semaglutide

primarily induces weight loss by reducing FM while either

preserving muscle mass or even enhancing the relative proportion

of skeletal muscle, with minimal or non-clinically relevant impact

on muscle strength (37–40). In our cohort, we observed that the loss

of muscle tissue was not significant in the OS group. Conversely, in

the SS group, there was a statistically significant reduction in muscle

tissue, which could be attributed to the greater overall weight loss

compared to the OS group. Given that individuals starting the SS

option had, on average, a higher BMI and thus a greater degree of

obesity, they also began with a higher baseline lean mass compared

to those in the OS group, which could explain why they experienced

a proportionally greater decrease in their lean mass component. The

Skeletal Muscle Index (kg/m2) decreased in both groups, with

significant reductions in absolute values observed only in the SS

group. These findings underscore the apparent predominantly

positive impact of semaglutide on fat mass reduction. However,

considering our results and previous research (20), it would seem

highly advisable to implement targeted physical exercise to preserve

and potentially enhance muscle mass in patients receiving GLP-1

based therapies.

Traditionally, the association between BMI and long-term all-

cause mortality was described as a U-shape (41), as a result of

different underlying risk functions of opposite directions associated

with fat and fat-free body compartments (42). Recent investigation

has shown an inverse association between FFM and mortality,

whereas FM was directly associated with mortality (43). A clinical

study including a series of patients with BIA assessment before and

after follow-up, showed increased mortality by weight loss probably

attributed to loss in FFM (44). Likewise, another study suggested

that the increase in mortality seen in their population was less in

subjects who alongside with their weight loss has a relatively high
frontiersin.or
TABLE 4 Multivariate analysis using multiple linear regression to adjust
for predictor variables of fat mass loss percentage.

B 95% CI p-value

Age 0.014 [-0.03; 0.06] 0.503

Baseline Fat Mass 0.11 [0.05; 0.18] 0.001

Baseline Visceral Fat Area -0.05 [-0.18; 0.05] 0.275

Subcutaneous/
Oral Semaglutide

-0.563 [-1.4; 0.281] 0.188

iSGLT2 treatment 1.01 [0.21; 1.81] 0.014

Insulin treatment 0.95 [0.18; 1.71] 0.017
Dependent variable: Fat mass loss percentage.
Statistics: R2 0.468; p < 0.001.
BMI, Body Mass Index; iSGLT2, sodium-glucose linked transporter inhibitors; 95% CI, 95%
Confidence Interval.
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Rodrı́guez Jiménez et al. 10.3389/fendo.2024.1386542
physical activity (45). This highlights how detrimental the FM

component is and points out the need to consider it in clinical

practice, emphasising that relying solely on BMI could be

insufficient when evaluating a patient’s metabolic state.

Our cohort underwent a reduction in VFA after treatment with

semaglutide both in SS and OS routes of administration. VFA plays

a key role in metabolic and cardiovascular disease. Visceral adipose

tissue secretes inflammatory mediators leading to a chronic low

grade inflammation state (46, 47), which induces a constellation of

metabolic abnormalities and diseases (46). Adiposity is an

independent risk factor for glycometabolism disorder, since fat

accumulation affects insulin’s action by different mechanisms

including insulin resistance in organs such as the liver and muscle

tissue (46, 48). Over the years, evidence has suggested that the risk

of adiposity-induced metabolic dysfunction is not solely determined

by the quantity of accumulated fat in the body, but rather by its

distribution. According to Klein et al., decreasing body FM by

inducing a negative energy balance could normalize obesity-

induced dysfunction.

Focusing on PhA, throughout follow-up it maintained similar

values as those registered in the first body composition analysis.

From these results we can infer that Semaglutide did not affect

cellular integrity to a significant extent. PhA acts as a marker of the

amount of electrical charge that a cell membrane can hold, related

to membrane integrity, permeability, overall size and hydration

(35); therefore, indicating cellular health and function (49). PhA is a

raw bioelectrical parameter with a demonstrated prognostic utility

(50). Its value is influenced by various factors: aging contributes to a

decline on PhA as muscle mass decreases, men typically exhibit

higher PhA values than women owing to greater muscle mass, and

there is a positive correlation between BMI and PhA, with higher

BMI values corresponding to increased PhA values. Several studies

have demonstrated lower values of PhA in T2DM, relating smaller

values with catabolism and longer disease duration (49). The main

challenge of using PhA in clinical evaluation is the lack of consensus

on cut-points and reference values. Several investigations have been

carried out around the world, based on large population samples in

Germany (51), the United States (52) and Switzerland (53),

obtaining notable differences (35). Therefore, further research is

required to establish, through standardized measurement

techniques, reference cut-off points (54).

With respect to analytical parameters, glycaemic control

improved significantly as proven by HbA1c and fasting plasma

glucose. Clinical trials have reported reductions in the HbA1c level

to be as high as 1.8%, depending on dosage and follow-up duration

(23). This percentage is lower than our findings, which could

correspond to higher HbA1c levels at baseline in our cohort

compared to clinical trials, where inclusion criteria are more

stringent, since our study was conducted in a real-life clinical

practice setting. Attaining desired blood glucose levels is a key

objective in diabetes management, since optimal glycaemic control

reduces the risk of both microvascular and macrovascular

complications (36, 55). In this regard, as part of everyday clinical

practice, an educational activity aimed at reinforcing healthy

lifestyle habits was carried out simultaneously with the treatment,
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which could have influenced a better weight response and glycaemic

control. This protocol is standard within our endocrinology service

and is routinely practiced, both within the scope of this study and as

part of routine clinical care. Therefore, no assessment of its impact

was conducted. GLP-1ra enhance glycaemic control by stimulating

insulin secretion and by a glucose-dependent inhibition of glucagon

release (56), resulting in effective glucose lowering without

increased risk of hypoglycaemia (57). Consistent with this

knowledge, glycaemic improvement in our cohort was not

accompanied by more frequent hypoglycaemic events.

Additionally, basal insulin requirements in our cohort

decreased after follow-up, highlighting the fact that our patients

were metabolically in better conditions after semaglutide treatment.

This is a promising finding, since insulin, although effective in

hyperglycaemic control for many patients, is associated with

hypoglycaemia and weight gain (57).

Lipid profile showed improvement as well, with significant

reductions in total-cholesterol and non-significant reduction in

Low-density lipoprotein cholesterol concentrations. This is

consistent with SUSTAIN 9’s trial, where both parameters

significantly decreased in the same proportion (58). It is

suggested that such improvement could come alongside with

reductions in body weight and glucose levels; GLP-1ra have also

been shown to regulate cholesterol and triglyceride concentrations

via several different pathways (59).

Recently, two studies similar to ours have been published, yet

with certain differences. Both studies investigated changes in body

composition after 26 weeks of treatment with semaglutide. One

study (60), assessed the impact of OS in 32 patients with a mean

BMI of 28.2 kg/m2. Results showed a weight loss of 4 kg at 6

months, accompanied by improvements in lipid profiles and a

significant reduction in HbA1c at 3 and 6 months of follow-up.

In the other study (37), involving subcutaneous administration of

semaglutide in a population of 40 patients with a mean BMI of 38.8

kg/m2, a weight loss of 9.89kg was observed after 6 months. This

second study showed a weight loss pattern consistent with our

findings, probably influenced by a similar baseline BMI between the

two studies. It is noteworthy that both studies established as an

exclusion criterion the concomitant use of other hypoglycaemic

agents such as iSGLT2 inhibitors. Additionally, not all patients

reached full semaglutide dose: in the SS study, only 5% reached a

weekly dose of 1 mg; in the OS study, all patients remained on an

intermediate (7 mg) or initial dose (3 mg). In other words, the

patients did not uniformly receive the same treatment regimen.

Furthermore, sample size in both studies was limited.

Previous investigations have delved into the impact of

combining physical activity programs with nutritional

recommendations to aid weight reduction. It is widely recognized

that structured lifestyle interventions play a pivotal role in

facilitating weight loss among individuals grappling with obesity

(61). Such interventions can yield significant outcomes, with a 3–5%

reduction in body weight achievable through health behavioural

changes, leading to tangible improvements in obesity-related

comorbidities (62). Notably, Wilding et al. highlighted that

combining Semaglutide treatment with lifestyle interventions
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effectively sustained clinically relevant weight loss in overweight or

obese adults (1). In our study, patients were provided with general

recommendations for adopting a healthy lifestyle and engaging in

physical exercise, cantered around the Mediterranean diet and

active living to deter sedentary behaviour. These guidelines were

initially communicated during the first visit and subsequently

reinforced by our nursing team during a brief 15-minute session.

While this information was uniformly disseminated to all

participants, there was no subsequent follow-up or utilization of

specific programs for reinforcement.
Limitations

We acknowledge some limitations in our study. We did not

investigate a control group with which to compare the effects of the

treatment on the different studied parameters. The duration of the

study was limited; longer-term data would have provided more

information and potentially greater modifications in body

composition as well as analytical parameters. Another limitation

was narrow sample size, which although proved to be statistically

adequate, did not allow for a more in-depth analysis of the studied

variables. Furthermore, the retrospective nature of the study

represents a weakness, as well as not being able to compare our

treatment groups due to the basal differences observed between

them. Additionally, BIA is not considered the gold standard

method, and we recognize that incorporating other body

composition tests may be necessary in future research.

On the other hand, it is clearly a strength that body composition

parameters were estimated from BIA rather than anthropometric

predictions. Likewise, it is an advantage that our data was recorded

on a real-life basis. This enhances the generalizability of our

findings, given that real-world studies include a more diverse and

representative patient population compared to clinical trials.

Consequently, our results hold greater applicability across a

broader range of individuals. Additionally, such studies directly

influence clinical practice, guiding healthcare providers in making

evidence-based decisions in their daily patient care.
Conclusion

In light of these results, we conclude that semaglutide improves

body composition parameters with significant losses of body FM

with a lesser compromise of lean mass, as well as positively

influencing glycaemic control and metabolic status. The potential

for muscle mass decline exists; therefore, it should be anticipated

and addressed through regular physical activity to mitigate it,

considering that although this decrease is expected to be less

pronounced than that of fat mass, it remains likely to occur.

Integrating BIA into clinical practice enables the evaluation of

antidiabetic drugs’ impact on the human body from a new

perspective, paving the way for upcoming studies.
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Future lines of research on phase Angle: Strengths and limitations. Rev Endocr Metab
Disord. (2023) 24:563–83. doi: 10.1007/s11154–023-09803–7
Frontiers in Endocrinology 12
55. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-Year follow-up
of intensive glucose control in Type 2 diabetes. N Engl J Med. (2008) 359:1577–89.
doi: 10.1056/nejmoa0806470

56. Madsbad S. Review of head-to-head comparisons of glucagon-like peptide-1
receptor agonists. Diabetes Obes Metab. (2015) 18:317–32. doi: 10.1111/dom.12596
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