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In mammals, the development of male or female gonads from fetal bipotential

gonads depends on intricate genetic networks. Changes in dosage or temporal

expression of sex-determining genes can lead to differences of gonadal

development. Two rare conditions are associated with disruptions in ovarian

determination, including 46,XX testicular differences in sex development (DSD),

in which the 46,XX gonads differentiate into testes, and 46,XX ovotesticular DSD,

characterized by the coexistence of ovarian and testicular tissue in the same

individual. Several mechanisms have been identified that may contribute to the

development of testicular tissue in XX gonads. This includes translocation of SRY

to the X chromosome or an autosome. In the absence of SRY, other genes

associated with testis development may be overexpressed or there may be a

reduction in the activity of pro-ovarian/antitesticular factors. However, it is

important to note that a significant number of patients with these DSD

conditions have not yet recognized a genetic diagnosis. This finding suggests

that there are additional genetic pathways or epigenetic mechanisms that have

yet to be identified. The text will provide an overview of the current

understanding of the genetic factors contributing to 46,XX DSD, specifically

focusing on testicular and ovotesticular DSD conditions. It will summarize the

existing knowledge regarding the genetic causes of these differences.

Furthermore, it will explore the potential involvement of other factors, such as

epigenetic mechanisms, in developing these conditions.
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Introduction

Gonadal development is a fundamental step in forming the

reproductive system, and several diseases are associated with

atypical gonadal development. The determination and

differentiation of gonads from the bipotential gonadal

primordium can be triggered by a combination of genetic and

environmental factors, making it a species-specific process among

vertebrates (1).

In mammals, sex is determined by genetic heritage during

fertilization. The differentiation of fetal bipotential gonads into

testes or ovaries occurs through the action of specific genetic

networks. These developmental pathways are typically distinct,

mutually exclusive, and driven by a complex interchange of

antagonistic genes (2). Changes in the dosage and/or

spatiotemporal expression of sex-determining genes can lead to

disruptions in the typical development of male or female gonads,

causing differences in sex development (DSD). In rare conditions,

testicular tissue can develop into an XX gonad, resulting in the

condition called 46,XX ovotesticular or testicular DSD.
Clinical presentation

Testicular difference of sex development

Testicular DSD (T DSD) has an estimated frequency of 1:20,000

to 1:25,000 newborn boys. These conditions account for about 2%

of cases of male infertility. In about 80% of affected individuals, the

genital male phenotype appears typical at birth, but diagnosis

usually occurs during or after puberty due to symptoms such as

gynecomastia, hypogonadism, and infertility (3). However, in some

cases, individuals may present with atypical external genitalia,

which enables for earlier investigation and evaluation. The

severity of the condition depends on the extent of testicular

tissue development.
Ovotesticular difference of
sex development

Ovotesticular DSD (OT DSD) is a rare form of DSD, with an

estimated incidence of 1:100,000 births (4). This condition is

characterized by the presence of both male gonadal tissues, with

well-developed seminiferous tubules, and female gonadal tissue,

with primordial follicles, within the same individual. In some

patients, both types of gonadal tissues may be present in the same

gonad, which is referred to as an ovotestis (5). The 46,XX karyotype

is the most commonly identified chromosomal pattern in OT DSD,

accounting for 65 to 90% of patients (6–8).

Most of the affected individuals present with atypical genitalia at

birth. Individuals assigned as males at birth might experience breast

development and/or cyclic hematuria. Similarly, individuals

assigned as females may exhibit breast development and

menstrual irregularities and/or signs of masculinization (9–11).
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Although most cases of TDSD and OTDSD are sporadic, there are

reports in the literature of individuals with both conditions occurring in

the same family. This suggests that a common genetic origin may

contribute to the development of these conditions (12–15).
Genetic regulation of
gonad development

Gonad development initially follows a similar trajectory in both

XX and XY fetuses, with a bipotential gonad being formed from the

urogenital crest. After the formation of the bipotential gonad, the

processes involved in sex determination guide the development of

sex-specific gonadal structures. In male development, there is an

interaction between a network of pro-testis genes that promote the

differentiation of the bipotential XY gonads into testes. Conversely,

in female development, a network of pro-ovarian genes interacts to

differentiate the XX bipotential gonads into ovaries (16).
Bipotential gonad

In humans, the genital ridge first emerges between the fourth

and fifth weeks of pregnancy. During this period, coelomic

epithelial cells undergo proliferation on the ventromedial surface

of the mesonephros. This proliferation process is tightly regulated

by numerous genes and involves coordinated activity, which leads

to the formation of bipotential gonads (17–19) (Figure 1).

In mice, null mutations in genes such as Emx2 (Empty Spiracles

Homeobox 2), Cbx2 (Chromobox protein homolog 2), Gata4

(GATA Binding Protein 4), Lhx9 (LIM homeobox 9), Wt1

(Wilms tumor 1), and Nr5a1 (Nuclear Receptor Subfamily 5

Group A Member 1) result in regression and changes in the

development of the gonadal ridge. Coelomic epithelial cells

differentiate into two distinct somatic precursor lineages:

supportive cell precursors and steroidogenic cell precursors (20, 21).

Concurrently, primordial germ cells migrate from the yolk sac

along the hindgut and dorsal mesentery to colonize the gonad (22).

The interaction between somatic and germ cells and signaling from

somatic cells is essential for the proliferation and differentiation of

primordial germ cells. Furthermore, the female germ cells play a

role in maintaining the ovary (23). Subsequently, the bipotential

gonad differentiates into testis and ovary, respectively, through a

sex-related genes antagonistic network.
Genetic control of ovarian development

In bipotential gonadal tissue of XX individuals, the process of

ovarian determination is initiated by a cooperative network of pro-

ovarian genes, which includes WNT4 (Wingless Type MMTV

integration site family, member 4), RSPO1 (R-Spondin1), and FOXL2

(Forkhead box L2) (24–26) (Table 1). These factors not only activate

genes required for ovarian development but also repress pro-testis gene

expression (27). In XX individuals, WNT4 and RSPO1 initially direct
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ovarian determination by upregulating and stabilizing the beta-catenin

signaling pathway. CTNNB1 (Catenin Beta 1) essentially promotes germ

cell proliferation and granulosa cell differentiation (25, 28). RSPO1,

through CTNNB1, preventsWNT4 degradation to maintain ovarian fate

(25). FOXL2 expression is initiated in the supporting somatic cells of

bipotential gonads, in conjunction with WNT4 and RSPO1 (Figure 1).

FOXL2 is required throughout ovarian development and into

adulthood to maintain granulosa cell differentiation and support

folliculogenesis (2, 29). Foxl2 performs these functions through

several mechanisms, such as interacting with ovarian pathway

genes, Fst (Follistatin) and Cyp19a1 (cytochrome P450 family 19

subfamily A member 1) (30) and binding to a Sox9 enhancer to

reduce Sox9 expression (31). CTNNB1 also promotes the repression

of SOX9 expression. The genes involved in ovarian determination

tend to show their expression a little later in the process of

bipotential gonadal differentiation than the genes of the testicular

pathway (32).
Genetic control of testis development

In individuals with XY chromosomes, the SRY gene triggers the

cascade of testicular differentiation (33), regulated by WT1 (34),
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NR5A1 (35), CBX (36), GATA4 (37) and its co-factor ZFPM2 (Zinc

Finger Protein, FOG Family Member 2) (38), inducing the

expression of the SOX9 gene (39) (Figure 1). SOX9 expression is

upregulated immediately after SRY expression in the supporting

cells of the developing testis and marks their differentiation into

Sertoli cells (40). Subsequently, SOX9 plays a central role in

regulating the expression of various genes involved in male sexual

differentiation, such as FGF9/FGF2R (Fibroblast Growth Factor/

Fibroblast Growth Factor Receptor 2) (41), PTGDS (Prostaglandin

D2 Synthase) (42), and AMH (Anti-Mullerian Hormone). Like

SRY, the activity of SOX9 is both necessary and sufficient to

induce testis development in the genital ridges (43, 44) (Figure 1).

Indeed, SOX9 prevents the expression of genes inducing the ovarian

differentiation, such as RSPO1 and FOXL2 (45, 46). Other genes,

including MAP3K1 (Mitogen-Activated Protein Kinase Kinase

Kinase 1) (47, 48), WWOX (WW Domain Containing

Oxidoreductase) (49), DMRT1 (Doublesex and Mab-3 Related

Transcription factor 1) (50) and DHX37 (DEAH-Box Helicase

37) (51), have been added as participants in the testicular

determination pathway after the identification of deleterious point

mutations or copy number alterations associated with the

phenotype of differences of testicular differentiation in humans

and mice (45).
FIGURE 1

Genes and mechanisms of sex determination. The proliferation of cells from the mesonephros and coelomic epithelium leads to the formation of an
undifferentiated and bipotential gonad. This process is regulated by several factors, including GATA4, EMX2, CBX2, LHX9, and WT1. These factors, in
turn, regulate NR5A1, SIX1, SIX4, TCF21, and members of the IGF family, leading to the formation of an undifferentiated gonad. The process
continues until the fate of the gonad is established, resulting in the formation of either an ovary or a testis. Ovarian differentiation. In the XX fetuses
(absence of SRY), the expression of SOX9 remains low and other factors such as NR0B1, FOXL2, WNT4, and RSPO1 become dominant. The
upregulation of WNT4 and RSPO1 leads to the activation of the canonical WNT signaling pathway, which in turn upregulates and stabilizes b-catenin.
The activation of the WNT/b-catenin pathway plays a crucial role in the differentiation of the female gonad. NR2F2 has a role in maintaining a
multipotent state in early supporting gonadal cells, which seems to be necessary for commitment to ovarian development. After birth, FOXL2
continues to suppress male-specific factors, including SOX9 and DMRT1. Testicular differentiation. In XY fetuses, the expression of SRY is triggered
by MAP3K4, GATA4, WT1, and NR5A1. The presence of SRY and NR5A1 initiates the expression of SOX9, which leads to the differentiation of pre-
Sertoli cells and subsequent Sertoli cells. Other members of the SOX family are also upregulated. SOX9 expression is maintained through positive
feedback loops involving FGF9 and PGD2, as well as the regulation from WT1 and NR5A1. The increased expression of SOX9 prevails over NR0B1,
FOXL2, WNT4, and RSPO1, promoting testicular differentiation. After birth, DMRT1 suppresses the female-specific factor FOXL2. These interactions
between the male and female pathways remain essential throughout adulthood to maintain the gonadal identity.
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Molecular mechanisms involved with
the development of testicular tissue in
the 46,XX gonads

SRY-negative with insufficient expression
of pro-ovarian genes

WNT4 gene

WNT4 (1p36.12) encodes a glycoprotein that plays multiple

roles in ovarian differentiation and Müllerian duct formation (52)
Frontiers in Endocrinology 04
(Table 1). It is modulated by RSPO1 and acts by decreasing the

phosphorylation and degradation of b-catenin. Increased levels of

b-catenin antagonize SOX9, leading to upregulation of DAX1,

which in turn antagonizes SF1 (53) (Figure 2). In mice with

Wnt4 knockout, XX individuals exhibit virilization with the

presence of Leydig-like cells in their gonad. While Wolffian ducts

develop typically, Müllerian ducts are absent (54). In humans,

heterozygous loss-of-function pathogenic variants in WNT4 have

been found in virilized 46,XX women, who presented excess ovarian

androgens and atypical Mullerian duct development (55–58).

Additionally, a homozygous WNT4 pathogenic variant has been
TABLE 1 Genes associated with testicular development in 46,XX DSD patients.

Gene
Locus Protein

Protein
action

46,XX DSD

Symbol Name Phenotype Condition Proposed Mechanisms

DMRT1 Double sex, Mab3,
Related
transcription
factor 1

9p24.3 DMRT1 Transcriptional
factor

46,XX T DSD
46,XX OT DSD

Overexpression Gene implicated in early gonadal
development. In adult testis is required to
maintain Sertoli cell identity

FOXL2 Forkhead
transcriptional
factor 2

3q23 FOXL2 Transcriptional
factor

POI/BPES Underexpression Gene implicated in maintain granulosa cell
transcriptional profiles. In adult ovaries is
required to maintain granulosa cell identity

FGF9 Fibroblast Growth
Factor 9

13q12.11 FGF9 Signaling
molecule

46,XX male
with
hypospadias

Overexpression Gene affecting later events. It is required for
Leydig cell differentiation.

NR0B1 Nuclear receptor
subfamily 0 group
B member 1

Xp21.3 DAX1 Nuclear
receptor
transcription
factor

46,XX T DSD
46,XX OT DSD

Underexpression Gene affecting later events. It represses
SF1 action.

NR2F2 Nuclear Receptor
Subfamily 2 Group
F Member 2

15q26.2 COUP-
TFII

Nuclear
receptor
transcription
factor

Syndromic
46,XX T DSD

Underexpression Gene regulates cell fate during
gonad development

NR5A1 Nuclear receptor
subfamily 5 group
A member 1

9q33 SF1 Nuclear
receptor
transcription
factor

46,XX T DSD
46,XX OT DSD
POI

Unknown Gene implicated in early gonadal
development in both sexes

RSPO1 R-spondin
homolog 1

1p34.3 RSPO1 Signaling
molecule

Syndromic
46,XX T DSD

Underexpression Gene required for ovarian development

SOX3 SRY-related,
HMG-box gene 3

Xq27.1 SOX3 Transcriptional
factor

46,XX T DSD
46,XX OT DSD

Overexpression Gene affecting later events – reinforces
testis differentiation

SOX9 SRY-related,
HMG-box gene 9

17q24.3 SOX9 Transcriptional
factor

46,XX T DSD
46,XX OT DSD

Overexpression Gene affecting later events – specification of
Sertoli cell, promoting
testicular differentiation

SOX10 SRY-related,
HMG-box gene 10

22q13.1 SOX10 Transcriptional
factor

46,XX T DSD
46,XX OT DSD

Overexpression Gene affecting later events – reinforces
testis differentiation

SRY Sex-determining
Region-
Y chromosome

Yp11.3 SRY Transcriptional
factor

46,XX T DSD
46,XX OT DSD

Translocation Gene affecting later events- required for
testis development

WNT4 Wingless-type
mmtv integration
site family,
member 4

1p35 WNT4 Member of the
WNT
signaling
pathway

MRKH
syndrome
Serkal
syndrome

Underexpression Gene required for ovarian development

WT1 Wilms’ Tumor 1 11p13 WT1 Transcriptional
factor

46,XX T DSD
46,XX OT DSD

Unknown Gene implicated in early gonadal
development in both sexes
T, testicular; OT, ovotesticular; POI, Premature ovarian insufficiency; GD, Gonadal dysgenesis, DDS, Dosage sensitive sex reversal, Adrenal hypoplasia; BPES, blepharophimosis-ptosis-
epicanthus-inverse syndrome; MRKH, Mayer-Rokitansky-Kuster-Hauser syndrome; WAGR, Wilms tumor, aniridia, genitourinary anomalies, mental retardation syndrome).
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reported in a consanguineous family with a rare embryonic lethal

syndrome known as SERKAL (SEx Reversion, Kidneys, Adrenal

and Lung dysgenesis) syndrome (Table 2). This syndrome is

characterized by SRY-negative 46,XX testicular or ovotesticular

DSD, as well as adrenal hypoplasia, renal agenesis, and severe

defects in the lungs and cardiovascular structures (68).

RSPO1 gene
RSPO1 gene (1p34.3) encodes a secreted agonist protein of the

canonical Wnt/b-catenin signaling pathway, that is widely

expressed during fetal development (Table 1). RSPO1 plays a key

role in gonad differentiation toward the ovary by synergizing the

WNT4 to stabilize b-catenin in XX gonads (52, 59). In XX mice, the
Frontiers in Endocrinology 05
gonadal phenotype of the Rspo1 and the Wnt4 knockouts are

strikingly similar: it ranges from small testes to ovotestes (26).

RSPO1 is also expressed in fibroblasts and regulates the

proliferation and differentiation of keratinocytes (69).

Homozygous deleterious RSOP1 variants have been identified

in SRY-negative 46,XX DSD patients with atypical genitalia and

palmoplantar hyperkeratosis and increased susceptibility to

squamous cell carcinoma of the skin (60, 62, 69, 70) (Table 2).

These variants are typically located in the cysteine-rich furin

domains of RSPO1, which are important for stabilizing

cytosolic b-catenin. Dysregulation of b-catenin might result in the

inhibition of Sox9 degradation and contribute to testis

development (Figure 2).
A

B

FIGURE 2

46,XX Testicular and ovotesticular DSD. Loss of the antagonistic balance of the RSPO1/WNT4/b-catenin pathway and the SRY/SOX9/FGF9 pathway
can lead to the development of an abnormal gonad. (A) In XX individuals with Yp translocations and the presence of SRY, testicular differentiation
can occur. In 46,XX SRY-negative individuals, testicular development may result from different conditions: overexpression of “pro-testicular” factors
such as SOX9, SOX3, SOX10, FGF9, DMRT1, and (B) reduced expression of “pro-ovarian” factors such as RSPO1, WNT4, NR2F2. These changes in
gene expression can be caused by an increase in the number of gene copies or their regulatory sequences. Additionally, in particular conditions,
factors like WT1 and NR5A1 can also promote testicular development in 46,XX individuals. *Indicates genes associated with 46,XX testicular and
ovotesticular DSD in humans.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1385901
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ferrari et al. 10.3389/fendo.2024.1385901
Histological examination of gonads of two affected individuals

reveals testicular structures with Leydig cell hyperplasia and

ovotestes with small residual ovarian tissue, respectively (63, 70).

The absence of RSPO1 also affects the skin microenvironment and

epidermal integrity, contributing to an elevated risk of squamous

cell carcinoma in palmoplantar regions exposed to frictional

stresses (71). Some patients may also present with congenital

microphthalmia, cataracts, coloboma of the iris and choroid,

onychodystrophy, laryngeal carcinoma, and hearing impairment

(60–62, 70, 72).

NR2F2 gene
The NR2F2 (Nuclear Receptor Subfamily 2 Group F Member 2)

gene (15q26.2) encodes the chicken ovalbumin upstream promoter

transcription factor 2 (COUP-TF2), which is an orphan nuclear

receptor (Table 1). COUP-TFII plays important roles during

embryogenesis, particularly in cell fate determination,

organogenesis, angiogenesis, and metabolism (64, 73). It also
Frontiers in Endocrinology 06
plays a role in cell regeneration or dedifferentiation. High

expression of COUP-TFII is observed in the mesenchymal

component of various organs, including the heart, brain, kidney,

adrenal cortex, genital tubercle, otocyst, periocular mesenchyme,

optic stalk, and olfactory placode, during development and

organogenesis (74). Knockout and heterozygous mice lacking

COUP-TFII exhibit multiple vascular abnormalities, especially in

the heart and brain. These abnormalities can lead to premature

death, with embryonic mortality observed in COUP-TFII knockout

mice and death occurring within the first few days of life in

heterozygous mice (74).

In the gonadal ridges, COUP-TF2 acts as a “pro-ovary” and

“anti-testis” factor (75). Previous studies suggest that the Nr2f2

repression is necessary for fetal Leydig cell differentiation (76).

Ferreira et al. demonstrated that the human NR2F2 is highly

upregulated during bipotential gonad development, being detected in

early somatic cells that precede the steroidogenic cell emergence in the

undifferentiated gonad. The authors propose that COUP-TFII
TABLE 2 WNT4, RSPO1 and NR2F2: Genotype and clinical and gonadal characteristics of patients with SRY-negative 46,XX Testicular and
Ovotesticular DSD reported in the literature.

Gene
Pathogenic
mechanisms

Molecular
findings

Diagnosis
External
genitalia

Gonads Reference

WNT4
Decreased
Expression

c.
341C>T, (p.Ala114Val)

SERKAL syndrome Atypical
Fe1: Dysgenetic testis
Fe2: Ovotestis

Mandel H,
2008 (59)

RSPO1
Decreased
Expression

c.108_109insG
46,XX
Testicular DSD

Atypical, palmo-
plantar keratosis

ND

Parma P, 2006
(60)
Micali G,
2005 (61)

Deletion of 2752bp
(exon 4)

46,XX
Testicular DSD

Atypical, palmo-
plantar keratosis

ND
Parma P, 2006
(60) Vernole
P, 2000 (62)

Splice-donor site
mutation
(c.286 + 1G>A)

46,XX
Ovotesticular DSD

Atypical, palmo-
plantar keratosis

Ovotestis
Tomaselli S,
2008 (62)

c.332G>A,
(p.Cys111Tyr)

P1: 46,XX
Testicular DSD
P2: 46,XX
Ovotesticular DSD

P1: Atypical,
palmo-plantar
keratosis
P2: Atypical,
palmo-
plantar keratosis

P1: Dysgenetic testis
P2: ND

Naasse Y,
2017 (63)

c.43_43del
A (p.Thr15Argfs*77)

46,XX
Testicular DSD

Atypical, palmo-
plantar keratosis

ND
Tallapaka K,
2018 (64)

NR2F2
Decreased
Expression

c.103_109delGGCGCCC
(p.Gly35Argfs*75)

P1: 46,XX DSD
P1: Male genitalia,
non-
palpable gonads

P1: ND

Bashamboo A,
2018 (65)

c.97_103delCCGCCCG
(p.Pro33Alafs*77)

P2: 46,XX DSD P2: Atypical P2: ND

c.97_103delCCGCCCG
(p.Pro33Alafs*77)

P3: 46,XX
Ovotesticular DSD

P3: Atypical
P3: Ovotestis
(Bilateral)

3-Mb 15q26.2
(95127653_ 98146649)x1
deletion, arr[GRCh37]

46,XX
Ovotesticular DSD

Atypical Ovotestis
Carvalheira G,
2019 (66)

c.23G>A, p.(Trp8*)
46,XX
Testicular DSD

Atypical Testis
Ganapathi M,
2023 (67)
SERKAL syndrome, SEx Reversion, Kidneys, Adrenal and Lung dysgenesis syndrome; ND, not described; P, Patient; Fe- Fetus.
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regulates cell fate during gonad development by modulating theWNT

signaling pathway, Runx2 (RUNX family transcription factor 2)

activity, and the expression of Pparg (Peroxisome Proliferator

Activated Receptor Gamma) and Sox9. Impairment of its function

might disrupt the transcriptional plasticity of early supporting gonadal

cells. This disruption during early gonad developmentmay cause early

supporting gonadal cells to commit to the testicular pathway (77).

Less than 40 individuals with heterozygous pathogenic variants

in NR2F2 have been reported (78). Congenital heart defects are the

most well-known phenotypes associated with its pathogenic

variants, according to the expression pattern of COUP-TF2 (67,

73). However, the clinical features associated with NR2F2 variants

are variable. These features include intrauterine growth restriction

(IUGR), congenital heart disease (CHD), congenital diaphragmatic

hernia (CDH), blepharophimosis ptosis-epicanthus inversus

syndrome (BPES), developmental delays, hypotonia, feeding

difficulties, failure to thrive, congenital and acquired

microcephaly, dysmorphic facial features (such as up-slanted or

short palpebral fissures, micrognathia or retrognathia, low-set or

dysplastic ears, hypertelorism, and full cheeks), renal failure,

hearing loss, strabismus, asplenia, and vascular malformations.

Genital anomalies and DSD have also been described (78).

The molecular mechanisms leading to testis development in

some 46,XX patients with COUP-TFII loss-of-function have yet to

be defined (77, 79). NR2F2 pathogenic variants/deletion were found

to be associated with five patients who had a syndromic form of

SRY-negative 46,XX T/OT DSD (Table 2) (65, 66, 78, 79).

These patients presented with atypical genitalia (4/5),

congenital diaphragmatic hernia (CDH) (3/5), blepharophimosis

ptosis-epicanthus inversus syndrome (BPES) (3/5), and congenital

heart disease (CHD) (2/5). Three of the patients had frameshift

variants affecting the N-terminal region of the protein, specifically,

p.Gly35Argfs*75 and p.Pro33Alafs*77 and the fourth patient had a

de novo nonsense variant, p.Trp8* (78, 79).

(Table 2). In the fifth patient, a CGH array assay identified a 3-

Mb 15q26.2 [arr(GRCh37) 95127653_98146649] x1 deletion that

encompassed the entire NR2F2 gene (65, 66).

Genotype-phenotype correlations cannot be identified, as

individuals carrying identical NR2F2 variants may present with

variable phenotypic manifestations. In the case of 46,XX patients, a

single-copy genomic deletion that encompasses the entire NR2F2 gene

may result in testicular tissue and atypical external genitalia in some

cases, but in others, there may be no evidence of genital anomalies or

DSD, despite the presence of other syndromic features (65, 66, 78, 80).

These findings suggest that the phenotypic expression of NR2F2-

related differences may be likely influenced by additional modifiers.
Presence of SRY gene in the pro-
ovarian genes pathway

SRY initiates the formation of male gonadal tissue from

bipotential gonadal primordia by stimulating a cascade of related

genes, the SRY-related HMG box-containing genes (SOX)
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(Table 1). These genes play an essential role in the differentiation

of Sertoli cells and the development of the testes (81).

The main cause of 46,XX T DSD patients is related to a

chromosomal rearrangement during paternal meiosis that leads to

the translocation of the SRY from the paternal Y chromosome to the

X chromosome or an autosome. In such cases, patients typically

exhibit external and internal male genitalia (82).

In such cases, the genetic etiological diagnosis of 46,XX T DSD

can be established using the fluorescence in situ hybridization

(FISH) technique, which identifies a fluorescent signal indicating

the sequence of the SRY translocated onto the X chromosome or

autosome. Alternatively, the polymerase chain reaction (PCR) can

be used to identify the presence of the SRY in the individual’s DNA

being evaluated. Microarray analysis is also used to detect the

presence of SRY.

It is worth noting that the formation of the testis can occur in

46,XX individuals, even in the absence of SRY, particularly among

those who have dosage variations in HMG-box transcription

factors (Table 1).
SRY-negative with overexpression of
pro-testicular genes

The increased expression of genes associated with male gonadal

determination is a well-established etiological cause of 46,XX T/OT

DSD patients. Among these genes, members of the SOX family play

a significant role in this process.
SOX family

The SOX (SRY-related HMG box) family of proteins is a group

of transcriptional regulators that contain a highly conserved high-

mobility group domain (83, 84). The high-mobility group domain

was first identified in the SRY gene, and several genes from the SOX

family have been linked to the etiology of differences of gonadal

developmental in mammals.

SOX9 gene
SOX9 (17q24.3) is a transcription factor that plays a significant

role in various tissues, including chondrocytes and testes (84)

(Table 1). Studies investigating the relationship between

phenotype and genotype in humans and mice have demonstrated

that SOX9 expression is a critical step in testis development,

occurring downstream of SRY. SOX9 is responsible for the

specification of Sertoli cells, which in turn initiates testicular

differentiation and triggers the production of AMH (85, 86).

Overexpression of SOX9, often caused by gene duplications or

copy number variations in the upstream promoter region, has been

linked to testis determination in the absence of SRY (84, 87, 88)

(Figure 2). In many cases of 46,XX T/OT DSD, SOX9 duplications

have been identified as the most commonly observed genetic cause,

second only to SRY translocation (Table 3).
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Many of these duplications involve a noncoding region spanning

at least 24 kb, known as the RevSex region, located approximately 0.5-

0.6 Mb upstream of the SOX9 gene (89–100) (Table 3). This region is

predicted to contain a human testis-specific enhancer, and the

duplication of this enhancer drives the atypical expression of SOX9,

leading to the activation of testicular differentiation (87, 92).

Ushijima et al. escribed an SRY-negative 46,XX OT DSD patient

with a novel SOX9 missense variant (p.Glu50Lys) with promoter-

specific gain-of-function (GoF) activity in in vitro studies. The

authors demonstrated that E50K-SOX9 had (GoF) activity in the

mTESCO-luciferase reporter, suggesting that it was due to change

(s) in its bioactivity. GoF activity was observed in mTESCO-luc but

not in mAmh-luc, thereby indicating that the acquisition of GoF

activity was promoter-specific. To associate the promotor SOX9

variant with atypical expression of SOX9, and the beginning of

testicular differentiation in the 46,XX OT DSD patient, mice

carrying the Sox9 p.E50K were also generated and characterized.

These mice, nevertheless, did not develop ovotestis (101). Such

discordance of expressivity/phenotype among humans and mice are

not limited to sox9/SOX9 (102) but are also described in other genes

associated with DSD, including Nr5a1/NR5A1 (103) andWt1/WT1

(104). The molecular mechanism of the promoter -specific GoF

activity of E50K-SOX9 remains to be elucidated.

SOX3 gene
SOX3 (Xq27.1) is another member of the SOX gene family that

is involved in gonadal development. It encodes a protein that is

highly SRY-like, with an amino acid sequence similarity of 67% for

the protein and 90% for the HMG DNA-binding domain (105)

(Table 1). Studies in transgenic mice have shown that increased

ectopic expression of Sox3 in undifferentiated gonads can lead to

sex reversal in XX mice, with complete virilization of external

genitalia observed in 77% of animals (106). These findings

suggest that Sox3 hyperexpression acts as a counterpart of Sry,

leading to increased expression of Sox9. Together with Nr5a1, Sox3

binds to the enhancer region of Sox9 (106).

Like the findings in mice, when increased expression of SOX3 is

observed in humans, this gene acts in conjunction with NR5A1 to

promote overexpression of SOX9. This phenomenon directs the

gonads toward male determination (105) (Figure 2).

The duplication of the SOX3 in a patient with SRY-negative 46,

XX OT DSD was initially identified by Sutton et al. (105). Several

other 46,XX patients with testicular development (T and OT) and

duplications of the SOX3 or in the regions located upstream of this

gene have been reported (94, 107–114), supporting the importance

of SOX3 in testis development (Table 3).

A heterozygous deletion downstream of SOX3 was also reported

in an SRY-negative 46,XX infertility male. The authors of the study

speculated that this deletion may play a role in the regulation of the

SOX3, potentially resulting in increased expression of SOX3 (115).

SOX10 gene
SOX10 (22q13.1) is another gene closely correlated with SOX9

in humans (Table 1). Initially expressed in neural crest cells during

the embryonic period, it plays a critical role in their development.
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SOX10 is also expressed in fetal gonads (116). In mice, the

expression of Sox10 specifically in Sertoli cells strongly indicates

its involvement in the testicular differentiation process and

reinforces its role in the male pathway (117).

Studies in transgenic animal models have demonstrated that

Sox10 overexpression causes sex reversal in XX mice (117). These

studies demonstrated that the expression level of Sox10 is crucial in

determining the gonadal phenotype. Complete testicular

differentiation in all mice was observed in the lineage with higher

levels of Sox10 expression, while the lineage expressing lower levels of

the transgene showed only 30% of mice with complete sex reversal in

the postnatal period. Interestingly, all fetuses from the second group

(lower expression levels) were able to initiate Sertoli cell differentiation

(presence of cells expressing Sox9 in XX transgenic gonads). In these

gonads, cells committed to the female pathway, identified by the

expression of Foxl2, were interspersed with Sox9-positive cells (117).

This same pattern has been described in ovotestis in humans, as well

as in mouse models of ovotestis development (118).

Similarly, gonadal, and reproductive system alterations have

been reported in cases of partial duplication of chromosome 22q in

46,XX humans, a chromosomal region that contains SOX10

(Table 4). Rare patients diagnosed with 46,XX T/OT DSD, both

syndromic and non-syndromic, have also been described in the

literature with chromosome 22 aneuploidies (116, 119–

121) (Table 4).
DMRT1 gene
The DMRT1 gene (9p24.3) encodes a transcription factor that

plays a crucial role in sex determination and gonadal development

in various species (Table 1). It possesses a zinc-finger-like DNA

binding domain known as the DM (doublesex/MAB-3) domain.

This domain allows DMRT1 to bind to specific DNA sequences and

regulate the expression of genes involved in sex differentiation

(122) . DMRT1 express ion has been observed in the

undifferentiated human XY gonadal primordium. During the

early fetal period (gestational weeks 8-20), it is primarily

expressed in Sertoli cells, which play a crucial role in testicular

development. In the second gestational trimester, childhood, and

post-puberty, DMRT1 expression becomes more abundant in

spermatogonia (123) This dynamic pattern of expression suggests

thatDMRT1 plays a significant role in both the early and later stages

of male gonadal development.

DMRT1 expression has indeed been detected in oogonia and

oocytes during the early stages of ovarian development, up until

gestational week 20. However, it is important to note that after the

onset of meiotic germ cell division, DMRT1 expression becomes

absent in these cells (123).

In contrast to DMRT1 homologs in other vertebrates,

mammalian DMRT1 seems to not be involved in the initial sex

determination but is instead required for maintaining male gonadal

fate (124, 125). Studies in mice have demonstrated that the loss of

expression of certain key genes in postnatal life can lead to the

reprogramming of Sertoli cells into granulosa cells and vice versa.

This suggests that there is a level of plasticity in gonadal fate even

after the typical formation of a testis or ovary (31, 124).
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TABLE 3 SOX9: Genotype and clinical and gonadal characteristics of patients with SRY-negative 46,XX Testicular and Ovotesticular DSD reported in
the literature.

Gene
Pathogenic
mechanisms

Molecular
findings

Diagnosis
External
Genitalia

Gonads Reference

SOX9 Increased expression

Duplication
of SOX9

46,XX
Testicular DSD

Atypical ND
Huang B,
1999 (85)

46,XX
Testicular DSD

Male Testis
Lee GM,
2014 (89)

Duplication/
Triplication
of SOX9
regulatory
sequences

46,XX
Testicular DSD

Atypical Testis
Refai O,
2010 (90)

46,XX
Testicular DSD

Male Testis
Cox JJ,
2011 (91)

46,XX
Testicular DSD

Male Testis
Vetro A,
2011 (92)

46,XX Ovotesticular
DSD
46,XX Ovotesticular
DSD
46,XX
Ovotesticular DSD

P1: Atypical
P2: Atypical
P3: Atypical

P1: ND
P2: Testis/
ovary
P3:
Ovotestis/
dysgenetic
gonad

Benko S,
2011 (93)

46,XX
Testicular DSD

Hypospadias ND
Xiao B,
2013 (94)

46,XX Testicular
DSD 46,XX
Ovotesticular DSD
46,XX
Testicular DSD

P1: Male
P2: Atypical
P3: Male

P1: ND
P2:
Ovotestis
(bilateral)
P3: ND

Vetro A,
2015 (95)

46,XX
Ovotesticular DSD

Atypical
Ovotestis/
Testis

Kim GJ,
2015 (88)

46,XX Testicular
DSD
46,XX Testicular
DSD
46,XX
Testicular DSD

P1: Male
P2: Male
P3: Male

P1:
Dysgenetic
testis
P2:
Dysgenetic
testis
P3: ND

Hyon C,
2015 (96)

46,XX
Ovotesticular DSD

Male Ovotestis
Ohnesorg T,
2017 (97)

46,XX
Ovotesticular DSD

Male
ND/
ovotestis

Shankara N,
2017 (98)

46,XX
Ovotesticular DSD

Atypical
Ovary
e ovotestis

López-
Hernández B,
2018 (99)

46,XX Testicular
DSD
46,XX
Ovotesticular DSD

P1: ND
P2: ND

P1: Testis
P2:
Ovotestis

Croft B,
2018 (100)

46,XX
Ovotesticular DSD

Atypical Testis/ovary
Mengen E,
2020 (101)

Promoter-specific
gain-of-function
variant in
the SOX9

46,XX
Ovotesticular DSD

Atypical
Ovotestis/
Ovary

Ushijima K,
2021 (102)
F
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ND, not described; P, Patient; F, Family.
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Ectopic expression of DMRT1 has been shown to reprogram

differentiated female granulosa cells into male Sertoli-like cells.

DMRT1 functions in collaboration with other key male sex

regulators like SOX9 to maintain and reprogram sexual cell fate.

It acts as a singular transcription factor, by regulating gene

expression and chromatin accessibility (126).
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Bertini et al. reported a three-year-old boy who presented with a

typical male phenotype and an SRY-negative 46,XX karyotype

(127). The genetic study conducted showed a heterozygous de

novo in tandem duplication of 50,221 bp on chromosome 9p.

This duplication encompassed exons 2 and 3 of the DMRT1 and

was detected using MPLA, CGH-array analysis, and Sanger
TABLE 4 SOX3 and SOX10: Genotype and clinical and gonadal characteristics of the patients with SRY-negative 46,XX Testicular and Ovotesticular
DSD reported in the literature.

Gene
Pathogenic
mechanisms

Molecular
findings

Diagnosis
External
Genitalia

Gonads Reference

SOX3 Increased expression

Duplication
of SOX3

46,XX
Testicular DSD

P1: Male
P2: Male
P3: Male

P1: ND
P2: ND
P3: ND

Sutton E,
2011 (103)

46,XX
Testicular DSD

Atypical ND Moalem S,
2012 (105)

46,XX
Testicular DSD

Male ND Vetro A,
2015 (95)

46,XX
Ovotesticular
DSD

Atypical Ovotestis Grinspon RP,
2016 (82)

46,XX
Testicular DSD

Hypospadias ND Tasic V,
2019 (108)

46,XX
Ovotesticular
DSD

Atypical Ovotestis Zhuang J,
2021 (109)

46,XX
Ovotesticular
DSD

Atypical Ovotestis/Testis Wei J,
2022 (110)

46,XX
Testicular DSD

Male
and
cryptorchidism

ND Oroz M,
2022 (111)

46,XX
Ovotesticular
DSD

P1: Atypical P1: Ovotestis Oliveira FM,
2023 (112)

46,XX DSD P2: Atypical P2: Ovary

Rearrangement
of SOX3 regulatory
sequences

46,XX
Testicular DSD

Atypical Testis Mizuno K,
2014 (106)

46,XX
Testicular DSD

Male Dysgenetic testis Vetro A,
2015 (95)

46,XX
Ovotesticular
DSD

Atypical Testis/Ovary Haines B,
2015 (107)

Deletion located
downstream of
the SOX3

46,XX
Testicular DSD

Male ND Qin S et al,
2022 (113)

SOX10 Increased expression

Duplication
of SOX10

46,XX
Ovotesticular
DSD

Atypical Testis/Ovary Aleck KA,
1999 (119)

46,XX
Testicular DSD

Male ND Seeherunvong
T, 2004 (114)

46,XX DSD Male ND Falah N,
2017 (117)

Chromosome 22
- Triplication

46,XX
Testicular DSD

Atypical Dysgenetic testis
Nicholl RM,
1994 (118)
ND, not described; P, Patient; F, Family.
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sequencing. The breakpoints of the duplication were in the intronic

regions, and it did not disrupt the coding frame of DMRT1. To

investigate other potential genetic factors contributing to the

phenotype, a custom NGS panel and whole genome sequencing

were performed, but no additional pathogenic or uncertain variants

were found in genes known to be involved in pro-testis/anti-ovary

gene cascades.

The identified duplication might have allowed DMRT1 to

escape the usual transcriptional repression that occurs in 46,XX

fetal gonads, leading to the activation of the testicular determination

cascade. Notably, no previous cases of SRY-negative 46,XX DSD

associated with alterations in DMRT1 have been reported thus far.

FGF9 gene
The FGF9 gene (13q12.1) is a signaling peptide involved in the

development of various organs, including limbs, lungs, the

adenohypophysis, and the gonadal ridges (Table 1). FGFs are

typically considered paracrine factors and play important roles in

tissue patterning and organogenesis during embryogenesis. The

FGF9 subfamily, which signals from epithelium to mesenchyme,

stimulates mesenchymal proliferation. In Fgf9 knockout XY mice,

gonadal development is severely impaired during embryonic and

fetal life, leading to reproductive phenotypes ranging from different

range of undervirilization to complete feminization of external

genitalia (128).

In a study by Chiang et al., an SRY-negative 46,XX male with

hypospadias and azoospermia was identified (129). Array-CGH

analysis revealed duplicated regions on chromosomes 13q12.11

(21.143874–21.174184 Mb) and 13q31.1 (79.807500–79.813700

Mb). These duplicated regions encompassed the entire FGF9 and

SPRY2 genes, respectively. The genomic gain of FGF9 was

hypothesized to result in FGF9 overexpression, which could

explain testicular development instead of ovarian development.

Additionally, SPRY2 was previously related to a potential role in

male sex organogenesis by controlling FGF9 gene-induced

mesonephric cell migration to the developing testis (130). The

higher amount of FGF9 would interfere with the expression of

WNT4 in the embryo, thereby impeding ovarian development in

SRY-negative 46,XX males.
SRY-negative with pathogenic
mechanisms not
completely comprehended

WT1 gene (11p13) is a transcription factor that encodes a zinc-

finger protein (Table 1). It is widely expressed in the condensing

mesenchyme, genital ridge, fetal gonads, renal vesicle, developing

podocytes of the fetal kidney, and mesothelium (131). TheWt1 and

Lhx9 (Lim homeobox 9) genes act as direct activators of the Nr5a1

and play a critical role in the development of the undifferentiated

gonad (132).

More than 30 protein isoforms originating from WT1

alternative splicing, alternative translation start sites, and different

RNA editing are known. The alternative splice site in intron 9 allows
Frontiers in Endocrinology 11
WT1 isoforms with omission or inclusion of three amino acids

[lysine-threonine-serine (KTS)] between the third and fourth zinc

fingers. These isoforms regulate specific urogenital differentiation

processes (133, 134).

Pathogenic WT1 variants are associated with several

phenotypes, including 46,XY and 46,XX DSD (135).

WT1 also plays a crucial role in the differentiation and

maintenance of Sertoli cells, and this function is positively related

to the testicular abnormalities observed in XY patients with

pathogenic WT1 variants (37).

The role of WT1 in ovarian development is not yet completely

understood. In mice, Wt1 is essential for the maintenance of

granulosa cells, and its inactivation leads to atypical ovary

development, characterized by reduced ovary size and a fewer

number of developing follicles (136, 137).

In SRY-negative 46,XX individuals with testicular and

ovotesticular DSD, seven pathogenic variants of WT1 have been

identified (Table 5) (147–150). These variants affect the fourth zinc

finger, which is a highly conserved region of the WT1 protein.

Testicular development in this condition may be influenced by the

inappropriate interaction between the mutated WT1 protein and

the main ovarian determinant, beta-catenin 1. Additionally, studies

have shown that pathogenic variants in exon 10 increase the

expression of genes such as SOX9, NR5A1, and DMRT1, which

are involved in the development of Sertoli cells. It has been

suggested that these alterations could promote the sequestration

of beta-catenin 1, leading to the upregulation of pro-testicular

pathways (148, 149).
NR5A1 gene

NR5A1 (9q33.3) encodes the steroidogenic factor 1 (SF-1),

which is expressed in the developing urogenital ridge,

hypothalamus, anterior pituitary gland, and steroidogenic tissues

(Table 1). SF-1 plays a crucial role in controlling several steps of

adrenal and gonadal development (138, 151). NR5A1 variants are

associated with a wide phenotypic spectrum of 46,XX, and 46,XY

DSD (139, 140).

A single and recurrent variant in the NR5A1 (c.C274T,

p.Arg92Trp), present in a heterozygous state, was identified in

several 46,XX OT/T DSD patients (Table 5) (140) (141–143, 145,

152). In the study by Askari et al. (152), the p.Arg92Trp variant was

identified in a pair of siblings with 46,XX DSD (ovotesticular and

testicular DSD patients), as well as in their father who had

oligospermia. This further supports the notion that the NR5A1

variant can play a role in the development of different gonadal

phenotypes (145). Another variant was identified in the Arg92

codon, just by changing the amino acid to Glutamine (c.G275A,

p.Arg92Gln) in a 46,XX OT DSD patient (153). The arginine 92

residue is in a highly conserved region of NR5A1, which is crucial

for its interaction with DNA. A third variant (c.C779T,

p.Ala260Val) in the NR5A1 was identified in a single 46,XX OT

DSD patient (144).

To date, 13 families consisting of 15 patients with 46,XX DSD,

and deleteriousNR5A1 variants have been reported (Table 5). These
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TABLE 5 NR5A1, NR0B1 and WT1: Genotype and clinical and gonadal characteristics of the patients with SRY-negative 46,XX Testicular and
Ovotesticular DSD reported in the literature.

Gene Molecular findings Diagnosis External genitalia
Gonadal
histology

Reference

NR5A1

c.274C>T, p.Arg92Trp
46,XX
Testicular DSD

Atypical Testes (Bilateral)
Domenice S,
2016 (138)

c.274C>T, p.Arg92Trp

46,XX Ovotesticular
DSD 46,XX
Testicular DSD
46,XX Testicular
DSD
46,XX
Testicular DSD

F1(n=2): Atypical
F2(n=1): Male,
micropenis
F3(n=1): Male,
micropenis
F4(n=1):
Male, hypospadias

F1(n=2): Ovotestis
(Bilateral)
F2(n=1): ND
F3(n=1): ND
F4(n=1):
Dysgenetic
testis (Bilateral)

Bashamboo A,
2016 (139)

c.274C>T, p.Arg92Trp
46,XX Ovotesticular
DSD 46,XX
DSD Testicular

P1: Atypical
P2: Male

P1: Testis/
ovotestis
P2:
Testis (Bilateral)

Igarashi M,
2016 (140)

c.274C>T, p.Arg92Trp

46,XX Testicular
DSD
46,XX Ovotesticular
DSD 46,XX
Testicular DSD

P1: Female, clitoromegaly
P2: Atypical
P3: Male

P1: Testis/streak
P2: Ovotestis
bilateral
P3:
Testis (Bilateral)

Baetens D,
2016 (141)

c.275G>A, p.Arg92Gln
46,XX
Ovotesticular DSD

Atypical
P1:
Ovotestis
(Bilateral)

Swartz JM,
2016 (142)

c.274C>T, p.Arg92Trp 46,XX DSD Atypical ND
Takasawa K,
2017 (143)

c.274C>T, p.Arg92Trp
46,XX
Testicular DSD

P1: Male, non-
palpable gonads

P1: ND

Knarston IM,
2019 (144)

c.274C>T, p.Arg92Trp
46,XX
Ovotesticular DSD

P2: Atypical
P2:
Ovotestis
(Bilateral)

c.274C>T, p.Arg92Trp
46,XX
Testicular DSD

P3: Atypical P3: ND

c.779C>T, p.Ala260Val
46,XX
Ovotesticular DSD

P4: Atypical
P4:
Ovotestis/ovary

c.274C>T, p.Arg92Trp
46,XX
Testicular DSD

Atypical Testes (Bilateral)
Askari M,
2020 (145)

NR0B1
80 kb microdeletion removing the regulatory and
the NR0B1 sequences

46,XX
Ovotesticular DSD

Atypical
Ovotestis
(Bilateral)

Dangle P,
2017 (146)

WT1

c.1453_1456del, p.Arg485Glyfs*14
46,XX
Testicular DSD

Atypical Testis (bilateral)
Gomes NL,
2019 (136)

p. Arg495Gly
46,XX
Testicular DSD

P1: Atypical
P1: Dysgenetic
testis (bilateral)

Eozenou C,
2020 (137)

p.Pro481Leufs*15
46,XX
Testicular DSD

P2: Atypical
P2: Dysgenetic
testis (bilateral)

p.Arg495Gln
46,XX
Testicular DSD

P3: Atypical
P3: Dysgenetic
testis (bilateral)

p.Arg495Gln
46,XX
Ovotesticular DSD

P4: Atypical
P4:
Ovotestis
(bilateral)

p.Arg495Gln
46,XX
Ovotesticular DSD

P5: Atypical
P5:
Ovotestis
(bilateral)

p.Ser478Thrfs*17
46,XX
Ovotesticular DSD

P6: Atypical P6: ND

(Continued)
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patients exhibit a variable range of virilization in the external

genitalia, including isolated clitoromegaly, hypospadias, male

genitalia with micropenis and cryptorchidism, or male genitalia

and cryptorchidism. Likewise, the gonadal tissues also exhibit a

diverse range, from streak/dysgenetic gonads to ovotestis or testis,

depending on the specific case.

The mechanism which these three variants activate the

testicular development in 46,XX OT/T DSD carriers remain

elusive. It is suggested that they reduce the inhibition of the

expression of male pathway genes, such as SOX9 and AMH (141,

143), by disrupting specific ovarian development signals, mainly in

the WNT/b-catenin pathway (144, 153).
NR0B1 gene

NR0B1 (Nuclear Receptor Subfamily 0 Group B Member 1)

gene is located in the dosage-sensitive sex reversal (DSS) region at

Xp21.2 (Table 1). It encodes an unusual orphan nuclear receptor

that lacks the classic DNA-binding domain (154, 155). NR0B1/

DAX1 is expressed in various tissues including the developing

urogenital ridge, hypothalamus, anterior pituitary gland, adrenal

glands, and gonads. It is known to have a role in both ovarian and

testicular development, especially in spermatogenesis (156, 157) In

mice, a coordinated expression of Nr0b1, Sry, and potentially other

factors is necessary to upregulate Sox9 expression in precursor

somatic cells. This coordinated expression is crucial for the

development of Sertoli cells in the testes (158). These findings

confirm an essential role for NR0B1 in both Sertoli and Leydig cell

function (157, 159). However, the phenotype of male mice lacking

Nr0b1 can vary depending on the strain due to the background-

specific abundance of male-determining Sry gene transcripts. This

means that the presence of different genetic backgrounds can lead to

variability in the phenotypes of XY mice lacking Dax1 (Nr0b1)

(160). Additionally, Nr0b1 can be upregulated byWnt4 through the

activation of the WNT/b-catenin pathway (161). Loss of function of

NR0B1 causes X-linked primary adrenal insufficiency and

hypogonadotropic hypogonadism (162, 163).

If normal levels of NR0B1 are crucial for testicular development

and spermatogenesis, an excessive dosage of NR0B1 has been

suggested to act as an anti-testicular factor (164) Xp21.1

duplications, which include NR0B1 and testis-specific MAGEB

genes, have been identified in some XY patients with gonadal
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dysgenesis. These duplications contribute to abnormalities in

gonadal development and function (146, 155, 165–168).

Dangle et al. (169) identified a copy number rearrangement in an

SRY-negative 46,XX OT DSD patient using microarray analysis

(Table 5). This rearrangement involved an 80 kb microdeletion and

disrupted the Xp21.2 DSS critical region. The condition not only resulted

in the removal of the regulatory sequences and the NR0B1 gene, but it

also impacted the normal genomic organization. This disturbance led to

modified gene expression patterns through a position effect (169).
Epigenetics control of
gonadal development

Studies have indeed shown that epigenetic profiles undergo

dynamic changes during mammalian development, serving as a

critical mechanism in determining cell fate decisions and facilitating

cellular differentiation (170). Although knowledge about the

involvement of epigenetic regulators in human gonadal development

remains limited, their role is unquestionable (171, 172).

Regarding the expression of miRNAs in fetal gonads, it is widely

recognized that they play a role in the regulation of proteins that are

critically involved in gonad development (173, 174). Moreover, it is

observed that several miRNAs exhibit a sexually dimorphic

expression pattern in fetal gonads, indicating their potential

involvement in directing cell fate decisions and maintaining

cellular states (174).

In the ovary, the role of miRNAs in follicle assembly, growth,

differentiation, and ovulation has been identified (175). Real et al.

(176) described miR-124 as a promising candidate gene for mice

ovarian development. They found that miR-124 potentially targets

several genes involved in sex determination, including Sox9, in their

3’-UTR regions. The authors also demonstrated that inhibiting

miR-124 in XX gonadal cells resulted in the ectopic expression of

Sox9, suggesting that this miRNA may down-regulate Sox9 in

female gonads during the critical period of sex determination.

Furthermore, miR-124 exhibited differential up-regulation in XX

mice gonads during early stages of differentiation, but not in XY

mice gonads (176). In humans, no report of miRNA abnormalities

was related to 46,XX DSD etiology.

Various studies have also presented evidence suggesting the

involvement of methylation patterns in the process of gonadal

determination (171). However, there is currently no direct
TABLE 5 Continued

Gene Molecular findings Diagnosis External genitalia
Gonadal
histology

Reference

p.Lys491Glu
46,XX
Testicular DSD

P7: Male
P7:
Testis (bilateral)

c.1437 A>G 46,XX DSD Atypical ND
Sirokha D,
2021 (147)

p.Arg495Gln
46,XX
Testicular DSD

Atypical Testis (bilateral)
Kirino S,
2023 (148)
ND, not described; P, Patient; F, Family.
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confirmation of a link between abnormal methylation patterns and

the etiology of 46,XX DSD. It is known that DNA methylation and

histone modifications are actively involved in the spatiotemporal

expression of Sry by making the enhancers and the promoter

accessible for the binding of multiple transcription factors (16,

171, 177). Furthermore, methylation of the promoter/regulatory

region directly impacts the expression of the Sox9 gene in the testis

and ovary of mammals. The adult testis exhibits strong Sox9

expression, while site-specific methylation in the adult ovary

could play a crucial role in reducing Sox9 gene expression (178).

Certainly, innovative studies will play a crucial role in

establishing the involvement of epigenetic mechanisms in the

etiology of 46,XX DSD. These studies will contribute to

expanding our understanding of gonads determination.
Conclusion

While our understanding of ovarian determination has

significantly advanced, the process of testicular tissue development in

an SRY-negative 46,XX gonad remains intriguing. It is worth noting

that the majority of individuals with SRY-negative 46,XX testicular and

ovotesticular DSD have not received a confirmed genetic diagnosis.

This highlights the possibility of unknown genetic pathways or

epigenetic mechanisms involved in these conditions. Further research

and expansion of patient cohorts are needed to identify these other new

members of the gonadal determination cascade.
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169. Dangle P, Touzon MS, Reyes-Múgica M, Witchel SF, Rajkovic A, Schneck FX,
et al. Female-to-male sex reversal associated with unique Xp21.2 deletion disrupting
Frontiers in Endocrinology 18
genomic regulatory architecture of the dosage-sensitive sex reversal region. J Med
Genet. (2017) 54:705–9. doi: 10.1136/jmedgenet-2016-104128

170. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian
development. Nature. (2007) 447:425–32. doi: 10.1038/nature05918

171. Tachibana M. Epigenetics of sex determination in mammals. Reprod Med Biol.
(2016) 15:59–67. doi: 10.1007/s12522-015-0223-7

172. Miyawaki S, Tachibana M. Role of epigenetic regulation in mammalian sex
determination. Curr Top Dev Biol . (2019) 134:195–221. doi: 10.1016/
bs.ctdb.2019.01.008

173. Knarston I, Ayers K, Sinclair A. Molecular mechanisms associated with 46,XX
disorders of sex development. Clin Sci (Lond). (2016) 130:421–32. doi: 10.1042/
CS20150579

174. Gunes SO, Metin Mahmutoglu A, Agarwal A. Genetic and epigenetic effects in
sex determination. Birth Defects Res C Embryo Today. (2016) 108:321–36. doi: 10.1002/
bdrc.21146

175. Grossman H, Shalgi R. A role of microRNAs in cell differentiation during
gonad development. Results Probl Cell Differ. (2016) 58:309–36. doi: 10.1007/978-3-
319-31973-5_12
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