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Introduction:With the increasing prevalence of type 2 diabetes mellitus (T2DM),

there is an urgent need to discover effective therapeutic targets for this complex

condition. Coding and non-coding RNAs, with traditional biochemical

parameters, have shown promise as viable targets for therapy. Machine

learning (ML) techniques have emerged as powerful tools for predicting

drug responses.

Method: In this study, we developed an ML-based model to identify the most

influential features for drug response in the treatment of type 2 diabetes using

three medicinal plant-based drugs (Rosavin, Caffeic acid, and Isorhamnetin), and

a probiotics drug (Z-biotic), at different doses. A hundred rats were randomly

assigned to ten groups, including a normal group, a streptozotocin-induced

diabetic group, and eight treated groups. Serum samples were collected for
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biochemical analysis, while liver tissues (L) and adipose tissues (A) underwent

histopathological examination and molecular biomarker extraction using

quantitative PCR. Utilizing five machine learning algorithms, we integrated 32

molecular features and 12 biochemical features to select the most predictive

targets for each model and the combined model.

Results and discussion: Our results indicated that high doses of the selected

drugs effectively mitigated liver inflammation, reduced insulin resistance, and

improved lipid profiles and renal function biomarkers. The machine learning

model identified 13 molecular features, 10 biochemical features, and 20

combined features with an accuracy of 80% and AUC (0.894, 0.93, and 0.896),

respectively. This study presents an ML model that accurately identifies effective

therapeutic targets implicated in the molecular pathways associated with

T2DM pathogenesis.
KEYWORDS

type 2 diabetes, therapeutic targets, machine learning, drug response, rats
1 Introduction

Globally, the burden of diabetes mellitus (DM) is projected to

rise to 1.3 billion people by 2050, making it one of the most widely

spread diseases worldwide (1). Type 2 diabetes mellitus (T2DM) is

the prevalent form of DM, it is hallmarked by hyperglycemia,

insulin resistance, and ultimate decrease in b-cells insulin

secretion (2). When it develops further worsening comorbidities

emerge including micro- and macrovascular disease, leading to

kidney dysfunction, diabetic retinopathy, blindness, heart disease,

stroke, and lower limb amputations (3).

Diabetes mellitus is a highly heterogeneous entity (4). To

enhance our comprehension of the underlying biological

mechanisms and identify individuals at risk, it is crucial to

investigate the genetic contributions to diabetes. Such knowledge

can ultimately lead to the development of more precise and effective

therapeutic approaches. As T2DM progresses, it often necessitates

the simultaneous administration of multiple medications that target

different pathophysiologic pathways (5). This combined treatment

approach aims to regulate blood glucose levels and mitigate the

progression of complications.

However, emerging evidence suggests that inflammatory

pathways play a pivotal role as common mediators in the

natural course of diabetes when influenced by risk factors (6).

Interestingly, a previous study discovered that HFD-induced mice

increased mitochondrial DNA (mtDNA) release into the cytosol

of adipocytes, activating the cGAS-STING pathway and

inflammatory response, resulting in chronic inflammation in

adipose tissue and insulin resistance (7, 8). Moreover, autophagy

plays a crucial role in T2DM pathogenesis as it protects cells from

the damaging effects of oxidative stress and endoplasmic reticulum

stress, which is essential for the survival and proper functioning of
02
b-cell and insulin sensitivity, however, when the autophagic system
in b-cells fails, it can exacerbate b-cell dysfunction, particularly in
the presence of insulin resistance, potentially leading to

hyperglycemia (9). A growing body of evidence suggests that

enhanced autophagy, triggered by insulin resistance, may act as a

safeguarding mechanism against the deterioration and increased

apoptosis of pancreatic b-cells (10). This underscores the potential
significance of autophagy modulation in the pursuit of therapeutic

strategies aimed at preserving b-cell function in T2DM and

ultimately managing hyperglycemia.

The growing availability of high-throughput technologies in large

populations, such as genomics and transcriptomics with linked

medical record data supports the development of new

computational approaches for drug targeting using molecular

biomarkers in addition to the traditional biomarkers. Noncoding

RNAs (ncRNAs) including microRNAs (miRNAs) and long

noncoding RNAs (LncRNAs), exhibit diverse functions in post-

transcriptional gene regulation, epigenetic gene silencing,

modulation of insulin secretion, and endoplasmic reticulum stress

(11, 12). These ncRNAs have been intricately linked to the

development of T2DM (13, 14) For instance, mir-375, a highly

expressed miRNA in islet cells, plays a crucial role in insulin

secretion and b-cell functioning. Dysregulation of mir-375 has been

linked to impaired insulin secretion and b-cell dysfunction (15). On

the other hand, lncRNAs have been implicated in the pathogenesis of

insulin resistance and the maintenance of glucose homeostasis by

regulating inflammatory and lipogenic processes (16, 17).

Despite the presence of chemical anti-diabetic agents, possible

adverse effects and limited efficiency could occur. As a result, recent

endeavors have explored other treatment options for the rising T2DM

prevalence (18). Medicinal plants are of paramount importance in

maintaining body health with no side effects compared with synthetic
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drugs (19). Likewise, several clinical studies have been conducted to

examine the impact of probiotics on improving glycemic index, lipid

profile, glucose metabolism, and insulin sensitivity (20). These

investigations were fuelled by the observation that the gut microbiota

of diabetic patients tends to be altered (21). Such changes in the gut

microbiota could lead tometabolic endotoxemia, which occurs through

the release of lipopolysaccharides and could trigger inflammation and

insulin resistance (22).

Several researches has confirmed that inflammation is closely

linked to the pathogenesis of T2DM and its complications.

Many anti-diabetic drugs are usually prescribed to diabetic patients,

to decrease the progression of T2DM through modulation of

inflammation. However, those anti-diabetic drugs are often not

successful as a result of side effects; such as sulphonylureas &

biguanides may cause acute severe hypoglycemia and lactic acidosis.

Therefore, researchers are searching for efficient natural therapeutic

targets with less or no side effects. Natural products’ derived bioactive

molecules have been proven to improve insulin resistance and

associated complications through suppression of inflammatory

signaling pathways (23). Moreover, the utilization of probiotics as

dietary supplements gains popularity because gut microbiota

dysbiosis significantly contributes to T2DM (24). Zbiotics as newly

implemented enginerred probiotics as a new complementary

therapeutic strategy that alleviate oxidative stress and beneficial

effect on reducing blood glucose levels, HOMA-IR, and HbA1c.

This study investigates the potency of medicinal plant-based drugs

and probiotics in modulating T2DM in streptozotocin-high-fat diet-

induced induced rats. Isorhamnetin is a flavonoid found in sea

buckthorn, medicinal plants, and ginkgo fruits (25). It possesses

various pharmacological effects, including anti-inflammatory, anti-

tumor, antioxidant, antibacterial, and antiviral properties (26, 27). It

has been found to promote glucose uptake, maintain glucose

homeostasis, and improve dyslipidemia in mice with T2DM (28). It

can also reduce the expression of inflammatory cytokines and enhance

the health of the gut microbiota in T2DMmice (29). Rhodiola rosea L.

is abundant in flavonoids, glycosides, coumarins, and organic acid

compounds (30). Rosavin, the R. rosea bioactive compound, possesses

protective properties against inflammation, reduces blood glucose

levels, exhibits antiviral and antitumor effects, and promotes blood

circulation activation (31, 32). The caffeic acid extract derived from

Artemisia dracunculus L. has been proven to enhance insulin receptor

signaling. Semisynthetic compounds derived from caffeic acid induce

DNA damage and apoptosis in tumor cells by activating autophagy

(33). Furthermore, it plays a protective role in preventing renal damage

(34, 35). ZBiotics is an engineered probiotic that involves the use of a

genetically modified strain of B. subtilis by incorporating an

acetaldehyde dehydrogenase gene. The modified strain converts

acetaldehyde derived from ethanol into acetic acid,thereby reducing

the potential harm caused by alcohol consumption (36). Animal

toxicity studies have indicated ZBiotics’ high level of safety (37).

However,its potential as a therapeutic drug for diabetes has not been

investigated yet.

In order to examine the clinical trials’ data related to caffeic acid

and related compounds in diabetic patients, we searched the largest

clinical trial database at ‘https://clinicaltrials.gov’. No search results

were obtained with the keywords ‘saffeic acid and diabetes mellitus’.
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Since propolis found in beehive is a major source of caffeic acid

derivatives, therefore we searched with keywords ‘propolis and

diabetes mellitus’ on the database. Three studies were found in

which propolis was administered orally or applied topically to

diabetic patients(ClinicalTrials.gov Identifier: NCT03416127

phase 2 in patients with type 2 DM for 12 weeks, NCT02794506

Phase: 4. in Type 2 DM, periodontitis, and NCT03649243 in

diabetic foot ulcer). Similarly, no results found for rosavin in

T2DM except one recent clinical trial in diabetic kidney disease

(NCT06176599). More than 20 clinical trials were found correlating

Rhodiola Rosea the origin of rosavin in many mental disorders,

metabolic diseases, coronary diseases. Additionally, one clinical trial

(NCT00961909) assessing the efficacy of Artemisia dracunculus

plant rich in isorhamantin in T2DM. Moreover, no results found

for Zbiotics in T2DM (Supplementary Table S1).

To minimize the consequences of diabetes and improve patient

care, researchers have explored various fields, such as machine

learning (ML) and artificial intelligence (AI), by applying ML

techniques in the field of biology, researchers have significantly

improved the precision of prediction models (38). Numerous

studies have looked into using ML techniques to predict the

occurrence of diabetes (39, 40).

Deberneh et al. created an ML model that can predict the

occurrence of type 2 diabetes (T2D). The models categorize input

data instances into three conditions: normal (non-diabetic),

prediabetes, or diabetes. To construct their prediction model, they

identified key features using a data-driven technique that includes

an analysis of variance (ANOVA) test and recursive feature

elimination methods. Also, they compared the performance of

various machine learning models, such as LR, support vector

machine (SVM), RF, and XGBoost algorithms (41). Wei S et al.

built an ML model for diabetes detection. The study assessed two

crucial data processing techniques: Principal Component Analysis

(PCA) and Linear Discriminant Analysis (LDA) across various

machine learning algorithms. The highest accuracy achieved among

the five algorithms tested (Neural Network, Support Vector

Machine, Decision Tree, LR, and Naïve Bayes) was 77.86% using

10-fold cross-validation (42).

Elsherbini AM et al. employed machine learning techniques to

identify significant genes associated with diabetes and assess their

potential as biomarkers for early detection. The analysis highlighted

the HLA-DQB1 gene as a promising biomarker to detect diabetes

through ML algorithms with decent accuracy (43). Xu et al.

introduced a computational model utilizing stochastic gradient

boosting. They incorporated six features, encompassing molecular

structures, structural similarities, ATC code similarities, protein–

protein interaction, chemical-chemical interaction, and disease

pathways (44). Moreover, Costello et al. and Jang et al. performed

extensive comparative analyses of machine learning methods for

drug response prediction in cancer cell lines, recommending using

elastic net or ridge regression with input features from all genomic

profiling platforms (45, 46).

In this study, we aimed to utilize standard statistical methods and

machine learning techniques to leverage the gene expression patterns

and their epigenetic regulators in the livers and adipose tissues, along

with conventional biochemical parameters to identify predictive
frontiersin.org

https://clinicaltrials.gov
https://doi.org/10.3389/fendo.2024.1384984
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Matboli et al. 10.3389/fendo.2024.1384984
features that could be used to assess the response to medicinal plant-

based drugs and probiotics in an animal model of T2DM.
2 Materials and methods

2.1 Chemicals

Rosavin was obtained from Aktin Chemicals, Inc (Cat.No.

APC-380, China), While isorhamnetin 3-O-acylglucosides, Z-

Biotics, Caffeic acid, and sodium citrate buffer were purchased

from Sigma Chemical Co, St. Louis, Mo, USA.
2.2 Experimental design

A hundred male Wistar rats (150–170 g) were purchased from

the Holding Company for Biological Products and Vaccines based

in Giza, Egypt. Rats were randomized into 10 groups (N=10 per

group) and kept one week for acclimation with free access to normal

rat chow and water under well-controlled condition (20 ± 2°C), 12 h

light/dark cycle. The animal procedures followed the guidelines

outlined in the National Institutes of Health guide for the care and

use of Laboratory Animals (8th edition, 2011). Ethical approval for

the experiments was obtained from the Institutional Animal Ethics

Committee of Ain Shams University, Faculty of Medicine NO.

FWA000017585. The Diabetic rat model was induced by feeding

rats with a high-fat diet (HFD) that consists of 58% fat, 17%

carbohydrate, and 25% protein and libitum for a total of 12

weeks. After the initial 4 weeks, the rats were administered two

low-dose intraperitoneal (i.p.) injections of streptozotocin (STZ; 30

mg/kg) dissolved in citrate buffer (pH 4.5), with a one-week interval

between injections. The Normal control rats were administered

citrate buffer only. After one week following the last STZ injection,

blood samples were collected from the tail vein, and blood glucose

levels were measured using a glucometer (Accu-check, Roche

Diagnostics, Risch-Rotkreuz, Switzerland). The onset of diabetes

was confirmed when the non-fasting blood glucose levels were equal

to or higher than 200 mg/dl. Throughout the study, the rats were

allowed to continue consuming their respective diets until its

completion. Then, T2DM-induced rats were randomly divided

into 9 groups, 10 rats each, including; (I) the T2DM control

group (N=10): that received intraperitoneal STZ, fed HFD, and

0.9% saline orally, (II) Rosavin-10, and 30 groups: the T2DM

induced rats received 10 mg/kg-30 mg/kg of rosavin, respectively

dissolved in 0.9% saline for 4 weeks, (III) Z-Biotic 0.5, and Z-Biotic

1 groups: T2DM induced rats received 0.5 mg/kg- 1 mg/kg Z-Biotic,

respectively dissolved in DMSO for 3 weeks. (IV) Isorhamnetin-10,

and Isorhamnetin-40 groups: the T2DM induced rats received 10

mg/kg-40 mg/kg Isorhamnetin dissolved in DMSO for 3 weeks, (V)

Caffeic acid groups: the T2DM induced rats received 10 mg/kg-50

mg/kg caffeic acid, respectively dissolved in cold water. Rats

received the medicinal plant-based drugs and the probiotics orally

by gastric gavage. (VI) The Normal group (N=10): rats received

sodium citrate buffer 1 ml/kg intraperitoneally, the same amount

injected in the weight-matched rat in the other groups. At the end of
Frontiers in Endocrinology 04
the experiment, blood samples were obtained from the retro-orbital

veins of the animals under ether anesthesia. Subsequently, the

animals were euthanized through cervical dislocation. Both the

right and left gastrocnemius muscles, along with adipose tissue,

were collected from all the animal groups. One gastrocnemius

muscle and a portion of adipose tissue from each animal were

frozen at -80°C for biochemical analysis. The other gastrocnemius

muscle and a portion of adipose tissue were fixed in 10% formalin

for histopathological evaluation (Figure 1).
2.3 Biochemical analysis

Prior to euthanization, blood samples were obtained from the

optical vein of the rats and then subjected to centrifugation at 2000g for

10 minutes at 4°C. The resulting serum was collected for further

analysis. Commercial ELISA kits from RayBiotech, USA, were utilized

to measure the levels of cholesterol, triglycerides, high-density

lipoprotein (HDL), low-density lipoprotein (LDL), alanine

transaminase (ALT), aspartate transaminase (AST), total cholesterol

(TC), serum creatinine, Blood Urea Nitrogen (BUN), fasting blood

glucose, postprandial blood glucose, and fasting blood insulin following

the manufacturer’s instructions. The calculation of the Homeostatic

Model Assessment of Insulin Resistance (HOMA-IR) was performed

using the equation: fasting insulin (mU/L) multiplied by fasting glucose

(nmol/L)/22.5. Urine samples were collected for one day using

individual metabolic cages, which took place on the day before the

completion of the treatment. The level of albumin in the urine was

evaluated using commercially available colorimetric kits from

RayBiotech, USA, following the instructions provided by the supplier.
2.4 Histopathological analysis

Liver and adipose tissue specimens underwent dissection and

fixation in neutral buffered formalin for 72 hours. Subsequently, the

samples underwent a series of processing steps involving ethyl

alcohol, Xylene clearance, and embedding in paraplast tissue-

embedding media. Employing a rotatory microtome, tissue

sections with a thickness of 5mm were acquired and affixed onto

glass slides. The staining procedure utilized Hematoxylin and Eosin

(H and E), following standard protocols outlined by Culling, C.F.A.

2013. Skilled histologists, operating in a blinded fashion, scrutinized

these tissue sections.
2.5 Morphometric analysis

For the analysis of white fat cells and the determination of

average cell diameter, a minimum of 6 non-overlapping fields were

randomly selected and scanned. Following the approach outlined by

Batts and Ludwig (47), individual biopsy specimens were assessed

for the grade of inflammation, rated on a scale from 0 to 4 [0: no

activity; 1: minimal; 2: mild; 3: moderate; and 4: severe]. All data

were acquired through the Leica Application module linked to Leica

Microsystems GmbH (Germany).
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2.6 Bioinformatics analysis
Fron
• In this study, we conducted a comprehensive analysis of genes

that are differentially expressed relevant to diabetes. To identify

these genes, we performed a search in the Gene Expression

Omnibus (GEO) database http://www.ncbi.nlm.nih.gov/geo,

accessed on Jan 2024. In this study, we conducted a

comprehensive analysis of genes that are differentially

expressed relevant to diabetes. To identify these genes, we

performed a search in the Gene Expression Omnibus (GEO)

database http://www.ncbi.nlm.nih.gov/geo, accessed on Jan

2024. We utilized keywords related to diabetes mellitus type

2 such as ‘type 2 diabetes,’ ‘diabetic nephropathy,’ ‘tissue,’

‘pancreas’. After obtaining a pool of potential datasets, we

proceeded to screen them based on specific inclusion criteria.

The first criterion was related to the tissue type, where we

focused on tissues relevant to T2DM. The second inclusion

criterion was the availability of normal tissues used as controls

in the dataset. The inclusion of normal tissues ensures a

suitable baseline for comparative analysis with tissues from

T2DM patients. Furthermore, we also considered the sample

size in the dataset. To ensure statistical robustness and reduce
tiers in Endocrinology 05
potential bias, we set a minimum threshold of ten or more

samples in each dataset.
Specifically, we selected two datasets, GSE20966 and

GSE142025, and used the “GEO2R/Limma R” package to screen

for highly significant differentially expressed genes (DEGs). We

considered genes with a p-value less than 0.05 and a log twofold

change (LogFC) value of ≥ 1 or ≤ -1, using the Benjamini and

Hochberg method for false discovery rate adjustment. In order to

identify the biological pathways of DE-mRNAs, a thorough

enrichment analysis was conducted using Enrichr (http://

amp.pharm.mssm.edu/Enrichr, Jan 2022) with the Kyoto

Encyclopedia of Genes and Genomes (KEGG) selected as the

analysis tool. The analysis revealed The DE-mRNAs were related

to Pancreatic secretion, ECM-receptor interaction, HNF3B

pathway,RANKL regulation of apoptosis and immune response

(Supplementary Figure S2). then filtered based on their association

with, specific pathways that are of interest in diabetes research, such

as insulin resistance, autophagy, cGAS/STING, and NOD-like

receptor pathways(Supplementary Figure S2). To identify genes

associated with these pathways, we utilized the GeneCards database

https://www.genecards.org/, accessed on Jan 2024. Accordingly, we

selected nine genes: Z-DNA Binding Protein 1 (ZBP1), Stimulator
FIGURE 1

Workflow describing the animal groups subjected to molecular and biochemical analysis for ML-model building identify signatures associated with
drug response.T2DM, Type 2 Diabetes Mellitus; (L) extracted from the Liver tissues; (A) extracted from the Adipose tissues; HOMA-IR, Homeostatic
Model Assessment of Insulin Resistance; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; AST, aspartate
transaminase; ALT, alanine transaminase; BUN, Blood Urea Nitrogen; ACR, urine albumin to creatinine ratio; MLA, Machine learning Algorithm.
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Of Interferon Response CGAMP Interactor 1 (STING1), RIG-I,

Retinoic Acid-Inducible Gene 1 Protein (DDX58), mammalian

target of rapamycin (mTOR), Nuclear Factor Kappa B Subunit 1

(NFKB1), insulin-like growth factor-1 (IGF-1), Component Of

Inhibitor Of Nuclear Factor Kappa B Kinase Complex (CHUK),

RAC-beta serine/threonine-protein kinase (AKT2), and Ret Proto-

Oncogene (RET). To explore the interactions between the

differentially expressed genes, we utilized the String database

https://string-db.org/, accessed on Jan 2024 to construct a

protein-protein interaction (PPI) network. Furthermore, to

identify miRNAs that target the selected DEGs, we used the

mirwalk database http://mirwalk.umm.uni-heidelberg.de/,

accessed on Jan 2024. Finally, to predict the interaction of

miRNAs-LncRNAs, we used RNA22 https://cm.jefferson.edu/

rna22/, accessed on Jan 2024, mirwalk database http://

mirwalk.umm.uni-heidelberg.de/, accessed on Jan 2024 and

DIANA Tools https://diana.e-ce.uth.gr/lncbasev3/interactions,

accessed on Jan 2024. Thus, the fol lowing LncRNAs

(AC074117.2, RP11–773H22.4, and RP4–605O3.4) and miRNAs

(miR-1976, miR-1, miR-611, and miR-3163) were chosen

(Supplementary Table S2, S3, Supplementary Figures S3-S8).
2.7 Total RNA extraction and quantitative
real-time PCR

Total RNA was isolated from the Liver (L) and Adipose tissue

(A) samples using the miRNeasy kit (Qiagen, USA; Cat no. 74104).

Next, the RNA quality, integrity, and concentration were measured

using the DeNovix DS-11 microvolume spectrophotometer

(Wilmington, USA) and stored at -80°C. The obtained RNA

samples were reverse transcribed into cDNA by the two-step RT-

PCR using the miScript II RT kit (Qiagen, USA; Cat no. 218161).

Then the qRT-PCR was performed using Applied Biosystems Tm

7500 system (Foster City, California, United States). Regarding the

expression of mRNAs, QuantiTect SYBR Green PCR Kit (Qiagen,

Helman Germany; Cat no. 204143) was used. The relative

expression of the miRNAs was obtained using the miScript SYBR

Green PCR Kit (Qiagen, Helman Germany; Cat no. 218073). The

relative expression of the lncRNAs was performed using RT2 SYBR

Green ROX qPCR Master mix (Qiagen, Helman Germany; Cat no:

330500). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

and U6 were regarded as internal controls for the mRNAs,

LncRNAs, and miRNAs, respectively. The Livak method RQ = 2-

DDCt method was adopted to analyze the relative expression. For

each sample, 2 replicates were set. Ct values of more than 35 were

deemed negative. Melting curve analysis validated the amplicons’

specificities for SYBR Green-based PCR amplification. In this study,

proper standardization procedures were used to detect any

experimental error produced at any stage of the RNA extraction

and processing according to MIQE recommendations. The PCR

procedure was as follows: an initial activation phase at 95°C for 15

minutes was followed by 40 cycles of PCR at 94°C for 15 s, 55°C for

30 seconds, and 72°C for 30 s.
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2.8 Statistical analysis

The Statistical analysis was performed with SPSS 26. Software.

Data are presented as mean ± SD and significant differences were

compared using a 1-way analysis of variance followed by post hoc

Tukey’s test. The Shapiro-Wilk test confirmed that the data in this

study followed a normal distribution. Categorical data were

expressed as percentages and compared using the chi-square test.
3 Machine learning model

3.1 Data

One of the main objectives of this study is to create a predictive

model using machine learning algorithms to thoroughly identify a

promising set of features that strongly indicate the drug’s response

to T2DM. The dataset in this study is a mouse model data with 100

samples distributed among normal, treated, and diseased groups

(Table 1) with molecular features expressed in adipose tissues (A)

and liver tissues (L) besides the biochemical features (Table 2). To

determine treatment response, two key features were focused on:

inflammation grade and fat cell diameter. Samples exhibiting a fat

cell diameter exceeding 70 and an inflammation grade of 3 or higher

were categorized as “not improved” (binary 0), while those falling

below these thresholds were labeled as “improved” (binary 1). The

analysis showed the relative ratio is 1:2.44 for the improved and not

improved samples as shown in Figure 2.

The dataset was divided into 70 samples for training and 30

samples for testing. Also, Multi-classifiers approaches were

implemented using 5 classifiers including K-Nearest Neighbors

(KNN), Light Gradient Boosting Machine (LGBM), Random

Forest (RF), Logistic Regression (LR), and Ada Boost Classifier.
3.2 Dataset preprocessing

In the development of machine learning models, data

preprocessing stands as a critical step. Herein, thorough measures

were taken to ensure the data’s quality by addressing several factors

and they were null feature removal, noise reduction, and outlier

elimination. Additionally, the column index was reset to accurately

assign each column its respective index. Moreover, the creation of a

‘status’ column in binary format (1,0) was undertaken to reflect

treatment response whether it was improved or not improved (49).
3.3 Feature selection

The feature selection technique was utilized, this method

effectively reduces the complexity and size of the data, enhancing

the learning process. Additionally, by selecting only the relevant

features, the model becomes faster and more precise, thereby

enhancing its predictive capabilities through noise reduction.
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3.3.1 Selecting top features with recursive feature
elimination cross validation

An initial trial was carried out to determine the selected

machine learning features for predicting T2DM drug response.

The Recursive Feature Elimination Cross-Validation (RFECV)

technique was employed for this purpose. RFECV functions by

iteratively eliminating features and evaluating prediction accuracy.

The most optimal reduced set of features, which either matches or
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surpasses the original accuracy of the complete feature set, is then

identified as the optimal set of predictive features. Various

combinations of features yield different accuracy levels (50).

Furthermore, relevant model hyperparameters for the RF model

(e.g., maximum tree depth, minimum samples split, and estimators)

were fine-tuned to achieve the best-performing model.

Optimization involves experimenting with different parameter

sets to determine the most effective configuration for our dataset.

The top selected features for molecular, biochemical, and both

combined were reported.
3.4 Cross validation

In k-fold cross-validation, the training set is partitioned into k

distinct and equally-sized subsets. The classifier is trained on each subset

using the union of all other subsets. Consequently, the average error rate

across all subsets provides an estimate of the classifier’s error rate. Each

data point is included in the test set precisely once and appears in the

training set k-1 times. Increasing k helps reduce the variance of the

resulting estimate. We utilized the k-fold cross-validation method,

employing k=3 in our analysis (51).Of note, we utilized Stratified K-

Fold cross-validation with a number of folds set to 3 to validate the

performance of our machine learning model. This technique was

chosen to ensure that each fold preserves the proportion of samples

for each class, thereby mitigating potential biases and enhancing the

reliability of our results. During the validation process, we partitioned

the dataset into three subsets, with each subset containing a

representative distribution of the target variable classes. We then

iteratively trained the model on two-thirds of the data (training set)

and evaluated its performance on the remaining one-third (validation

set), ensuring that the model was tested on unseen data in each fold. By

adopting Stratified K-Fold cross-validation, we aimed to demonstrate

the independence and rigor of our model validation, thereby enhancing

the reproducibility and accuracy of our results.
3.5 Models predictions

A multi-class approach using five machine learning algorithms

(KNN, RF, LGBM, LR, and Ada Boost) was employed on three

separate models as follows: one using only Molecular features, one

using only Biochemical features, and one combining both feature

groups as shown in Table 3. The top selected features obtained from

RFECV were used in each model. This comprehensive strategy

aimed to identify a potential set of highly predictive features for

drug response. Also, the top-performing classifier applied on the

training set for each feature group was selected and then applied to

the testing set to evaluate their performance on an unseen dataset.
3.6 Machine learning evaluation

The three model’s performance were assessed using the test

dataset. The evaluation was based on key performance metrics, such

as the area under the curve (AUC). To further analyze the model’s
TABLE 1 The number of samples per normal, disease model, and
treatment groups.

Condition Number of samples

Normal (Healthy) 10

T2DM 10

Rosavin-10 10

Rosavin-30 10

Z-Biotic 0.5 10

Z-Biotic 1 10

Isorhamnetin-10 10

Isorhamnetin-40 10

caffeic acid-10 10

caffeic acid-50 10
TABLE 2 Molecular and biochemical features used in ML models.

Molecular (32 features) Biochemical (12 features)

1. ZBP1-mRNA (L)
2. ZBP1-mRNA (A)
3. STING1-mRNA (L)
4. STING1-mRNA (A)
5. DDX58 -mRNA (L)
6. DDX58 -mRNA (A)
7. mTOR -mRNA (L)
8. mTOR -mRNA (A)
9. NFKB1 -mRNA (L)
10. NFKB1 -mRNA (A)
11. IGF1R -mRNA (L)
12. IGF1R -mRNA (A)
13. CHUK -mRNA (L)
14. CHUK -mRNA (A)
15. AKT2 -mRNA (L)
16. AKT2 -mRNA (A)
17. RET -mRNA (L)
18. RET -mRNA (A)
19. miR-1976 (L)
20. miR-1976 (A)
21. miR-1 (L)
22. miR-1 (A)
23. miR-611 (L)
24. miR-611 (A)
25. miR-3163 (L)
26. miR-3163 (A)
27. AC074117.2 (L)
28. AC074117.2 (A)
29. RP11–773H22.4 (L)
30. RP11–773H22.4 (A)
31. RP4–605O3.4 (L)
32. RP4–605O3.4 (A)

1. Glucose
2. Insulin
3. HOMA-IR
4. Total cholesterol
5. Triglycerides
6. LDL-C
7. HDL-C
8. AST
9. ALT
10. Creatinine
11. BUN
12. ACR
(A), means expressed in the adipose tissues; (L), means expressed in liver tissues.
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efficacy, a 2 × 2 confusion matrix was constructed using the test

dataset, allowing for the calculation of true positive, false positive,

true negative, and false negative values.
3.7 Visual analysis for molecular and
biochemical features

a graphical implementation has been used to analyze the

relationship between each molecular and biochemical features of

treated samples against the T2DM group as well, as to the normal

group to capture insights for drug response.
3.8 Python packages

This study’s data were processed using Python 3.7 as the

programming language. We used many Python-based packages and

modules as well to ease the processing pipeline. The ‘pandas’ package

(version 1.3.5) and ‘NumPy’ (version 1.20.3) are utilized for data

manipulation and analysis. ‘Seaborn’ (version 0.13. 2) enhances data

visualization capabilities. ‘Matplotlib.pyplot’ (version 3.5.0) is another

data visualization package, offering a versatile toolkit for creating

static, interactive, and animated plots. The scikit-learn (version 1.0.2)

is extensively used for machine learning tasks. ‘statistics’ provides

functions for mathematical statistics.
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4 Results

4.1 Effect on diabetic parameters, serum
biochemicals, and liver inflammation

Table 4 presents the observed changes in different parameters in

the T2DM group compared to the normal group, along with the

effects of medicinal plant-based drugs and probiotics drug

administration. In the T2DM group, there was a significant

increase in serum glucose, insulin, and HOMAIR levels. However,

these elevated levels were modulated after the administration of our

selected drugs, particularly at higher doses, suggesting that the

drugs have the potential to suppress hyperinsulinemia and improve

insulin resistance. Furthermore, renal function biomarkers

including serum creatinine, BUN, and albumin-to-creatinine ratio

(ACR) showed a significant increase in the T2DM group. On the

other hand, the administration of different doses of drugs led to a

modulation of these biomarkers. The lipid profile analysis revealed

a significant increase in total cholesterol, triglycerides, and LDL

levels, along with reduced HDL levels in the T2DM rat group. While

the treated groups exhibited improvements in the lipid profile

levels. Moreover, hepatic damage biomarkers such as AST and

ALT were elevated in the T2DM group but decreased in the treated

groups. Similarly, liver inflammation grades exhibited an increase in

the T2DM group but decreased in the treated groups, particularly at

higher doses. The fat cells’ diameter increased significantly in the

T2DM group as well as the treated groups except for the Rosavin-30

treated group which showed decreasing in the fat cells’ diameter.
4.2 Histopathological results

The normal group demonstrated a normal architecture. The

hepatic lobule is composed of hepatocytes (h) that are arranged into

branching cords with sinusoids (S) in between. Hepatocytes

appeared as polygonal cells with granular eosinophilic cytoplasm

and round nuclei. Central vein (CV) is located at the center of

the lobule whereas the T2DM group showed an altered

architecture with marked hepatocellular microvesicular steatosis

(Arrow) all over hepatic lobule accompanied, widespread of

necrotic cells (Arrowhead), inflammatory cells infiltrate (asterisks)

and pyknotic cells (Curved arrow). The Rosavin-10 treated

group showed altered architecture with mild hepatocellular

microvesicular steatosis (Arrow), in addition to the presence of

pyknotic cells (Curved arrow), necrotic cells (Arrowhead), and

inflammatory cells (asterisks) whereas the Rosavin-30 treated

group showed a normal histological feature of the hepatic lobule

with wide sinusoids (S). The Z-Biotic 0.5 treated group showed an

altered architecture of the liver with moderate hepatocellular

microvesicular steatosis (Arrow), and the presence of

inflammatory cell infiltrates (asterisks) whereas the Z-Biotic 1

treated group showed an altered architecture of the liver with

mild hepatocellular microvesicular steatosis (Arrow) with

minimum mononuclear inflammatory cells infiltrates. The

Isorhamnetin-10 treated group demonstrated necrotic changes

(Arrowhead) in the hepatocytes, several hepatocytes showed pale
TABLE 3 The three predictive models were applied to the five classifiers.

Model Data Type

1 Molecular

2 Biochemical

3 Molecular + Biochemical
FIGURE 2

Show the number of improved (48) and not improved (29) samples.
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TABLE 4 Serum biochemical parameters, liver inflammation in the normal, T2DM, and treated rats.

Isorhamnetin-
40

caffeic
acid-10

caffeic
acid-50

P-value F

7.08 ± 0.54b 15 ± .9ab 7.63 ± 1ab 1.62E-73 519.032

5.36 ± 0.97b 14.06 ± 0.94ab 5.87 ± 0.99b 2.76E-60 258.422

1.68 ± 0.28b 9.4 ± 1.03ab 2 ± 0.41b 3.64E-72 483.638

2.16 ± 0.41b 7.89 ± 0.77ab 3.7 ± 0.7ab 1.12E-55 201.870

1.55 ± 0.13b 5.94 ± 0.45ab 2.82 ± 0.24ab 7.47E-82 800.876

1.93 ± 0.46ab 5.28 ± 0.76ab 2.15 ± 0.52ab 8.54E-48 131.283

1.21 ± 0.2ab 1 ± 0.06ab 1.52 ± 0.25b 1.2943E-
26

37.205

40.2 ± 4.43ab 98.5 ± 8.24ab 42.4 ± 3.24ab 8.18E-70 427.572

16.5 ± 3.17b 95.4 ± 7.37ab 21.7 ± 4.19b 2.88E-67 374.018

96.83 ± 7.07ab 231.62
± 15.03ab

8.88 ± 0.07ab 3.63E-68 392.145

85.53 ± 3.4ab 113.22 ± 9.79ab 75.75 ± 0.19 ab 7.76E-56 203.614

3.25 ± 0.47ab 7.21 ± 0.49a 2.88 ± 0.41ab 3.6853E-
65

334.688

45.2 ± 4.29 ab 68.5 ± 3.6 ab 42.89 ± 3.07 ab 3.6426E-
58

230.744

9.82E-25

0 0 4(40%)

4(40%) 0 6(60%)

6(60%) 7(70%) 0

0 3(30%) 0

0 0 0

square test for the categorical data where ‘a’ represents statistical significance when compared to the
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Normal T2DM Rosavin-10 Rosavin-
30

Z-Biotic 0.5 Z-biotic 1 Isorhamnetin-
10

Glucose(mmol/L) 5.8 ± .36 29.07 ± 2.4a 12.51 ± 0.76ab 6.87 ± .467b 11.754.8
± 12.91ab

5.63 ± .38b 12.73 ± 4.54ab

Insulin(mU/ml) 4.64 ± 0.91 16.29 ± 1.14a 13.78 ± 0.92ab 5.76 ± 0.97b 12.96 ± 0.87ab 4.72 ± 0.8b 14.18 ± 0.92ab

HOMAIR 1.2 ± 0.24 21.06 ± 2.18a 7.69 ± 0.85ab 1.77 ± 0.36b 6.79 ± 0.75ab 1.19 ± 0.24b 8.02 ± 0.57ab

Total cholesterol
(mmol/L)

1.86 ± 0.14 10.44 ± 1.25a 6.07 ± 0.59ab 3.08
± 0.58ab

5.67 ± 0.55ab 2.2 ± 0.42b 9.1 ± 0.89ab

Triglycerides(mmol/L) 1.73 ± 0.22 17.11 ± 0.95a 8.49 ± 0.64ab 4.03
± 0.34ab

9.34 ± 0.71ab 4.43 ± 0.37ab 7.72 ± 0.58ab

LDLC(mmol/L) 0.51 ± 0.04 6.83 ± 1.03a 3.19 ± 0.46ab 1.38
± 0.33ab

2.66 ± 0.38ab 1.15 ± 0.28b 4.46 ± 0.64ab

HDLC(mmol/L) 1.68 ± 0.24 0.73 ± 0.18a 0.91 ± 0.06a 1.38
± 0.23ab

1.14 ± 0.07ab 1.72 ± 0.28b 0.8 ± 0.05a

AST(IU/L) 19.3 ± 3.13 152 ± 11.32a 83.5 ± 8.24ab 30.4
± 3.24ab

68.5 ± 8.24ab 25.6 ± 3.06b 96.3 ± 4.97ab

ALT(IU/L) 11.5 ± 2.17 152.4 ± 19.77a 79.5 ± 6.1ab 18.1 ± 3.54b 56.8 ± 4.29ab 12.9 ± 2.69b 72.2 ± 5.49b

Creatinine((mmol/L)) 5924
± 44.2

345.7 ± 39.79a 186.5
± 12.38ab

68.79
± 5.31b

150.3 ± 9.73ab 55.7 ± 4.42b 237.8 ± 17.6ab

BUN(mmol/L) 57.09
± 2.04

169.65
± 17.99a

91.3 ± 7.89ab 61.09
± 2.46b

73.63 ± 6.3ab 49.27
± 1.988b

127.83 ± 10.99a

Urine ACR(mg/mmol) 1.9 ± 0.12 9.7 ± 1.04ab 5.8 ± .4ab 2.33
± 0.33ab

4.69 ± 0.33ab 1.91 ± 0.27b 8.14 ± 0.63ab

Fat cells diameter 36.3 ± 3.5 82.2 ± 3.61a 71.3 ± 2.95ab 40.6 ± 2.41b 68.6 ± 2.95ab 46.7 ±
4.45 ab

68.9 ± 2.42 ab

Liver inflammation

0 10(100%) 0 0 0 0 3(30%) 0

1 0 0 0 8(80%) 0 7(70%) 0

2 0 0 6(60%) 2(20%) 6(60%) 0 2(20%)

3 0 5(50%) 4(40%) 0 4(40%) 0 8(80%)

4 0 5(50%) 0 0 0 0 0

Data represented as mean ± SD or N(%), the statistical significance between groups was calculated using the ANOVA-Tukey post hoc test for numerical data and the Chi
normal group, and ‘b’ represents statistical significance when compared to the T2DM group.
b

-
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cytoplasm with vacuolated nuclei. Inflammatory cells (asterisks) are

scattered in the hepatic lobule whereas the Isorhamnetin-40 treated

group demonstrated a slightly normal histological feature. The

Caffeic acid-10 treated group showed an altered architecture with

hepatocellular microvesicular steatosis (Arrow), scattered necrotic

cells (Arrowhead), and inflammatory cell infiltrates (asterisks)

whereas the Caffeic acid-50 treated group demonstrated a slightly

normal histological feature (Figure 3). Analysis of adipose tissue

revealed a significant increase in fat cell diameter in T2DM animals.

However, treatment of the diabetic animals with rosavin, Z-biotic,

isorhamnetin, or Caffeic acid exhibited notable decreases in

epididymal adipocyte cell size compared to the normal group.

Interestingly, the most pronounced ameliorative effect was

observed in the high-dose-treated groups (Figure 4).
4.3 Effect on molecular targets mRNAs-
miRNAs-LncRNAs

The results presented in Table 5 demonstrate significant

changes in various biomarkers among the different experimental

groups expressed in liver tissues (L) and adipose tissues (A). In

comparison to the normal group, the T2DM group exhibited

markedly elevated levels of ZBP1, STING1, DDX58, mTOR,

NFKB1, IGF1R, CHUK, RET, hsa-miR-1976, hsa-miR-611, and

lnc-RP11–773H22.4 (p < 0.05) while AKT2, hsa-miR-1, hsa-miR-

3163, lnc-AC074117.2, and lnc-RP4–605O3.4 were decreased.
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However, after drug administration, particularly at higher doses,

this disturbance was significantly modulated.
4.5 ML Analysis

4.5.1 Feature selection using RFECV-based
Random Forest for T2DM drug
response prediction

The feature selection procedure employing RFECV yielded 13

features out of 32 for the molecular model, 10 out of 12 for the

biochemical model, and 20 out of 44 for the combined model. These

selections, as shown in Table 6, were made while maintaining the

same prediction accuracy level as shown in Figure 5. Molecular

accuracy achieved 80% while the biochemical and both of them

combined achieved 85%.
4.5.2 Model prediction results
Initial results applied on the training set showed the top-performing

classifiers for each feature group. Table 7 summarizes the accuracy of

the adopted classifiers for each feature group. Notably, the KNNwas the

top classifier for the molecular model and the combined model while

LGBM Classifier performed the best for the biochemical model.

Then, the selected classifiers were applied to the testing set for

the T2DM drug response prediction and to evaluate their predictive

performance on unseen data. Using this strategy, we ensured that

only the most effective classifiers were applied for prediction for
A B D

E F G

I

H

J

C

FIGURE 3

Histopathology examination of liver tissue in experimental animals. (A) the Normal group, (B) the T2DM group, (C) Rosavin-10 group, (D) Rosavin-30,
(E) Z-Biotic 0.5, (F) Z-Biotic 1, (G) Isorhamnetin-10, (H) Isorhamnetin-40, (I) Caffeic acid-10, (J) Caffeic acid-50. Microvesicular steatosis (Arrow),
Inflammatory cells infiltrate (asterisks), Necrotic cells (Arrowhead), Pyknotic hepatocytes (Curved arrow), Sinusoids (S), Central vein (CV), Portal vein
(PV), Bile duct (BD). Hepatocytes (h) (10X magnifications).
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each feature group, thereby enhancing the reliability and robustness

of our predictive models. Table 8 summarizes the evaluation metric

for the testing set. Notably, all classifiers in the three models

achieved the same prediction power (0.8).
4.5.3 Performance evaluation of machine
learning models for drug response prediction

The confusion matrix presented in Figure 6 displays the

correctness of the prediction of whether the sample is improved

(1), or not improved (0) on the test set, for the molecular,

biochemical, and combined model. Roc curve displays how

accurate the prediction models are (Figure 7).

4.5.4 Visual analysis results for molecular and
biochemical features

The implemented graphical approach displayed the differences

in feature values by showing measures such as mean values and

standard deviations between the different treated groups (drugs),

against the normal and the T2DM groups (Supplementary Figures

S6, S7).
5 Discussion

Diabetes mellitus is a metabolic disorder that impacts various

organs and is primarily characterized by a deficiency in insulin

production or response. This deficiency leads to impaired glucose

tolerance and high blood glucose levels, accompanied by

disruptions in the metabolism of fats, carbohydrates, and

proteins (52).

Various factors, including modified dietary patterns, metabolic

stress, and genetic predisposition, have the potential to activate the

innate immune system. This activation leads to insulin resistance,

T2DM, and related complications like dyslipidemia, diabetic

nephropathy, retinopathy, and atherosclerosis. Among the drugs
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tested in our study, rosavin has garnered attention due to its

antioxidant and anti-inflammatory properties, which help mitigate

oxidative stress and chronic inflammation often observed in diabetes

(53). Rosavin has been shown to lower total cholesterol, TGs, and

LDL levels while increasing HDL, thereby exerting lipid-lowering

effects. Insulin resistance precedes the abnormal elevation of blood

glucose levels, which is the primary clinical indicator of T2DM. In the

prediabetic stage, the body responds to insulin resistance by

increasing insulin production to meet the normal insulin

requirements. This leads to a state of chronic hyperinsulinemia

and, as a result of sustained high blood sugar levels, the failure of

pancreatic beta cells. Eventually, this progression leads to the

development of T2DM. Prolonged and exaggerated metabolic stress

can lead to detrimental inflammatory reactions, resulting in insulin

resistance and inflammatory diseases. This chronic inflammatory

state eventually gives rise to long-term complications associated with

diabetes, including microvascular complications such as diabetic liver

disease, diabetic nephropathy, neuropathy, and macrovascular

complications like cardiovascular and cerebrovascular diseases. The

cGAS-STING pathway plays a crucial role in diabetic complications

and has been increasingly reported in diabetic nephropathy and

diabetic angiopathy, which is linked to mitochondrial dysfunction

caused by lipotoxicity. Evidence suggests that the cGAS-STING

pathway is over-activated in diabetes and its complications. This

heightened activation of cGAS-STING may serve as a protective

mechanism, considering that diabetic patients are more susceptible to

infections. Notably, knocking out STING has been shown to reduce

insulin resistance induced by a high-fat diet in peripheral tissues and

improve overall glucose intolerance. However, it is important to note

that STING deficiency also impairs the ability of beta cells to secrete

insulin in response to glucose stimulation. Autophagy is crucial in

T2DM, serving to sustain cellular energy levels during fasting while

eliminating damaged components like organelles, lipids, and

misfolded proteins. Moreover, it contributes to pancreatic beta cell

function and insulin resistance. Recent findings highlight the role of

autophagy in T2DM pathophysiology, particularly in maintaining
A B D E
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FIGURE 4

Histopathology examination of adipose tissue in the experimental animals. (A) the Normal group, (B) the T2DM group, (C) the Rosavin-10 group, (D)
Rosavin-30, (E) Z-Biotic 0.5, (F) Z-Biotic 1, (G) Isorhamnetin-10, (H) Isorhamnetin-40, (I) Caffeic acid-10, (J) Caffeic acid-50. (40X magnifications).
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TABLE 5 The differential expression of mRNAs-miRNAs-LncRNAs in liver tissues (L) and adipose tissues (A) among different animal groups, including a normal group, T2DM group, and various treatment groups
with Rosavin, Z-Biotic, Isorhamnetin, and caffeic acid.

netin- caffeic
acid-10

caffeic
acid-50

P-
value

F

ab 61.56 ± 2.64 ab 14 ± 1.9 ab 8.39E-95 1563.68

7.07 ± 0.96ab 2.09 ± 0.36b 5.5293E-
72

479.054

b 3.07 ± 0.24ab 0.5 ± 0.05ab 2.74E-75 569.3

9.5 ± 0.91ab 3.34 ± 0.18ab 1.4297E-
68

400.573

22.6 ± 3.68ab 1.61 ± 0.3b 2.52E-69 416.732

94.81 ± 11.68ab 6.11 ± 1.02b 3.9696E-
71

458.061

24.77 ± 3.52ab 4 ± 0.42b 1.84E-77 637.509

b 1.81 ± 0.21ab 0.16 ± 0.03ab 2.3057E-
64

320.894

17.5 ± 1.59ab 2.27 ± 0.21b 8.36E-73 500.059

10.96 ± 1.37ab 1.03 ± 0.12b 1.8857E-
63

305.761

3.83 ± 0.24b 0.38 ± 0.04b 4.61E-76 592.74

34.45 ± 4.59ab 3.03 ± 0.5b 1.565E-
72

492.988

4.21 ± 0.51ab 0.21 ± 0.02b 1.04E-70 448.166

b 23.03 ± 4.8ab 0.75 ± 0.08b 1.6302E-
70

443.572

15.77 ± 2.97ab 67.11 ± 7.45ab 2.16E-72 489.394

ab 23.89 ± 2.41ab 147.88 ± 10.15ab 1.2722E-
89

1197.044

(Continued)
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Normal T2DM Rosavin-
10

Rosavin-
30

Z-
Biotic 0.5

Z-
Biotic 1

Isorhamnetin-
10

Isorham
40

ZBP1 (L) 1.84
± 0.31

170.13
± 10.61a

92.33
± 3.96ab

25.2 ± 3.42 ab 71.03 ±
3.04 ab

14.82 ±
2.01 ab

46.17 ± 1.98 ab 10.08 ± 1.3

ZBP1 (A) 1.43 ± 0.2 20.97
± 1.98a

4.71 ± 0.64ab 1.39 ± 0.24b 9.42 ± 1.28ab 2.64 ± 0.45b 4.06 ± 0.55ab 1.20 ± 0.21

STING1(L) 1.44 ± 0.2 7.7 ± 0.82a 2.04 ± 0.16ab 0.34 ± 0.03ab 4.09 ± 0.33ab 0.64
± 0.06ab

1.76 ± 0.14b 0.29 ± 0.03

STING1(A) 1 ± 0.05 14.64
± 1.72a

5.59 ± 0.54ab 1.96 ± 0.11b 8.38 ± 0.8ab 2.55
± 0.14ab

3.29 ± 0.31ab 1.16 ± 0.06

DDX58 (L) 1.03
± 0.09

50.49
± 5.48a

13.29
± 2.16ab

0.95 ± 0.17b 19.94 ± 3.25ab 1.23 ± 0.23b 7.82 ± 1.27ab 0.56 ± 0.1b

DDX58 (A) 1.17
± 0.22

120.16
± 11.65a

55.77
± 6.87ab

3.6 ± 0.6b 83.65 ± 10.3ab 4.67 ± 0.78b 32.8 ± 4.04ab 2.12 ± 0.35

mTOR (L) 1.68
± 0.28

82.8 ± 6.05a 29.72
± 4.22ab

5.21 ± 0.55b 14.86 ± 2.11ab 2.41 ± 0.25b 35.67 ± 5.06ab 6.78 ± 0.71

mTOR (A) 0.95
± 0.09

4.46 ± 0.65a 1.21 ± 0.14b 0.1 ± 0.02ab 2.42 ± 0.28ab 0.2 ± 0.03ab 1.04 ± 0.12b 0.09 ± 0.01

NFKB1 (L) 1.05
± 0.12

50.92 ± 5.5a 22.3 ± 2.38ab 8.44 ± 1.75ab 12.63 ± 1.93ab 2.83 ± 1.93b 8.45 ± 0.52ab 0.65 ± 0.07

NFKB1 (A) 1.04 ± 0.1 41.56
± 6.33a

13.7 ± 1.71ab 4.96 ± 1.03ab 9.03 ± 0.84ab 2.91 ± 0.27b 23.78 ± 2.54ab 2.92 ± 0.61

IGF1R (L) 1.2 ± 0.21 62.26
± 5.46a

35.68
± 3.81ab

11.72
± 1.66ab

11.73 ± 3.82ab 5.2 ± 0.84ab 12.54 ± 1.46ab 2.79 ± 0.45

IGF1R (A) 1.05
± 0.08

75.72 ± 8.2a 20.27 ± 2.7ab 1.79 ± 0.29b 30.4 ± 4.05ab 2.32 ± 0.38b 11.92 ± 1.59ab 1.05 ± 0.17

CHUK (L) 1.17
± 0.17

38.05
± 4.99ab

14.36
± 1.72ab

3.25 ± 0.68b 8.62 ± 1.02ab 2.62 ± 0.31b 2.63 ± 0.25b 0.48 ± 0.06

CHUK (A) 0.99
± 0.07

82.2 ± 9.38a 27.23
± 1.72ab

6.18 ± 0.74b 10.11 ± 1.29ab 4.65 ± 1.11b 54.56 ± 6.55ab 9.62 ± 1.15

AKT2(L) 1.04
± 0.11

0.08 ± 0.01 4.37 ± 0.64b 15.16
± 3.44ab

3.25 ± 0.42 7.37 ± 1.18a 3.59 ± 0.41 9.5 ± 1.52ab

AKT2(A) 1.57
± 0.36

0.21 ± 0.02 11.49
± 1.78ab

40.75
± 2.99ab

10.9 ± 1.67ab 19.98
± 2.13ab

4.54 ± 0.43 48.82 ± 5.8
7

b

a

b

b

b

a

b

b

b

b

b

a
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TABLE 5 Continued

netin- caffeic
acid-10

caffeic
acid-50

P-
value

F

ab 3.98 ± 0.62 ab 0.8 ± 0.12 b 6.81E-89 1152.837

b 3.32 ± 0.52b 0.24 ± 0.04b 7.5164E-
90

1211.250

b 88.12 ± 7.18ab 20.51 ± 1.97ab 2.27E-77 634.5

b 5.72 ± 0.63ab 1.57 ± 0.19b 8.2892E-
62

280.236

ab 10.6 ± 1.99ab 45.13 ± 5.01ab 2.55E-72 487.556

4ab 16.07 ± 1.62ab 99.45 ± 6.82ab 1.5192E-
89

1192.289

b 5.17 ± 0.81ab 1.03 ± 0.16b 1.66E-66 359.336

ab 4.31 ± 0.67b 0.32 ± 0.05b 2.346E-
86

1011.174

1ab 1.91 ± 0.4 12.44 ± 1.44ab 8.24E-75 555.277

89ab 3.37 ± 0.7 49.84 ± 5.22ab 2.127E-
82

823.840

ab 8.09 ± 0.86ab 29.36 ± 2.78ab 3.28E-82 815.841

ab 4.43 ± 0.6b 15.81 ± 1.86ab 6.056E-
100

2037.489

b 7.98 ± 1.3ab 0.57 ± 0.1b 3.57E-75 565.887

b 59.67 ± 7.35ab 5.1 ± 0.85b 4.5705E-
73

506.957

ab 7.88 ± 1.48ab 33.56 ± 3.73ab 2.94E-72 485.973

3ab 11.95 ± 1.21ab 73.94 ± 5.07ab 1.7806E-
89

1188.052

ared to the normal group, and ‘b’ represents statistical significance when compared to the
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Normal T2DM Rosavin-
10

Rosavin-
30

Z-
Biotic 0.5

Z-
Biotic 1

Isorhamnetin-
10

Isorham
40

RET (L) 1 ± 0.09 59.31 ±
3.97 a

38.72 ±
1.82 ab

8.9 ± 1.18 ab 15.39 ±
2.41 ab

3.08 ± 0.48b 28.07 ± 2.24 ab 6.87 ± 1.08

RET (A) 1.07 ± 0.1 71.19
± 5.46a

52.71
± 2.87ab

11.62
± 1.13ab

12.82 ± 2.01ab 2.56 ± 0.4b 36.81 ± 2.66ab 5.73 ± 0.9a

hsa-miR-1976(L) 1.21
± 0.16

106.28
± 10.14a

62.55
± 7.11ab

12.81
± 2.01ab

40.58 ± 3.25ab 9.08
± 0.99ab

8.24 ± 1.03ab 3.95 ± 0.37

hsa-miR-1976(A) 0.88
± 0.08

13.85
± 2.06a

2.77 ± 0.31ab 0.7 ± 0.14b 1.34 ± 0.15b 0.3 ± 0.06b 5.52 ± 1.15ab 1.13 ± 0.12

hsa-miR-1(L) 1.06
± 0.11

0.06 ± 0.01 2.94 ± 0.43b 10.19
± 2.31ab

2.19 ± 0.28 4.95
± 0.79ab

2.42 ± 0.27 6.39 ± 1.02

hsa-miR-1(A) 1.61
± 0.38

0.16 ± 0.02 7.73 ± 1.2ab 27.4 ± 2.01ab 7.33 ± 1.13ab 13.44
± 1.43ab

3.05 ± 0.29 32.83 ± 3.9

hsa-miR-611(L) 1.14
± 0.16

47.56
± 6.23a

32.34
± 3.71ab

11.58
± 1.53ab

20 ± 3.13ab 4 ± 0.63b 36.5 ± 2.91ab 8.94 ± 1.4a

hsa-miR-611(A) 0.92
± 0.13

98.7 ± 8.79a 68.52
± 3.73ab

15.11
± 1.47ab

16.67 ± 2.61ab 3.33 ± 0.52b 47.85 ± 3.46ab 7.45 ± 1.17

hsa-miR-3163(L) 1.39
± 0.22

0.15 ± 0.02 10.13
± 1.16ab

75.2 ± 6.89ab 2.86 ± 0.33 9.15
± 1.59ab

6.13 ± 0.7b 55.57 ± 8.2

hsa-miR-3163(A) 1.23
± 0.19

0.09 ± 0.01 0.68 ± 0.07 2.21 ± 0.49 7.26 ± 0.94b 18.58
± 2.36ab

12.04 ± 1.38ab 139.5 ± 13

lnc-AC074117.2(L) 1.63
± 0.36

0.18 ± 0.03 0.93 ± 0.12 4.08 ± 0.76b 11.6 ± 1.6ab 47.35
± 3.8ab

1.9 ± 0.22 9.82 ± 1.56

lnc-AC074117.2(A) 1.44
± 0.27

0.14 ± 0.03 1.89 ± 0.3 6.28 ± 1ab 30.6 ± 1.87ab 99.56
± 5.14ab

2.47 ± 0.23 26.8 ± 3.22

lnc-RP11–
773H22.4(L)

1.01
± 0.09

49.84 ± 4a 18.12 ± 2.5ab 3.34 ± 0.65b 20.34 ± 3.31ab 3.67 ± 0.61b 13.56 ± 2.21ab 1.25 ± 0.23

lnc-RP11–
773H22.4(A)

1.26
± 0.15

91.85
± 6.94a

40.81 ± 2.5ab 11.13
± 0.88ab

35.22 ± 4.23ab 1.01 ± 0.19b 61.41 ± 0.63ab 2.26 ± 0.38

lnc-RP4–
605O3.4(L)

0.99 ± 0.1 0.09 ± 0.01 2.18 ± 0.32b 7.58 ± 1.72ab 1.63 ± 0.21 3.68 ± 0.59a 1.8 ± 0.2 4.75 ± 0.76

lnc-RP4–
605O3.4(A)

1.5 ± 0.34 0.23 ± 0.02 5.75 ± 0.89ab 20.37 ± 1.5ab 5.45 ± 0.84ab 9.99
± 1.06ab

2.27 ± 0.21 24.41 ± 2.9

Data represented as mean ± SD, the statistical significance between groups was calculated using ANOVA-Tukey post hoc test where ‘a’ represents statistical significance when com
T2DM group.
.

p
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pancreatic beta cell function. Furthermore, increased autophagy

serves as a protective mechanism against oxidative stress in insulin-

targeted tissues like the liver, adipose tissue, and skeletal muscle.

NOD1 and NOD2 are implicated in the development of diabetes,

likely through their interaction with the gut microbiota. Antibiotic-

induced changes in the gut microbiota are crucial for enhancing

insulin sensitivity. Nucleotide-binding oligomerization domain

(NOD)-like receptors, such as NOD1 and NOD2, both recruit

receptor-interacting protein kinase 2 (RIPK2), but they exert

opposite effects on blood glucose regulation. While NOD1 links

signals from bacterial cell walls to metabolic inflammation and

insulin resistance, NOD2 can foster immune tolerance, improve

insulin sensitivity, and enhance blood glucose control in obesity.

Similarly, NLR family pyrin domain-containing (NLRP)

inflammasomes can elicit different metabolic outcomes. NLRP1

may protect against obesity and metabolic inflammation, possibly
Frontiers in Endocrinology 14
due to its preference for regulating IL-18, whereas NLRP3 tends to

promote IL-1b-mediated metabolic inflammation and insulin

resistance. Additionally, Rosavin may protect against diabetic

complications such as neuropathy and nephropathy by reducing

nerve damage, kidney injury, and hepatic damage as indicated by

decreased levels of creatinine, BUN, ALT, and AST (30). Specifically,

rosavin has demonstrated protective anti-inflammatory effects in

various models, including bleomycin-induced pulmonary fibrosis.

Rosavin exerts its effects by downregulating the expression of pro-

inflammatory molecules such as NF-kB, p65, TGF-b1, and a-SMA

while upregulating the expression of nuclear erythroid 2-related

factor 2 (Nrf2), a transcription factor involved in antioxidant

defense (54) Our findings supported the hypoglycemic (lower

serum glucose, insulin, and HOMA-IR) and hypolipidemic (lower

serum TG, TC, LDL, and higher HDL levels) effects of rosavin

treatment (55). Mao. reported that Rhodiola rosea L. root extracts

improved oral glucose tolerance, decreased serum TG, and LDL

levels, and increased HDL levels in KKAy mice, a T2D model (56).

Liu et al. proved that rosavin has been shown to attenuate LPS-

induced activation of the TLR-4/NF-kB signaling pathway in

RAW264.7 cells and inhibit the release of inflammatory factors in

A549 cells. In a dose-dependent manner, rosavin ameliorated

histopathological alterations, reduced the levels of inflammatory

factors, and inhibited the TLR-4/NF-kB/MAPK signaling pathway

and apoptosis activation. It also significantly reduced the number of

inflammatory cells in bronchoalveolar lavage fluid and the expression

of NF-kB p65 protein in the lung tissue of a mouse model. Moreover,

it reduced the expression of hydroxyproline and malondialdehyde

while enhancing the activities of superoxide dismutase and

glutathione peroxidase in lung tissue (57).

Zbiotics, a newly engineered probiotic, has not been fully

investigated for its impact on the pathogenesis of DM. Therefore,

we conducted a study to assess its effectiveness on biochemical and

molecular markers associated with DM. Both low and high doses of

zbiotics demonstrated hypoglycemic and hypolipidemic effects,

along with hepatoprotective and renoprotective effects evidenced

by reductions in AST, ALT, creatinine, and BUN levels, particularly

noticeable with the high dose. Histopathological analysis revealed

mild hepatocellular microvesicular steatosis with minimal

inflammatory cell infiltration. Our findings indicate that zbiotics

with engineered acetaldehyde dehydrogenase can eloquently

explain the results of the present study regarding how ZBiotics®

reversed the toll of diabetes on the studied histopathological,

biochemical and molecular levels. The concept was based on two

major mechanisms that could elicit inflammation that leads over

time to diabetic settings and evolves diabetic complications; firstly,

the oxidative-stress-induced inflammation, and secondly the

disturbance in diabetic gut microbiota and barriers that could

lead to the activation of subsequently inflammation.

Isorhamnetin has emerged as a promising therapeutic agent for

T2DM by improving gut health and insulin resistance (29).

Previous studies have demonstrated its efficacy in lowering fasting

blood glucose levels, improving renal function, and ameliorating

dyslipidemia in T2DM rats by upregulating autophagy in renal

tissues (26). In animal models, Isorhamnetin supplementation has

been found to reduce reactive oxygen species levels, inhibit
TABLE 6 Show the top selected features by RFECV for each model.

Model
Included Features

Feature

Molecular
Included: 13
Excluded: 19
Total: 32

ZBP1-mRNA (A)
STING1-mRNA (L)
DDX58 -mRNA (L)
mTOR -mRNA (L)
NFKB1 -mRNA (A)
CHUK -mRNA (A)
RET -mRNA (L)
RET -mRNA (A)
miR-1976 (A)
miR-611 (L)
miR-611 (A)
RP11–773H22.4 (L)
RP11–773H22.4 (A)

Biochemical
Included: 10
Excluded: 2
Total: 12

Glucose
Insulin
HOMA-IR
Total cholesterol
Triglycerides
AST
ALT
Creatinine
BUN
ACR

Combined
Included: 20
Excluded: 24
Total: 44

STING1-mRNA (L)
mTOR -mRNA (L)
NFKB1 -mRNA (A)
CHUK -mRNA (A)
RET -mRNA (L)
RET -mRNA (A)
miR-1976 (A)
miR-611 (L)
miR-611 (A)
RP11–773H22.4 (L)
RP11–773H22.4 (A)
Insulin
Total cholesterol
Triglycerides
Glucose
AST
ALT
Creatinine
BUN
ACR
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atherosclerotic plaque formation, and mitigate myocardial

hypertrophy and fibrosis ((58) (Mechanistically, Isorhamnetin

acts through various pathways, including inhibition of the PI3K/

AKT signaling pathway, activation of the AMPK/mTOR pathways,

and modulation of insulin secretion via phosphorylation of insulin

receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K),

Akt, and activated pancreatic and duodenal homeobox-1 (PDX-1)

(59, 60). Moreover, Yang et al. proved that isorhamnetin exhibited

hepatoprotective effects by reducing liver fibrosis through inhibition

of HSC activation and ECM formation, and by downregulating the

TGF-b1/Smad3 and TGF-b1/p38 MAPK pathways (61). In our

previous study, we demonstrated that Isorhamnetin acted as an

effective therapy for DM by modulating the insulin resistance

signaling pathway and autophagy-related RNA network (28).

Building upon our previous findings, our current study expands

on the beneficial effects of isorhamnetin. We observed that

isorhamnetin improved insulin resistance parameters, reduced

elevated glucose levels, and alleviated inflammation infiltration in

liver sections. Furthermore, isorhamnetin treatment led to the

recovery of elevated levels of ALT and AST, indicating its

hepatoprotective effects against chronic injury. isorhamnetin

efficiently improves altered lipid metabolism by decreasing TGs,

LDL, and TC, while increasing HDL. These lipid-lowering effects

contribute to the hepatoprotective role of isorhamnetin, which can

be attributed to its anti-inflammatory properties. Additionally, Lu

et al. demonstrate that Isorhamnetin affects the P38/PPAR-a
pathway, which in turn regulates the expression of apoptosis and

autophagy-related proteins (62). This finding is consistent with our

study, where Isorhamnetin modulated autophagy-related genes

such as STING1, IGF-1, and AKT2.

Caffeic acid demonstrates anti-diabetic effects through multiple

mechanisms, including the enhancement of antioxidant enzymes,

inhibition of NF-kB signaling pathways, and activation of the NrF2

transcription factor (63). In a study by Xu et al., it was shown that

caffeic acid administration at doses of 25 and 35 mg/kg significantly

reduced plasma glucose, TG, TC, and LDL levels, while notably

increasing HDL, insulin, and antioxidant levels in streptozotocin-

induced diabetic Wistar rats after five weeks of treatment (64). The

findings from Xu’s study align with our research, where we

investigated the effects of caffeic acid treatment at doses of 10 and

50 mg/kg and we observed significant improvements in plasma
Frontiers in Endocrinology 15
glucose, lipid profiles, and insulin levels in diabetic rats treated with

caffeic acid. Additionally, our results showed hepatoprotective and

renoprotective effects of caffeic acid, along with a reduction in

inflammatory cell infiltration in the liver and a decrease in

epididymal adipocyte cell size, particularly with the higher dose.

Furthermore, our previous research indicated that caffeic acid may

activate the mitogen-activated protein kinases (MAPK) signaling

pathway through the regulation of miR-636, leading to the

induction of autophagy and attenuation of diabetic nephropathy

(65). Consistent with this, our recent findings demonstrate that

caffeic acid treatment significantly downregulates the expression of

autophagy-related genes such as IGF1R, NFKB1, and STING1 in

adipose and liver tissues, further supporting its beneficial effects in

diabetes management. Bhattacharya et al. investigated the effects of

caffeic acid on glucose sensitivity, glucose-stimulated insulin

secretion (GSIS), and gene expression in INS-1E cells under

normoglycemic conditions (NC) and glucotoxic conditions (GC).

They found that caffeic acid significantly increased the expression

of Insulin-1 (Ins-1), Ins-2, pancreatic and duodenal homeobox 1

(Pdx-1), Akt-1, Akt-2, insulin receptor substrate-1 (Irs1), Bcl2, heat

shock protein 90 and 70 (Hsp90 and Hsp70) during NC.

Additionally, caffeic acid downregulated acetyl coenzyme A

carboxylase 1 (ACC1) without affecting Glucokinase (Gck) and

Glucose transporter-2 (Glut-2) expressions in INS-1E cells.

However, under GC conditions, caffeic acid did not change the

expression of GLUT-2, Gck, Ins2, Beta2, Pdx1, Akt2, Irs1, Bcl2, and

Hsp90. Instead, it upregulated Ins1, Akt2, and Hsp70, while

downregulating Beta2, Caspase 3 (Casp3), and Bax. caffeic acid

also significantly increased glucose sensitivity and GSIS in INS-1E

cells and thereby caffeic acid may enhance the survival and function

of b-cells during glucotoxic conditions by modulating the

expression of these genes (66).

Many human and animal studies investigated prolonged drug

exposure on both safety and efficacy outcomes. Lekomtseva et al.

investigated the effects of Rhodiola rosea extract on prolonged or

chronic fatigue symptoms, 100 subjects were administered 2 × 200

mg of the extract daily over 8 weeks of an open-label clinical trial.

Results showed the greatest improvement after just 1 week of

treatment, with continued reduction in fatigue symptoms

throughout the study, reaching statistically significant

improvement by week 8. Importantly, safety assessments
FIGURE 5

Number and accuracy scores for each feature set and both of them combined.
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indicated favorable outcomes, with most adverse events being mild

and unrelated to the study drug (67). Ochoa-Morales et al.

conducted a 12-week double-blind, randomized placebo-

controlled trial that assessed the efficacy of propolis compared to

placebo in controlling glycemic levels in 36 patients with T2DM.

Administered twice daily before breakfast and dinner, propolis (300

mg) significantly reduced fasting plasma glucose (FPG) and 2-hour

post-load glucose (2-h PG) levels compared to placebo (48). In a 6-

month masked, randomized clinical trial conducted by El‐Sharkawy

et al. individuals with chronic periodontitis (CP) and T2DM

undergoing scaling and root planning (SRP) were given either a

placebo or a daily regimen of 400 mg oral propolis. Results showed

that the propolis group exhibited significant reductions in

hemoglobin A1c (HbA1c) levels by 0.82% and 0.96% units at 3

and 6 months, respectively, along with decreases in fasting plasma

glucose (FPG) and serum N€-(carboxymethyl) lysine (CML) levels.
Frontiers in Endocrinology 16
Additionally, both groups showed improvements in periodontal

parameters after therapy, but the propolis group demonstrated

significantly greater reductions in probing depth and gains in

clinical attachment level compared to the control group (68). In a

study investigating the effects of caffeic acid on diabetic

cardiomyopathy, it was found that caffeic acid, along with ellagic

acid, demonstrated protective effects in diabetic mice. Various

parameters, including lipid profile, coagulability, oxidative stress,

and inflammation, were assessed. After 12 weeks, the treated

animals showed beneficial effects, including decreased triglyceride

levels, increased plasma insulin levels, decreased plasma glucose

levels, anti-coagulatory effects, antioxidative effects, and anti-

inflammatory properties in the cardiac tissue (69). Moreover,

Rodrıǵuez-Rodrıǵuez et al. investigated the metabolic effects of an

extract from Opuntia ficus-indica (OFI) for 12 weeks, known for its

high isorhamnetin glycoside content, in a mouse model of diet-
TABLE 7 The evaluation metric for the top-performing classifier on the training set.

Model (Molecular) Accuracy AUC Recall Precision F1-Score

KNN 0.8714 0.9177 0.9387 0.8974 0.9137

Random Forest 0.8424 0.9051 0.9007 0.8833 0.8918

Ada Boost 0.8152 0.8370 0.8811 0.8648 0.8727

LGBM 0.8140 0.8739 0.8603 0.8867 0.8719

Logistic Regression 0.8001 0.8801 0.8419 0.8750 0.8580

Model (Biochemical) Accuracy AUC Recall Precision F1-Score

LGBM 0.8714 0.9397 0.9203 0.9029 0.9108

Ada Boost 0.8575 0.8950 0.8603 0.9386 0.8969

Random Forest 0.8297 0.9075 0.8799 0.8819 0.8803

KNN 0.8285 0.9449 0.8419 0.9265 0.8707

Logistic Regression 0.8001 0.9047 0.8419 0.8760 0.8563

Model (Molecu-
lar+Biochemical)

Accuracy AUC Recall Precision F1-Score

KNN 0.8714 0.9000 0.9600 0.8848 0.9159

Random Forest 0.8571 0.9100 0.9200 0.8981 0.9029

Ada Boost 0.8571 0.8900 0.9200 0.8933 0.9014

LGBM 0.8286 0.9100 0.8800 0.8933 0.8812

Logistic Regression 0.7857 0.8500 0.8400 0.8700 0.8455
TABLE 8 The evaluation metric for the best classifiers on the testing set for each feature group.

Model (Molecular) Accuracy AUC Recall Precision F1-Score

KNN Classifier 0.8 0.8942 0.8095 0.8947 0.85

Model (Biochemical) Accuracy AUC Recall Precision F1-Score

LGBM 0.8 0.93 0.9048 0.8261 0.8633

Model (Molecu-
lar+Biochemical)

Accuracy AUC Recall Precision F1-Score

KNN Classifier 0.8 0.8968 0.8571 0.8571 0.8571
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induced obesity and isolated pancreatic islets. Mice fed a high-fat

(HF) diet supplemented with OFI extract exhibited reduced body

weight gain and lower levels of circulating total cholesterol, LDL

cholesterol, and HDL cholesterol compared to those on the HF diet

alone. Furthermore, HF-OFI diet-fed mice showed lower glucose

and insulin concentrations but slightly higher insulin levels

compared to control mice. These metabolic enhancements were

associated with decreased adipocyte size, enhanced hepatic

phosphorylation of IRS1 tyr-608 and S6 K thr-389, and reduced

hepatic lipid content (70). Jamali-Raeufy et al. studied the effect of

Isorhamnetin on diabetic male rats for 12 weeks. Isorhamnetin,

administered intraperitoneally at a dose of 10 mg/kg body weight

once daily, elicited significant effects on various parameters.

Notably, Isorhamnetin treatment led to a marked reduction in
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pain severity and blood glucose levels, while also promoting a

significant increase in body weight compared to the control

group. Moreover, Isorhamnetin demonstrated inhibitory effects

on astroglial activation, acetyl-cholinesterase activity, oxidative

stress markers, apoptosis, and inflammatory markers within

diabetic rats (58).

In this study, we incorporated molecular biomarkers (mRNAs-

miRNAs-LncRNAs) expressed in livers and adipose tissues of

animal models representing normal, T2DM, and treated groups

alongside conventional biochemical parameters. Our objective was

to utilize these predictive targets to select the most potent

candidates for treating T2DM using medicinal plant-based drugs

such as Rosavin, isorhamnetin, and Caffeic acid, as well as

probiotics like Z-biotic. To achieve this goal, we developed a
A

B

C

FIGURE 6

Confusion matrix for the best-performing classifiers for each feature group. (A) Molecular, (B) Biochemical, (C) Molecular+Biochemical.
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machine-learning model using 5 different algorithms (KNN, RF,

LR, LGBM, and Ada Boost) to recognize the significant features

associated with T2DM to achieve a reliable and effective

improvement prediction.

As expected, the diabetic rat models exhibited the highest levels

of serum insulin resistance index (HOMA-IR), insulin, fasting

blood glucose, as well as biomarkers indicating renal function

impairment, liver damage, and lipid profiles. Conversely, the

normal group, as well as the groups treated with medicinal plants

and probiotics, displayed the lowest levels of these markers, more

obvious in the highest drug doses, with an opposite relationship
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observed for HDL (Table 4). As a heterogeneous condition, T2DM

is typified by impaired insulin secretion (known as the beta cell

secretory defect) and insulin resistance, leading to elevated blood

glucose levels. Various disturbances in biochemical parameters are

associated with T2DM, including dyslipidemia, which involves

elevated fasting and postprandial TG, decreased levels of HDL-C,

increased levels of LDL-C, and a prevalence of small, dense LDL-C

particles (71). Liver enzymes play a crucial role in regulating

metabolism, particularly in maintaining normal blood glucose

levels during fasting and after meals. Insulin resistance in the

liver leads to increased glycogenolysis and lipolysis, resulting in
A

B

C

FIGURE 7

Roc curve for the best-performing classifiers for each feature group for the prediction of drug response. (A) Molecular, (B) Biochemical, (C)
Molecular+Biochemical.
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elevated hepatic glucose production and abnormal triglyceride and

fatty acid synthesis. These abnormalities, including elevated levels

of AST, ALT, and ALP, are indicative of liver dysfunction and can

precede the onset of fasting hyperglycemia. The elevation of these

enzymes may be attributed to the direct hepatotoxic effects of excess

fatty acids, which can disrupt cell membranes and impair

mitochondrial function (72). Additionally, oxidative stress,

peroxisomal beta-oxidation, and inflammation mediated by pro-

inflammatory cytokines like TNF-a contribute to hepatic injury.

Furthermore, the increased activity of ALT, a gluconeogenic

enzyme suppressed by insulin, suggests a disruption in insulin

signaling rather than solely hepatocyte injury (73, 74). Prolonged

high blood glucose levels lead to increased oxidative stress,

inflammation, and dysfunction of microvascular endothelial cells,

which are common underlying mechanisms in both diabetic

nephropathy (DN) and diabetic retinopathy (DR). These

conditions often coexist, with elevated blood urea nitrogen (BUN)

levels indicating their presence. BUN levels are also linked to

the body’s catabolic activity and may reflect reduced blood flow

and increased oxidative stress. Additionally, microvascular

hypoperfusion and oxidative stress contribute to the development

of DR, potentially explaining the association between elevated BUN

levels and DR (75). Serum creatinine, primarily metabolized by

skeletal muscle, correlates with total skeletal muscle mass. Low

serum creatinine levels are considered a risk factor for T2DM and

dysglycemia, as they reflect reduced skeletal muscle mass. Skeletal

muscle plays a crucial role in glucose uptake, with reduced uptake

contributing to insulin resistance and the development of T2DM

long before hyperglycemia becomes apparent. The decrease in

skeletal muscle mass is thus associated with increased insulin

resistance and the risk of developing T2DM (76, 77).

We next determined the histopathological alterations in the

studied groups, the livers of the T2DM-induced rats showed

significant changes, including fat accumulation, cell death,

inflammation, and abnormal cell morphology, in addition to an

increase in the adipocyte cell size. Treatment with Rosavin at a higher

dose restored the liver structure to normal, while Z-Biotic and

isorhamnetin showed moderate improvements. caffeic acid had

some positive effects but to a lesser extent. The administration of

rosavin, particularly at a high dosage, significantly decreased the

severity of liver inflammation grades. This outcome aligns with our

previous findings in a rat model of non-alcoholic steatohepatitis

(NASH), where rosavin treatment improved liver functions, and lipid

profile, and mitigated hepatic inflammation, fibrosis, and cell death

(78). Overall, the drugs Rosavin, Z-Biotic, isorhamnetin, and Caffeic

acid exhibited varying effects on the destructive liver architecture

induced by diabetes, with higher doses generally demonstrating a

more restorative effect and this was also obvious in decreasing the

adipocyte cell diameter and liver inflammation grades.

Inflammation and autoimmunity play significant roles in the

development of diabetes, and hence, targeting the inflammatory

response has shown therapeutic benefits (79, 80). The NOD

signaling pathway is involved in the inflammation triggered by

the cGAS-STING pathway (81, 82). Perturbations in the gut

microbiota in diabetic patients can, in turn, activate the cGAS-
Frontiers in Endocrinology 19
STING-NOD pathway, leading to inflammation (83). Paradoxically,

we found that the probiotics Z-Biotic 1mg significantly modulated

most of the inflammatory-enriched mRNAs (DDX58, NFKB1,

CHUK, RET) that were implicated in the STING/NOD/IR

pathways and made them decrease significantly to be close to the

normal group ratios, interestingly, the high dose of caffeic acid

behaved similarly.

The cytoplasmic DNA sensor known as cyclic GMP-AMP

synthase (cGAS) directly binds to DNA, including mitochondrial

DNA (mtDNA) and abnormal bacterial or viral DNA, leading to its

activation. Upon activation, cGAS triggers the synthesis of a

secondary messenger called 2′,3′-cGAMP, which then binds to

and activates the stimulator of the interferon gene (STING).

STING, a transmembrane protein primarily found in the

endoplasmic reticulum (ER), undergoes translocation to the Golgi

and recruits the downstream TANK-binding kinase 1 (TBK1) to

form a complex. This complex, in turn, phosphorylates and

activates interferon regulatory factor 3 (IRF3) and nuclear factor

kappa B (NF-kB), initiating a cascade of signals that activate various
innate immune-related genes, including type I interferon (IFN)

(84). Recent studies have implicated the cGAS-STING pathway in

the development of diabetic cardiomyopathy, a condition

characterized by aseptic inflammatory activation. Notably,

increased mtDNA in the cytosol and the activation of the cGAS-

STING signaling pathway, along with its downstream targets such

as IRF3, NF-kB, IL-18, and IL-1b, have been observed in the context
of diabetic cardiomyopathy (85). A previous study discovered that

activating STING resulted in an induction of the NLRP3

inflammasome and pyroptosis, which culminated in an

inflammatory response observed in diabetic mice (86). Qiao et al.

found that STING plays a unique role in regulating insulin action in

peripheral metabolic tissues and insulin secretion from b-cells
(87).DDX58 participates in innate immune responses through the

NOD-like receptor signaling pathway, detecting cytoplasmic DNA

and triggering the production of interferon 1 and inflammatory

cytokines (88, 89). Moreover, the cGAS-STING1 and DDX58-

MAVS pathways are connected to the innate immune response

(90).In a study conducted by Frietze et al. using a NASH model, it

was shown that activation of DDX58 leads to the cleavage of LC3, a

marker linked to autophagosome formation, DDX58 interacts with

the autophagy receptor protein SQSTM1 to degrade itself selectively

after viral stimulation. Activation of DDX58 enhances autophagic

responses, aiding in the removal of harmful lipid inclusion bodies

associated with inflammation and cell death. Excessive fatty acids

hinder DDX58 activity, reducing crucial autophagic responses and

worsening lipotoxicity. The study revealed that DDX58 directly

influences SQSTM1 gene expression, protein accumulation, and

targeted autophagic degradation. Furthermore, sustained

overexpression of DDX58 markedly reduces inflammation

mediated by JAK-STAT signaling (91).Studies have demonstrated

that ZBP1, a cytosolic nucleic acid sensor, plays a pivotal role in

coordinating innate immune responses by triggering both NF-kB
and interferon regulatory factors (IRFs) signaling pathways (92).

Additionally, ZBP1 activation leads to the expression of

inflammatory cytokines and induces various forms of
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inflammatory cell death, including necroptosis, pyroptosis,

apoptosis, and PANoptosis, in response to different host-derived

nucleic acids (93, 94). Moreover, ZBP1 acts as a regulator of IFN-1-

mediated disease progression, sensing mitochondrial DNA

instability through the cGAS-STING pathway and sustaining

IFN-1 signaling, which is involved in heart failure and cardiac cell

remodeling (95, 96).

Stimulation of NOD and TNF receptors in intestinal epithelial

cells activates CHUK, which stabilizes ATG16L1, preventing

endoplasmic reticulum stress during inflammation (97). It also

inhibits Kappa Beta kinases that suppress NFKB1 (98). High

glucose promotes proliferation and invasiveness in pancreatic

cancer cells by upregulating RET, a proto-oncogene encoding a

receptor tyrosine kinase (99). ZBP1 acts as a regulator of IFN-1-

mediated disease progression, sensing mitochondrial DNA

instability through the cGAS-STING pathway and sustaining

IFN-1 signaling, which is involved in heart failure and cardiac cell

remodeling (95, 96) A previous study discovered that activating

STING resulted in an induction of the NLRP3 inflammasome and

pyroptosis, which culminated in an inflammatory response

observed in diabetic mice (86). Qiao et al. found that STING

plays a unique role in regulating insulin action in peripheral

metabolic tissues and insulin secretion from b-cells (87).
Intense evidence supports the involvement of miRNAs in the

intricate regulation of glucose homeostasis, making them potential

contributors to the development of diabetes (100). These small

molecules exert their influence by impacting various aspects of

insulin levels, including insulin production, and exocytosis (101)

Additionally, lncRNAs can act as miRNA sponges by binding to

miRNAs, thus preventing them from interacting with their mRNA

targets (102). This regulatorymechanism plays a crucial role in diabetes

pathogenesis, influencing beta-cell function, apoptosis, insulin

secretion, glucose metabolism, and insulin resistance (103, 104).

We previously reported that miRNAs (has-miR-1976 and has-miR-

611) acted as sponges on lncRNAs (AC074117.2 and RP4–605O3.4),

decreasing the expression of mRNA (CHUK mRNA). Notably, these

findings demonstrated the potential of has-miR(-1976 and 611)

miRNAs as distinguishing factors between insulin-resistant and

insulin-sensitive patients, and their involvement in modulating the

STING/NOD/IR pathways (105). These results were consistent with

our observations in animal models. Previous studies have highlighted

the role of miR-1976 as a tumor suppressor in non-small cell lung

cancer (106). In vitro experiments demonstrated that the suppression of

miR-1976 resulted in a significant acceleration of wound healing and cell

migration. Furthermore, it stimulated cell proliferation, decreased cell

apoptosis, and increased the populations of CD44+/CD24− cells (107).

Our results suggested that RP11–773H22.4 could bind to miR-

1, and miR-3163 and serve as a competing endogenous RNA

(ceRNA) to upregulate m-TOR, IGF1-R, and downregulate AKT2

expression, thus contributing to increased autophagy and the

progression of T2DM, consistent with our previous results (28).

Previous studies have indicated that insulin-like growth factor-1

(IGF-1) hinders the process of autophagy by inhibiting AKT. This

inhibition is believed to be mediated by AKT’s activation of
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rapamycin complex 1 (mTORC1), a known inhibitor of

autophagy, there for Inhibition of IGF-1R signaling cascade

reduces autophagy, impacting autophagosome precursor

formation and suggests that targeting the IGF-1R receptor or its

downstream pathway may have implications for therapeutic

purposes (108). Moreover, Akt2 can inhibit the expression of the

cGAS-STING pathway and suppress the inflammatory response in

diabetes (109). Autophagy is crucial for maintaining cellular

balance during stressful conditions, excessive or uncontrolled

autophagy can trigger autophagy-dependent apoptosis, cardiac

injury, and impaired function, primarily through autophagic cell

death (110–112). MiR-1, which has been studied extensively, is

often suppressed in various biological samples from patients with

T2DM (113). Overexpression of miR-1 has been shown to inhibit

cardiac fibrosis and apoptosis by altering the expression levels of

Bcl-2, TGFb1, and Bax (114). Additionally, mTOR plays a

significant role in cardioprotection, diabetes, cellular metabolism,

apoptosis, autophagy, and mitochondrial biogenesis (115–117)

Studies have demonstrated that inhibiting mTOR with rapamycin

(RAPA) can reduce cardiomyocyte apoptosis following myocardial

infarction (MI) stress (118). Moreover, in retinoblastoma cancer

stem cells, miR-3163 influences cell proliferation, apoptosis, and

drug resistance (119). Additionally, miR-3163 has been shown to

enhance the sensitivity of hepatocellular carcinoma (HCC) cells to

sorafenib by suppressing the cleavage of Notch protein (120).

The present study involved; i, Data preprocessing and feature

selection: The dataset was carefully preprocessed to ensure data

integrity and consistency with the study objectives. Null values and

duplicate entries were carefully handled to maintain the quality of the

dataset, which was essential for subsequent analysis. Targeted variables

created following data correction methods ‘standardization’ are needed

to predict response to type 2 diabetes mellitus (T2DM) treatment Based

on ‘fat cell diameter’ and ‘. Inflammation (liver)’ features used to divide

the sample into “unimproved” and “improved” categories. Categorical

features of the dataset were adjusted to facilitate their incorporation

into the modeling pipeline. Robust coding techniques such as one-hot

coding were used to ensure compatibility with machine learning

algorithms. Feature selection was performed using cross-validation

(RFECV) method and recursive feature elimination, which is the

cornerstone of predictive modeling. This approach systematically

identified factors that contribute to understanding T2DM drug

response patterns. Notably, the selected molecules include ZBP1 (A),

STING1(L), DDX58 (L), mTOR (L), NFKB1 (A), CHUK (A), RET (L),

RET (A), miR-1. (A), miR-611 (L), miR-611 (A), LncRNA-RP11–

773H22.4 (L), and LncRNA-RP11–773H22.4 (A). Furthermore,

biological parameters such as glucose, insulin, HOMA-IR, total

cholesterol, triglycerides, AST, ALT, creatinine, BUN, and ACR were

identified as important contributors to the prediction of T2DM

treatment response. ii, Training and evaluation model: The trained

machine learning models, including K-Nearest Neighbors (KNN) and

Light Gradient Boosting Machine (LGBM), were subjected to rigorous

evaluation to assess their predictive prowess. Leveraging cross-

validation techniques, the models demonstrated commendable

performance, achieving an impressive accuracy of 80%. These
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findings underscore the robustness and efficacy of the selected features

in discerning intricate patterns inherent in T2DM treatment response.

Moreover, the systematic approach adopted in this study holds promise

for enhancing therapeutic strategies and optimizing patient outcomes

in clinical settings.

In this study, a feature selection approach based on the RFECV

technique was adopted to select the top molecular and biochemical

features that had the highest prediction accuracy for T2DM drug

response in the dataset. The selected molecular features were ZBP1 (A),

STING1 (L), DDX58 (L),mTOR (L), NFKB1 (A), CHUK (A), RET (L),

RET (A), miR-1976 (A), miR-611 (L), miR-611 (A), LncRNA-RP11–

773H22.4 (L), and LncRNA-RP11–773H22.4 (A). While the

biochemical features were Glucose, Insulin, HOMA-IR, Total

cholesterol, Triglycerides, AST, ALT, Creatinine, BUN, and ACR.

The utilized molecular and biochemical models using these features

combined or separately maintained decent prediction performance

with top classifiers KNN and LGBM at an accuracy of 80%.

While our study provides valuable insights into the potential

therapeutic efficacy of medicinal plant-based drugs and probiotics in

treating T2DM, there are several limitations that should be

acknowledged. Our study focused on a limited number of

medicinal plant-based drugs and a single probiotic, which may not

fully represent the spectrum of potential therapeutic interventions

for T2DM. Future research incorporating a broader range of

pharmacological agents and therapeutic modalities could provide a

more comprehensive understanding of effective treatment strategies

for this complex condition. Further larger studies addressing the

possibility of multiple dose and long-term treatment regimens and

their impact on the evaluation of drug safety and efficacy should be

explored. Also, Further future validation through independent

datasets is strongly needed to ensure the findings’ applicability in

human T2DM treatment. Moreover, while our study assessed

various molecular and biochemical features associated with T2DM

pathogenesis, it is important to recognize that these chosen

parameters may not capture the full complexity of the disease

process. Additional factors such as genetic predisposition,

environmental influences, and lifestyle factors may also contribute

to individual variability in drug response and treatment outcomes.

Further research is needed to address the limitations and translate

these findings into clinically meaningful interventions for patients

with T2DM. Researchers stressed the pivotal role of all members of

brain, kidneys, pancreatic cells, alpha cells, and the gastrointestinal

tract in the development of glucose intolerance besides the four cell

types(liver, muscle and adipose tissues) (121). Thus further larger

validation in other tissues is strongly recommended to ensure the

generalization of the results.
6 Conclusion

We developed a prediction system for identification of potential

therapeutic targets using machine learning algorithms with feature

selection using mRNAs-miRNAs-LncRNAs implicated in

autophagy and STING/NOD/IR pathways that directly correlated
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with T2DM pathogenesis in addition to biochemical features. Our

results demonstrated that the KNN algorithm outperformed other

classifiers in both the molecular and combined models, for the

biochemical model, the LGBM Classifier exhibited the highest

performance with AUC values of 0.9177, 0.9, and 0.9397,

respectively. Notably, our machine learning approach successfully

identified 20 significant features out of the total 44 features in the

combined model with an accuracy of 80%.
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