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Background: ASCVD is the primary cause of mortality in individuals with T2DM. A

potential link between ASCVD and T2DM has been suggested, prompting

further investigation.

Methods: We utilized linear and multivariate logistic regression, Wilcoxon test,

and Spearman’s correlation toanalyzethe interrelation between ASCVD and

T2DM in NHANES data from 2001-2018.The Gene Expression Omnibus (GEO)

database and Weighted Gene Co-expression Network Analysis (WGCNA)

wereconducted to identify co-expression networks between ASCVD and

T2DM. Hub genes were identified using LASSO regression analysis and further

validated in two additional cohorts. Bioinformatics methods were employed for

gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis, along with the prediction of candidate small molecules.

Results: Our analysis of the NHANES dataset indicated a significant impact of

blood glucose on lipid levels within diabetic cohort, suggesting that abnormal

lipid metabolism is a critical factor in ASCVD development. Cross-phenotyping

analysis revealed two pivotal genes, ABCC5 and WDR7, associated with both

T2DM and ASCVD. Enrichment analyses demonstrated the intertwining of lipid

metabolism in both conditions, encompassing adipocytokine signaling pathway,

fatty acid degradation and metabolism, and the regulation of adipocyte lipolysis.

Immune infiltration analysis underscored the involvement of immune processes

in both diseases. Notably, RITA, ON-01910, doxercalciferol, and topiramate

emerged as potential therapeutic agents for both T2DM and ASCVD, indicating

their possible clinical significance.

Conclusion: Our findings pinpoint ABCC5 and WDR7 as new target genes

between T2DM and ASCVD, with RITA, ON-01910, doxercalciferol, and

topiramate highlighted as promising therapeutic agents.
KEYWORDS

type 2 diabetes mellitus, atherosclerosis, NHANES database, GEO database, WGCNA
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2024.1383772/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1383772/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1383772/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1383772/full
https://orcid.org/0000-0003-4676-3778
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2024.1383772&domain=pdf&date_stamp=2024-04-23
mailto:yangfana@sina.com
https://doi.org/10.3389/fendo.2024.1383772
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2024.1383772
https://www.frontiersin.org/journals/endocrinology


Zhang et al. 10.3389/fendo.2024.1383772
Introduction

Type 2 Diabetes Mellitus (T2DM) constitutes a profound global

health dilemma, significantly amplifying the risk of morbidity and

mortality related to atherosclerosis cardiovascular disease (ASCVD)

(1). This ailment drastically diminishes life expectancy, evidenced

by findings that, compared to individuals without diabetes, men and

women afflicted by diabetes mellitus experience a reduction in

lifespan of approximately 7.5 and 8.2 years, respectively. The

anticipated growth of the global diabetic population to

approximately 439 million adults by 2030 underscores a 69%

increase in developing countries and a 20% increase in developed

countries (2).Addressing this imminent crisis necessitates a large-

scale, population-based follow-up study vital for prevention, early

detection, and the identification of associated risk factors.

T2DM patients represent distinctive cardiovascular profiles

marked by elevated atherosclerotic plaque burdens, larger

atheromatous plaque volumes, and lipid metabolism dysfunction

(3–5). Decades ago, the groundbreaking Framingham Heart Study

highlighted the prospective link between diabetes mellitus and an

increased prevalence of cardiovascular disease, particularly

impactful in women across various age groups (6). Despite the

historical recognition of heightened risks, significant progress in

improving cardiovascular outcomes through glucose reduction has

remained elusive. Hafner and colleagues (7) delved into the

mortality landscape within cardiovascular diseases among T2DM

patients, revealing a concerning outlook. The mortality rate for

T2DM patients without a history of myocardial infarction (MI) is

15.4%. This rate increases dramatically to 42.0% for T2DM patients

with a history of MI. In stark contrast, individuals without T2DM

face significantly lower risks, with mortality rates from

cardiovascular causes at 2.1% and 15.9% for those without and

with a history of MI, respectively.

In recent years, the explosion of genomic data availability has

elevated bioinformatics analysis methods to indispensable tools in

scientific research (8, 9). Bioinformatics analysis plays a pivotal role

in deciphering this wealth of information, enabling the

identification of Differentially Expressed Genes (DEGs),

conducting intricate Gene Ontology (GO) analyses, and

performing insightful pathway analyses (10). In our study, we

have seamlessly integrated cutting-edge bioinformatics techniques

with data sourced from two pivotal databases: the National Health

and Nutrition Examination Survey (NHANES) and the Gene

Expression Omnibus (GEO) hosted by the National Center for

Biotechnology Information (NCBI). The combination of these two

databases allows the complex relationship between T2DM and

ASCVD to be elucidated at the metabolic and molecular levels.

We aim to employ a multifaceted bioinformatics approach to
Abbreviations: T2DM, Type 2 Diabetes Mellitus; ASCVD, Atherosclerotic

Cardiovascular Disease; DEGs, Differentially Expressed Genes; GO, Gene

Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GEO, Gene

Expression Omnibus; WGCNA, Weighted Gene Co-Expression Network

Analysis; MEs, Module Eigengenes; TOM, Topological Overlap Matrix;

LASSO, Least Absolute Shrinkage and Selection Operator; ROC, Receiver

Operating Characteristic; cMAP, Connectivity Map.
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unravel the genetic mechanisms underpinning the comorbidity of

T2DM and ASCVD.
Materials and Methods

Data Collection

Our study samples and data were sourced from the NHANES

(https://wwwn.cdc.gov/nchs/nhanes/) from 2001 to 2018.

NHANES is a nationally representative survey of the non-

institutionalized civilian population in the US, and the survey

involved interviews conducted at participants’ homes and

standardized physical examinations, including laboratory tests,

performed at mobile screening centers (MEC).

To identify pertinent datasets for our investigation, we

conducted a comprehensive search of the NCBI GEO database

(https://www.ncbi.nlm.nih.gov/geo/) using specific medical

keywords such as “Type 2 diabetes mellitus”, “Atherosclerosis”,

“Homo sapiens”, “Expression profiling by array”, and “expression

profiling analysis”. The objective was to pinpoint datasets that met

stringent criteria: they had to contain archived information on both

case and control groups, offer raw data for further analysis, and

enable expression analysis using array methods. Additionally, our

search was limited to datasets exclusively featuring data from Homo

sapiens (Figure 1).

Microarray analysis was performed using two different

platforms: the GSE40231 dataset employed the GPL570

(Affymetrix Human Genome U133 Plus2 microarrays), whereas

the GSE9006 dataset utilized the GPL96 (Illumina HumanHT-12

V4.0 Expression Bead Chip). The T2DM dataset (GSE9006)

comprised gene expression data from peripheral blood

mononuclear cells (PBMC) collected from 24 healthy people and

12 newly diagnosed with T2DM. We utilized 40 samples of

Atherosclerotic Arterial Wall (AAW) and 40 samples of Non-

Atherosclerotic Arterial Wall (NAW) from GSE40231 to identify

DEGs, including Differentially Expressed mRNAs (DEmRNAs) and

Long Non-Coding RNAs (DElncRNAs). Additionally, we validated

the diagnostic efficacy of essential genes using datasets from two

different platforms: the T2DM (GSE71416) from the GPL570

platform, which included 14 morbidly obese diabetic patients

(cases) and six morbidly obese non-diabetic patients, and the AS

dataset (GSE43292) utilizing 32 AAW samples and 32

NAW samples.
Study population

In this cohort study, we selected adult participants from the

NHANES spanning from 2001 to 2018, totaling 91,351 individuals.

The inclusion criteria mandated participants to be at least 20 years

old and not pregnant, narrowing down the cohort to 48,943

participants. Following the exclusion of individuals with missing

data on fasting blood glucose (FBG), hemoglobin A1c (HbA1c),

triglyceride (TG), total cholesterol, low-density lipoprotein (LDL),

and high-density lipoprotein (HDL), the final participant was 9,357.
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To identity individuals withT2DM, we adhered to the American

Diabetes Association’s diagnostic criteria, which include:(1)a self-

reported physician diagnosis of diabetes; (2) the use of oral

hypoglycemic agents or insulin for treatment; (3) a fasting plasma

glucose level of at least 126 mg/dL; (4) an HbA1c level of at least 6.5%.

Following these criteria, 1,829 participants were classified into the

diabetes group, whereas 7,528 were allocated to the control group.

Our study rigorously followed the Strengthening the Reporting of

Observational Studies in Epidemiology (STROBE) reporting

guidelines to ensure the highest level of clarity, transparency, and

rigor in reporting the observational study findings.
Differential analysis

We used R software version 4.2.2 and processed raw matrices

downloaded from the datasets. Data normalization was performed

using the RMA algorithm after preprocessing and converting probe

IDs to gene symbols using annotated platform files. Empty probes

were removed, and values for genes with multiple probes were

averaged to enhance result reliability.

Separate analyses were conducted for AS and T2DM datasets. The

limma package was employed with stringent criteria (|logFC| >1 and

Padj< 0.05) to identify DEGs. This approach identified genes with

significant expression changes between case and control groups. An

overlap analysis of DEGs from T2DM and AS datasets was also

performed. We identified common DEGs to uncover potential

molecular links between T2DM and AS. Venn Analytics was used

for this analysis, allowing for a comprehensive evaluation of shared

genes (11). These overlapping DEGs form the basis for further

exploration into the molecular mechanisms connecting T2DM and AS.
Functional Enrichment Analysis

We conducted an integrated analysis using Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to
Frontiers in Endocrinology 03
explore biological functions and pathways associated with the

identified genes (12–14). Visual representations were generated

using the ggplot2 package in R4.2.2, facilitating a clear

understanding of enriched pathways and their significance.

Pathways with a P-value < 0.05 were considered statistically

significant, indicating robust associations between T2DM and AS.
Construction of WGCNA co-expression
modules for datasets

We applied weighted gene co-expression network analysis

(WGCNA) to assess gene expression patterns in extensive T2DM

and AS datasets (15). Genes with significant Padj values (P <0.05)

and absolute logarithmic changes greater than 1 were chosen.

Combining the soft thresholding-derived neighbor-joining matrix

with a gene-gene correlation matrix,we explored gene connectivity,

describing the network’s interconnectedness. Co-expression

modules were identified through transformation of the neighbor-

joining matrix into a topological overlap matrix, followed by gene

hierarchical clustering dendrogram analysis, grouping genes with

similar expression patterns and implying potential functional links.

To pinpoint clinically relevant modules, we calculated module

eigengene sand examined their correlation with clinical features,

focusing on modules with positive correlations in both T2DM and

AS datasets. Positive correlations between modules and diseases

indicated strong associations between module genes and the

respective disease.
Identification of critical genes

LASSO (Least Absolute Shrinkage and Selection Operator) is a

regression-based methodology that accommodates many covariates

in the model. Notably, LASSO possesses a distinct feature of

penalizing the absolute value of regression coefficients. Our study

employed the ‘glmnet’ package in the R software to conduct LASSO
FIGURE 1

Flowchart illustrating the methodology employed in this study.
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analysis on the candidate hub genes and DEGs. This analysis aided

in identifying the final hub genes that exhibited strong associations

with the studied conditions.
Diagnostic potency assessment of Hub
genes and their expression correlation

To assess the potential diagnostic utility of the hub genes, we

evaluated performance using the T2DM dataset (GSE9006 and

GSE71416) and the AS dataset (GSE40231 and GSE43292). The

ROC curves provide a graphical representation of the sensitivity

and specificity of the hub genes as diagnostic markers. By analyzing

area under curve (AUC), we can measure the accuracy with which

central genes classify disease and control groups. The closer the

AUC value is to 1, the higher the diagnostic accuracy.

Additionally, to investigate significant differences in gene

expression levels between the groups, we employed t-tests. These

tests allowed us to compare the expression levels of the hub genes in

individuals with T2DM, AS, and controls.
Immune Cell Composition

The CIBERSORT algorithm was employed to calculate the

proportions of various immune cells in the peripheral blood of

patients with T2DM and non-T2DM participants and the arterial

wall of patients with AS and non-AS participants. Using the R package

“CIBERSORT” and the expression matrices, we determined the

proportions of 22 immune cell types in the T2DM and AS disease

groups and their respective control groups. To visually represent the

proportions of the 22 immune cells in the disease and control groups

for T2DM and AS, we generated heatmaps using the “corrplot”

package. These heat maps provided a comprehensive view of the

quantitative correlations between each disease condition’s different

immune cell types. Additionally, we employed the “ggplot2”

Rpackage to explore potential associations between immune cell

proportions and the expression levels of specific diagnostic markers

in the context of T2DM and AS.
Target prediction of bioactive
small molecules

The Connectivity Map (cMAP) database provided by the Broad

Institute (https://clue.io)consist of drug-like compounds tested for

gene expression (16). We uploaded all common DEGs in the

GSE9006 and GSE40231 datasets to the cMAP database to screen

small molecule candidates. We screened with a score greater than 90,

suggesting they potentially have therapeutic effects on T2DM and AS.
Statistical analysis

All statistical analyses were done using R software (R version

4.2.2). Means and confidence intervals for quartile HbA1c and
Frontiers in Endocrinology 04
quartile FBG versus lipid indices were calculated by linear

regression. Wilcoxon test was used for statistical analysis

between diabetic and non-diabetic groups. We used Spearman’s

correlation analysis to investigate the relationship between

glycemia and lipid indices by calculating the means and

confidence intervals of quartile HbA1c and quartile FBG versus

lipid indices in the T2DM using multivariate logistic regression

modeling. Statistical significance was determined based on P-

values less than 0.05, 0.01, or 0.001. These thresholds helped

identify genes with statistically significant differences in

expression levels between the disease and control groups. By

combining ROC curve analysis and t-tests, we can assess the

diagnostic performance of the pivotal genes and determine which

genes may be promising biomarkers for differentiating between

T2DM, AS, and controls. P-values less than 0.05 (P < 0.05)

indicate statistical significance. Significance levels are expressed

as follows: *P < 0.05, **P < 0.01, ***P < 0.001. ***P < 0.001.
Results

Participant Characteristics

Table 1 shows the demographic characteristics of the 9,357

participants included in the study, segregated into two groups: 1,829

individuals diagnosed with T2DM and 7,528 controls. The

prevalence of T2DM was significantly higher in males (P=0.026),

and the group of former smokers, hypertensive, alcohol drinkers,

and less educated had a higher risk of developing the disease (P <

0.001). Patients with T2DM had a lower BMI than the healthy

population (P < 0.001).
Association between Baseline glycemic and
lipid markers

Significant differences in HDL, LDL, TG, total cholesterol,

FPG, and HbA1c levels between the two groups of patients were

analyzed by comprehensive generalized linear regression

(Figures 2A-F). FBG, HbA1c, and TG levels were significantly

higher in diabetic patients than in non-diabetic patients

(P < 0.001) (Figures 2A, B, D). In addition, total cholesterol,

LDL, and HDL levels were significantly lower in diabetic patients

than non-diabetic patients(Figures 2C, E, F). In Figure 3, our

analysis showed a significant positive correlation (P < 0.01)

between FBG, HbA1c, and TG (Figures 3B, F). In contrast, there

was a significant negative correlation (P < 0.01) between FBG,

HbA1c, and HDL levels (Figures 3D, H). There was also a low

positive correlation (P < 0.01) between HbA1c and total

cholesterol, LDL (Figures 3E, G). Meanwhile, FBG also showed

a lower positive correlation with total cholesterol and LDL as well

(Figures 3A, C). These findings highlight the unique lipid profile

of diabetic patients and emphasize the intricate relationship

between glycemic control and lipid metabolism.
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TABLE 1 Baseline characteristics of study population, NHANES 2001–2018.

Characteristics ALL (N=9,357)
Non-Diabetes
(N=7,528)

Diabetes
(N=1,829)

OR P value

Age 50 [35,65] 46 [33,62] 63 [53,72] 1.05 [1.04,1.05] <0.001

Sex 0.026

Female 4657 (49.8%) 3790 (50.3%) 867 (47.4%) Ref.

Male 4700 (50.2%) 3738 (49.7%) 962 (52.6%) 1.12 [1.02,1.25]

Ethnicity <0.001

Non-Hispanic black 1911 (20.4%) 1489 (19.8%) 422 (23.1%) Ref.

Mexican American 1665 (17.8%) 1288 (17.1%) 377 (20.6%) 1.03 [0.88,1.21]

other 892 (9.53%) 701 (9.31%) 191 (10.4%) 0.96 [0.79,1.17]

other Hispanic 612 (6.54%) 458 (6.08%) 154 (8.42%) 1.19 [0.96,1.47]

Non-Hispanic white 4277 (45.7%) 3592 (47.7%) 685 (37.5%) 0.67 [0.59,0.77]

Smoke <0.001

never 4920 (52.6%) 4033 (53.6%) 887 (48.5%) Ref.

now 1963 (21.0%) 1652 (21.9%) 311 (17.0%) 0.86 [0.74,0.99]

once 2474 (26.4%) 1843 (24.5%) 631 (34.5%) 1.56 [1.39,1.75]

Bp <0.001

no 6059 (64.8%) 5399 (71.7%) 660 (36.1%) Ref.

yes 3298 (35.2%) 2129 (28.3%) 1169 (63.9%) 4.49 [4.03,5.00]

Alcohol <0.001

heavy 4948 (52.9%) 4210 (55.9%) 738 (40.3%) Ref.

moderate 3253 (34.8%) 2438 (32.4%) 815 (44.6%) 1.91 [1.71,2.13]

no 1156 (12.4%) 880 (11.7%) 276 (15.1%) 1.79 [1.53,2.09]

Education <0.001

College 4824 (51.6%) 4025 (53.5%) 799 (43.7%) Ref.

High school 2204 (23.6%) 1763 (23.4%) 441 (24.1%) 1.26 [1.11,1.43]

Less than high school 2329 (24.9%) 1740 (23.1%) 589 (32.2%) 1.71 [1.51,1.92]

Poverty income ratio <0.001

<=1.0 1685 (18.0%) 1310 (17.4%) 375 (20.5%) Ref.

1.1-3.0 4027 (43.0%) 3171 (42.1%) 856 (46.8%) 0.94 [0.82,1.08]

>3.0 3645 (39.0%) 3047 (40.5%) 598 (32.7%) 0.69 [0.59,0.79]

Antilipemic drugs <0.001

no 5762 (61.6%) 5268 (70.0%) 494 (27.0%) Ref.

yes 3595 (38.4%) 2260 (30.0%) 1335 (73.0%) 6.30 [5.62,7.07]

Antidiabetic drugs <0.001

no 8328 (89.0%) 7528 (100%) 800 (43.7%) Ref.

yes 1029 (11.0%) 0 (0.00%) 1029 (56.3%)

BMI (kg/m2) 29.0 (6.9) 28.3 (6.5) 31.9 (7.6) 1.07 [1.06,1.08] <0.001
F
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Data are numeric (percentages), or median [interquartile spacing]. All estimates take into account the complex survey design. Bp, blood pressure; BMI, body mass index.
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Glycemic and Lipid Indices Correlation in a
Diabetic Cohort

Table 2 stratifies FBG into quartiles, revealing a progressive

increase in TG with higher FBG levels, indicating a heightened

risk (OR 1.4, 95% CI [1.3-1.5]). Concurrently, HDL levels
Frontiers in Endocrinology 06
inversely correlate with FBG (P < 0.001). Similarly, Table 3

categorizes HbA1c into intervals, demonstrating significant TG

elevation with increased HbA1c (OR 1.3, 95% CI [1.2-1.4]),

alongside a decline in HDL with rising HbA1c levels (P <

0.001). Elevated FBG and HbA1c are associated with higher

total cholesterol and LDL levels.
A B

D E F

C

FIGURE 2

Glycemic and lipid profiles in different diabetic states. (A) Fasting glucose profile in different diabetic states; (B) Glycosylated hemoglobin profile in
different diabetic states; (C) Total cholesterol profile in different diabetic states; (D) Triglyceride profile in different diabetic states; (E) LDL profile in
different diabetic states; (F) HDL profile in different diabetic states. Comparison of means between groups performed by wilcox test (****P <0.0001).
A B D

E F G H

C

FIGURE 3

Correlation analysis between blood glucose and lipid profile components. (A) Correlation of fasting glucose and total cholesterol; (B) Correlation of
fasting glucose and triglycerides; (C) Correlation of fasting glucose and low-density lipoproteins; (D) Correlation of fasting glucose and high-density
lipoproteins; (E) Correlation of glycosylated hemoglobin and total cholesterol; (F) Correlation of glycosylated hemoglobin and triglycerides;
(G) Correlation of glycosylated hemoglobin and low-density lipoproteins; (H) Correlation between glycosylated hemoglobin and high-density
lipoprotein. Intergroup correlations were determined using spearman.
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Identification of DEGs and Functional
Enrichment Analysis

Among the 76 common DEGs, 21 were upregulated, an increased

expression level, while 21 were down-regulated, indicating a

decreased expression level (Supplementary Figures 1A-C). GO and

KEGG enrichment analyses showed that lipid metabolism-related

pathways significantly enriched the differential genes in both diseases.

The results of GO analysis showed that the differential genes in both

diseases were increased dramatically in response to fatty acid, long-

chain fatty acid transport, lipid storage, triglyceride metabolic

process, positive regulation of LDL receptor activity, fatty acid

transmembrane transport, regulation of LDL particle clearance,

LDL particle clearance, negative regulation of LDL particle receptor

catabolic process and positive regulation of receptor-mediated

endocytosis involved in cholesterol transport. KEGG analysis of

differential genes was mainly enriched in the Adipocytokine

signaling pathway, Glucagon signaling pathway, Insulin resistance,

Insulin signaling pathway, Phospholipase D signaling pathway, Fatty

acid degradation, Carbohydrate digestion and absorption, Fatty acid
Frontiers in Endocrinology 07
metabolism, regulation of lipolysis in adipocytes and VEGF signaling

pathway (Figure 4D).
Co-expression modules of T2DM and AS
analyzed by WGCNA

To construct a scale-free topological model, we chose a soft

threshold b of 14 for the GSE40231 dataset and a soft threshold b of

9 for the GSE9006 dataset (Supplementary Figures 2A-D). These

thresholds were instrumental in identifying gene modules that

displayed positive associations with AS and T2DM. By applying

hierarchical clustering and Spearman correlation analysis, we

successfully identified three gene modules exhibiting positive

associations with T2DM, encompassing 439 T2DM-related genes

(Figure 4A). Likewise, we identified three gene modules that

demonstrated positive associations with AS, encompassing 3084

AS-related genes (Figure 4B). Importantly, we observed 32

overlapping genes within the modules detected by the GSE40231

and GSE9006 datasets(Supplementary Figure 1D). These shared
TABLE 2 Lipid profile in people with different levels of FBG.

Characteristics

FBG (mg/dl)

Odds ratio
(95% CI)

P
value

Q1
(21.0-

114.0mg/dl)

Q2
(114.0-

132.0mg/dl)

Q3
(132.0-

167.0mg/dl)

Q4
(167.0-

582.0mg/dl)

Total cholesterol
(mg/dl)

188.2 ( 181.9 - 194.4 ) 185.7 ( 179.1 - 192.3 ) 187.9 ( 181.2 - 194.7 ) 192 ( 185.2 - 198.8 ) 1.2 ( 1.1 - 1.3 ) <0.001

TG
(mg/dl)

128.6 ( 120.3 - 136.8 ) 142.7 ( 133.4 - 152.1 ) 149.2 ( 139.5 - 158.9 ) 167.5 ( 157.6 - 177.3 ) 1.4 ( 1.3 - 1.5 ) <0.001

LDL
(mg/dl)

109.6 ( 104.6 - 114.6 ) 107.3 ( 101.7 - 112.8 ) 107.6 ( 102.3 - 112.8 ) 110.6 ( 104.7 - 116.4 ) 1.1 ( 1.1 - 1.2 ) <0.001

HDL
(mg/dl)

52.8 ( 51.3 - 54.4 ) 49.9 ( 48.3 - 51.5 ) 50.5 ( 47.2 - 53.9 ) 48 ( 46.2 - 49.7 ) 0.9 ( 0.8 - 1.0 ) <0.001
fron
Using linear regression, we derived mean values and confidence intervals for fasting glucose, and lipid indices at different intervals. Multivariate logistic regression models were then used to look
at the differences and risk intervals between fasting blood glucose, and lipid indices at different intervals, which included sex (male/female), ethnicity (black/Mexican/other/other Hispanic/white),
blood pressure (yes/no), cigarette smoking (yes/no), alcohol (yes/no), antilipemic drugs (yes/no), antidiabetic drugs (yes/no), poverty-to-income ratio (<=1.0,1.1-3.0,>3.0), education (College/
high school/Less than high school), age (continuum), BMI (continuum), FBG (continuum), Total cholesterol (continuum), TG (continuum), LDL (continuum), and HDL (continuum).
TABLE 3 Lipid profile in people with different levels of HbA1c.

Characteristics

HbA1c (%)
Odds ratio
(95% CI)

P valueQ1
(3.9-5.9.0mg/dl)

Q2
(5.9-6.5mg/dl)

Q3
(6.5-7.6mg/dl)

Q4
(7.6-17.0mg/dl)

Total cholesterol
(mg/dl)

190.5 ( 185 - 196 ) 188.5 ( 182.6 - 194.4 ) 182.7 ( 177.7 - 187.7 ) 191.6 ( 183.9 - 199.3 ) 1.2 ( 1.1 - 1.4 ) <0.001

TG
(mg/dl)

131.5 ( 124.2 - 138.8 ) 146.7 ( 137.8 - 155.5 ) 150.8 ( 144.6 - 157 ) 163.9 ( 152.1 - 175.7 ) 1.3 ( 1.2 - 1.4 ) <0.001

LDL
(mg/dl)

110.5 ( 106.5 - 114.5 ) 109.7 ( 104.5 - 115 ) 104.6 ( 99.9 - 109.3 ) 109.7 ( 103.3 - 116.1 ) 1.2 ( 1.1 - 1.3 ) <0.001

HDL
(mg/dl)

53.7 ( 50.9 - 56.5 ) 49.5 ( 48 - 51 ) 48 ( 46.6 - 49.4 ) 49.1 ( 47 - 51.3 ) 0.9 ( 0.8 - 1 ) <0.001
Using linear regression, we derived mean values and confidence intervals for fasting glucose, and lipid indices at different intervals. Multivariate logistic regression models were then used to look
at the differences and risk intervals between fasting blood glucose, and lipid indices at different intervals, which included sex (male/female), ethnicity (black/Mexican/other/other Hispanic/white),
blood pressure (yes/no), cigarette smoking (yes/no), alcohol (yes/no), antilipemic drugs (yes/no), antidiabetic drugs (yes/no), poverty-to-income ratio (<=1.0,1.1-3.0,>3.0), education (College/
high school/Less than high school), age (continuum), BMI (continuum), HbA1c(continuum), Total cholesterol (continuum), TG (continuum), LDL (continuum), and HDL (continuum).
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genes are fascinating as they may be crucial in developing AS

and T2DM.
Screening for Hub Genes

By LASSO regression analysis, 15 genes were selected as candidate

genes for each of the two diseases (Figures 5A-D). Among them, there

were six overlapping genes in both diseases. To further explore the

association between these two diseases, we first tested the diagnostic

effect of critical genes and whether they were differentially expressed.

After removing the mismatched genes, the results showed that two

genes (ABCC5 and WDR7) were significantly upregulated in T2DM

and AS samples compared with standard samples (Figures 6A, B), and

the AUC values of these two genes were more outstanding than 0.6,

which provided better diagnostic effects (Figures 6C, D). In addition,

we validated the diagnostic efficiency and expression levels of these two

critical genes in validation datasets (GSE71416 and GSE43292)

(Figures 6E-H). The results suggest that upregulation of these

essential genes may lead to T2DM and induce AS.
Changes in the proportions of immune
cells in T2DM and AS

We performed an in-depth analysis of the proportions of 22

immune cell types using the CIBERSORT algorithm. We included
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12 patients with T2DM and 24 control samples, which showed a

high percentage of infiltration of CD4 native T cells, resting NK

cells, CD8 T cells, and monocytes. Notably, patients with T2DM

demonstrated increased proportions of CD4 native T cells, gamma

delta T cells, and neutrophils compared to the control group.

Conversely, the proportions of CD8 T cells, resting NK cells,

monocytes were decreased (Figures 7A, C).

Subsequently, we extended our analysis to 40 patients with AS

and 40 control samples. The results demonstrated higher

infiltration percentages of naive T cells,gamma delta T cells,

plasma cells, and M2 macrophages among the 22 immune cell

types in patients with AS. Compared to the control group, patients

with AS exhibited elevated proportions of naive B cells, plasma cells,

follicular helper T cells, Tregs, activated NK cells, M2 macrophages,

and resting mast cells and neutrophils. In contrast, the proportions

of memory B cells, resting CD4 memory T cells, and gamma delta T

cells were decreased (Figures 7B, D). In addition, we found that two

hub genes, ABCC5 and WDR7, were positively correlated with

Neutrophil native cells CD4 naive, and negatively correlated with

Macrophages M1 in AS and T2DM (Figures 7E, F).
Identification of Therapeutic Small
Molecular Agents Based on the DEGs

Based on the results obtained from the cMap database, we have

identified potential small molecular agents with therapeutic
A B

DC

FIGURE 4

Functional enrichment analysis and WGCNA. (A) Correlation between modules and T2DM traits heatmap; (B) Correlation between modules and AS
traits heatmap; (C) Enriched Gene Ontology (GO) terms; (D) Kyoto Gene and Genome Encyclopedia (KEGG) pathway.
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implications based on the upregulated genes. Among them, the top

small molecules with the highest absolute enrichment values are

presented in Table 4, including RITA, ON-01910, doxercalciferol,

topiramate. These findings provide valuable insights into the

potential therapeutic options for AS and T2DM.
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Discussion

Despite available interventions, ASCVD remains a significant

cause of morbidity and mortality in individuals with T2DM (17,

18). In this study, we employed an interdisciplinary approach
A B

DC

FIGURE 5

Establishment of diagnostic biomarkers by LASSO regression analysis. (A) LASSO coefficient profiles in T2DM; (B) Log (lambda) sequence used to
construct a coefficient profile diagram in T2DM; (C) LASSO coefficient profiles in AS; (D) Log (lambda) sequence used to construct a coefficient
profile diagram in AS.
A B D

E F G H

C

FIGURE 6

Diagnosis of genetic value. (A) Expression levels of the two key genes in GSE9006 in normal and T2DM patients; (B) Expression levels of two key
genes in GSE40231 in normal and AS patients; (C) ROC curves of two key genes in T2DM dataset GSE9006; (D) ROC curves of two key genes in AS
dataset GSE40231; (E) Expression levels of two key genes in GSE71416 in normal and T2DM patients; (F) Expression levels of two key genes in
GSE43292 in normal subjects and AS. (G) ROC curves of two key genes in T2DM dataset GSE71416; (H) ROC curves of two key genes in AS dataset
GSE43292; Box plots: X-axis represents genes, Y-axis represents expression levels. Comparison of means between groups performed by t-test
(** P <0.01, *** P <0.001).
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T

integrating bioinformatics, molecular biology, and clinical

epidemiology to comprehensively explore the relationship

between T2DM and ASCVD. In the NHANES database, we

found that increases in FBG and HbA1c significantly increased

the risk of elevated TG, and Ye et al. found that in patients with

T2DM, elevated triglyceride levels tended to be associated with an

increased risk of CVD, which may suggest that blood glucose

levels play a significant role in the development of ASCVD (19)

(Tables 2, 3). However, the role of TG in ASCVD was not widely

accepted initially, but they are now recognized as necessary (20–22).

Our identification of 76 common DEGs in both T2DM and AS

patients revealed genes with abnormal expression patterns

(Supplementary Figure 1A). Functional enrichment analysis

revealed that the DEGsare significantly engaged in crucial

signaling pathways governing lipid metabolism. These pathways

encompass fatty acid response, long-chain fatty acid transport, lipid

storage, and triglyceride metabolism, alongside the modulation of

LDL receptor activity, including its positive regulation and

transmembrane transport of fatty acids (Figures 4A, B).

Moreover, our findings highlight the intricate regulation of LDL
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particle clearance, encompassing both its enhancement and the

suppression of the receptor’s catabolic processes, as well as the

facilitation of cholesterol transport via receptor-mediated

endocytosis. This aligns with and substantiates the findings

reported in existing literature (23, 24). This suggests that lipid

metabolism plays a crucial role in the process of elevated

cardiovascular disease risk in people with T2DM.

WGCNA analysis revealed ABCC5 and WDR7 as potential

target genes that may play pivotal roles in the pathogenesis of both

T2DM and ASCVD. Recent investigations have illuminated the

pivotal role of WDR7, identified within the V-type ATPase

interactome, as a crucial co-factor influencing the assembly and

functional integrity of the V-type ATPase complex, essential for

cellular proton (H+) regulation (25). Li et al (26). demonstrated that

WDR7 is instrumental in modulating the assembly of the V-type

ATPase. A deficiency in WDR7 triggers a compensatory expansion

and subsequent over-acidificat ion of endo-lysosomal

compartments. Aberrant endo-lysosomal function could

exacerbate the cellular stress response, influencing insulin

signaling pathways and glucose metabolism during diabetes.

Similarly, the altered intracellular trafficking and acidification may

contribute to the accumulation of lipid-laden macrophages, a

hallmark of atherosclerotic plaque development.

ABCC5, also known as Multidrug Resistance Protein 5 (MRP5),

has been molecularly identified as the first ATP-dependent cyclic

nucleotide export pump (27–29). Notably, ABCC5 mRNA is more

abundant in the human heart than in other organs (30). Studies have

confirmed the expression of ABCC5 at the protein level in human atrial

and ventricular samples, primarily localized in vascular endothelial cells

and smooth muscle cells (31). Furthermore, due to ischemic
A

B D

E

F

C

FIGURE 7

Immune infiltration analysis. (A) Heatmap of samples in GSE9006 dataset with immune cells; (B) Heatmap of samples in GSE40231 dataset with
immune cells; (C) Infiltration in immune cells in normal and T2DM groups in GSE9006 dataset; (D) Infiltration in immune cells in normal and AS
groups in GSE40231 dataset; (E) Expression of two hub genes in immune cells of GSE9006 dataset; (F) Expression of two hub genes in immune cells
of GSE40231 dataset. (** P <0.01,**** P <0.0001)
ABLE 4 Small molecules predicted with the common shared DEGs.

Rank Score Name Description

1 98.45 RITA MDM inhibitor

2 95.42 ON-01910 PLK inhibitor

3 92.24 doxercalciferol Vitamin D receptor agonist

4 91.51 topiramate Carbonic anhydrase inhibitor
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conditions, ABCC5 protein levels were upregulated in ventricular

samples from patients with end-stage heart failure.ABCC5

polymorphisms have been associated with T2DM, insulin resistance,

and visceral fat accumulation, indicating its potential role in damaging

endothelial cells through lipid metabolic pathways (27).

Recent advancements underscore the therapeutic potential of

targeted molecular interventions in addressing the complex

interplay between diabetes, atherosclerosis, and their underlying

mechanisms. Therefore, we screened the cMAP database for

predicted small-molecule compounds (Table 4). RITA activates

p53, thereby modulating key molecules such as HIF-1a and

vascular endothelial growth factor, unveiling a new pathway that

could impact metabolic diseases with pathological characteristics

similar to diabetes (32). Concurrently, ON-01910inhibits Polo-like

kinase 1 (Plk1), engaging in the shared molecular mechanisms of

cell proliferation and inflammation, thus paving a new route for the

treatment of diabetes and atherosclerosis (33). Doxercalciferol, a

vitamin D receptor agonist, highlights the close association between

vitamin D deficiency and conditions such as diabetes, arterial

hypertension, and chronic kidney disease (34, 35). The detection

of nuclear vitamin D receptors (VDRs) in vascular endothelial cells

and cardiomyocytes indicates that vitamin D is directly involved in

the development and progression of cardiovascular diseases (36,

37). Topiramate, promotes insulin secretion and enhances insulin

sensitivity, offering an effective solution for the critical challenges of

b-cell dysfunction and insulin resistance in T2DM (38).

Most of the current intractable human diseases are associated with

immune system disorders, which significantly impact metabolic

diseases by altering metabolism, making metabolic immunology a

critical emerging discipline today. We found that the proportion of

T-cell CD4 native infiltration was significantly elevated in both T2DM

and AS compared to controls (P<0.001) (Figures 7C, D). In addition,

we found that two central genes, ABCC5 and WDR7, were positively

correlated with neutrophils, T cell CD4 naive, and negatively correlated

with macrophage M1 (Figures 7E, F).
Limitation

Firstly, the sample size and coverage of our study, although

substantial, might not adequately represent the broader population

affected by T2DM and ASCVD. Therefore, our sample may not

capture the full spectrum of demographic and clinical variability,

including age, gender, ethnicity, and comorbid conditions, which

could significantly influence the disease mechanisms and outcomes.

Therefore, future studies should prioritize expanding the sample

size and ensuring a more diverse and representative population to

enhance the external validity of the findings. the observational

nature of our study inherently limits our ability to establish causal

relationships between the observed variables. While we have

identified correlations that suggest potential mechanisms linking

T2DM and ASCVD, these associations do not imply causality. The

reliance on observational data, without the ability to control for all

potential confounding variables, underscores the need for cautious
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interpretation of the results. Experimental studies, particularly

randomized controlled trials, are essential to confirm the causal

links between T2DM and ASCVD and to understand the

underlying biological processes.

Lastly, our research did not encompass functional experimental

validation of the specific genes implicated in our findings. This

limitation highlights a gap in our study, as experimental validation

is crucial for verifying the biological relevance and mechanistic role

of these genes in the context of T2DM and ASCVD.

Future studies should leverage more comprehensive datasets,

employ methodologies that enhance data quality and representation,

and incorporate experimental validations. Such endeavors will

undoubtedly enrich our understanding and contribute to developing

more effective strategies for the prevention, management, and

treatment of T2DM and ASCVD.
Conclusion

We identified new target genes ABCC5 and WDR7, which

provide valuable avenues and directions for precision medicine and

molecular mechanisms of T2DM and AS. We also proposed the

potential of RITA, ON-01910, doxercalciferol, and topiramate as

targeted small-molecule drugs, which marks our significant

progress in precision medicine for T2DM and ASCVD.
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