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Aims: Studies on the association between serum lead levels and parathyroid

function in adolescents are lacking. Therefore, in this study, we elucidated the

possible association between blood lead levels (BLLs) and the parathyroid

hormone (PTH) in adolescents aged 12–19 years in the United States.

Methods: In this study, information from the database of the National Health and

Nutrition Examination Survey was utilized. The study included 3919 participants

from survey cycles between 2003–2004 and 2005–2006. Multivariable linear

regression analysis was performed to determine the correlation between BLLs

and PTH. Furthermore, smooth curve fitting was utilized to analyze the dose–

response relationship between BLLs and PTH.

Results: Multivariable linear regression analysis revealed that every 1 mg/dL
increase in BLLs was associated with 0.67 pg/mL increase in PTH (b = 0.67,

95% CI: 0.16–1.18, p < 0.01). However, sex-stratified subgroup analysis revealed

that this positive association was only observed in males (b = 1.16, 95% CI: 0.50–

1.83 p < 0.01). Smooth curve fitting revealed a positive correlation between BLLs

and PTH.

Conclusions: In adolescents in the United States, BLLs are positively correlated

with PTH, particularly in males.
KEYWORDS

blood lead levels, parathyroid hormone, adolescents, national health and nutrition
examination survey, vitamin D
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Introduction

Lead is a harmful heavy metal that is ubiquitous in the

environment; its toxicity remains an important public health

concern because populations are still exposed to low lead levels

(1–3). As per the Centers for Disease Control and Prevention, there

are no safe blood lead levels (BLLs) for children because lead

exhibits toxicity even at low levels. Exposure to low levels of lead

can exert deleterious effects on multiple organ systems in the

human body (4, 5). Furthermore, prolonged lead exposure can

result in detrimental health outcomes in adults, encompassing

cardiovascular diseases, renal impairment, reproductive disorders,

and neurological dysfunction (6–9). Moreover, in expectant

women, lead exposure may lead to complications such as preterm

birth or low birth weight (10, 11).

Exposure to lead in the environment during childhood and the

resultant health issues are considered public health disasters (12).

Compared with adults, children are at a higher risk of lead exposure

because they possess enhanced absorption capabilities and limited

excretion capacities (13). Lead exposure among children is

associated with blood pressure, endocrine-disrupting activity,

cognitive impairment, developmental delay, decreased intelligence

quotient, and behavioral issues (14–16).

The parathyroid hormone (PTH) is a polypeptide that plays a

key role in regulating calcium and phosphate levels in the body. In

the parathyroid gland, PTH is synthesized and subsequently cleaved

to exclusively generate the active state.

Studies have revealed that lead affects blood PTH levels. Kristal-

Boneh et al. (16) and Potula et al. (17) confirmed the correlation

between lead exposure in the workplace and levels of PTH in the

bloodstream, noting a significant rise in PTH among individuals

with occupational lead exposure. However, most studies are limited

owing to their small sample size; furthermore, the findings are

contradictory (18, 19). In addition, there is little information

regarding the effects of serum lead on PTH levels in the general

population with low-level exposure.

Research has indicated that lead disrupts the metabolism of

vitamin D through its impact on the expression of metabolizing

enzymes (20), and there is a negative correlation between BLL and

free 25(OH)D, and a positive correlation between BLL and Vitamin

D binding protein in healthy adolescents (21). These results suggest

that lead may affect PTH levels through its involvement in vitamin

D metabolism.

Increasing evidence indicates elevated lead levels in the general

population. Therefore, further elucidating the possible association

between BLLs and calcium homeostasis markers such as PTH is

essential. Previous individual primary studies have presented

inconclusive evidence of this relationship.

Considering limited studies in children and adolescents, in this

current investigation, we investigated the potential correlation

among exposure to low BLLs and PTH levels in children and

teenagers residing in the United States. For this, we used data

from the National Health and Nutrition Examination Survey

(NHANES) from 2003 to 2006.
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Methods

Study design

NHANES is a nationwide survey that collects information on the

nutritional and health statuses of United States individuals who are

not residing in institutions. This program started as a sequence of

surveys during the early 1960s and has been continuously running

since 1999. Around 5,000 people from different regions nationwide

are included in this survey each year. This study was approved by the

Ethics Review Board of the National Center of Health Statistics

(NCHS). All participants provided their consent after being fully

informed. Parents/guardians provided written informed consent for

children under 18 years of age, while individuals aged 18 or above

autonomously provided their own signature on the document.
Study population

NHANES data from 2003–2004 to 2005–2006 were used

because this was the only period when information on PTH

measurements was collected. We only focused on individuals

aged 12–19 years with information on blood PTH and lead levels.

Among the eligible participants who met this criterion, 4,015

participants were included. However, 96 pregnant women were

excluded from the final sample size; as a result, a cohort comprising

3,919 participants was selected for further examination.
Measurement of BLLs and PTH

Blood samples were obtained during the physical examination,

preserved at a freezing temperature of -20°C, and transported to a

central laboratory. Immunological assays were performed to

measure serum PTH levels. The protocols outlined on the

NHANES website were used (Data Documentation, Codebook,

and Frequencies, Parathyroid Hormone). Inductively coupled

plasma mass spectrometry was used to measure lead levels in

whole blood samples. We treated BLL concentrations as

continuous variables and categorized them into quartiles:

<0.63mg/dL, 0.63–0.90mg/dL, 0.9–1.36mg/dL, and ≥1.36mg/
dL, respectively.
Variables

The covariates analyzed were age, body mass index (BMI),

serum calcium levels, cotinine levels, vitamin D levels, and

estimated glomerular filtration rate (eGFR). Furthermore, sex,

race/ethnicity, physical activities, and other relevant covariate

acquisition processes available in the NHANES dataset (http://

cdc.gov/nchs/nhanes) were included as categorical variables.

Race/ethnicity was self-reported by the participants. The

participants were divided as follows: Mexican American, Other
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Hispanic, non-Hispanic white, non-Hispanic black, or others. BMI

was calculated by dividing the weight in kilograms by the height in

meters squared. The Chronic Kidney Disease Epidemiology

Collaboration equation based on serum creatinine levels was used

to determine eGFR (22). The accelerometer recorded the intensity

and frequency of movement. Per-minute activity counts were

calculated. The average weekly duration of moderate-to-vigorous

physical activity (MVPA) was measured. MVPA was defined as

counts per minute ≥ 2020 (23).
Statistical analysis

R (http://www.R-project.org) and EmpowerStats (http://

www.empowerstats.com) were used to perform statistical analyses.

The significance level was p < 0.05. Sample weights were used

according to the analytical guidelines provided by NCHS for

estimating all values to ensure data representativeness for the

civilian noninstitutionalized US population. Continuous variables
Frontiers in Endocrinology 03
are represented as mean (standard error) using a weighted linear

regressionmodel. Categorical variables are represented as % using the

weighted chi-squared test. Three multivariable linear regression

models were constructed: model 1, without any adjusted covariates;

model 2, adjusted for age, sex, and race; and model 3, adjusted for all

covariates presented in Table 1. In addition, subgroup analyses were

performed. A weighted generalized additive model and smooth curve

fitting were employed to account for potential linear relationships.
Results

Participant selection

Figure 1 illustrates the flow chart of participant selection. After

excluding participants with missing information on blood PTH or

lead levels, 576 adolescents aged 12–19 years were excluded.

Furthermore, 96 pregnant women were excluded. Finally, 3,919

eligible adolescents were included in this study.
TABLE 1 Baseline characteristics of the study participants by quartiles of BLLs.

Characteristics Quartile 1
(N=966)
(<0.63mg/dL)

Quartile 2(N=871)
(≥0.63,
<0.90mg/dL)

Quartile 3
(N=1099)
(≥0.90,
<1.36mg/dL)

Quartile 4
(N=983)
(≥1.36mg/dL)

P value

Age, years 15.52 (0.11) 15.54 (0.12) 15.39 (0.16) 15.25 (0.13) 0.032

BMI, kg/m2 23.92 (0.31) 23.62 (0.30) 23.50 (0.30) 22.98 (0.25) 0.006

Cotinine, ng/Ml 8.08 (1.36) 21.71 (2.91) 27.46 (4.00) 37.48 (4.76) <0.001

Calcium, mg/dL 9.70 (0.02) 9.73 (0.02) 9.77 (0.02) 9.78 (0.01) <0.001

Vitamin D, nmol/L 64.50 (1.31) 63.41 (1.63) 62.22 (1.65) 60.97 (1.97) 0.006

eGFR, ml/min per
1.73 m2

127.20 (0.98) 127.38 (0.95) 130.00 (1.17) 134.29 (1.23) <0.001

GENDER, % <0.001

Male 33.84 (2.52) 45.28 (2.63) 62.21 (1.66) 74.37 (2.46)

Famale 66.16 (2.52) 54.72 (2.63) 37.79 (1.66) 25.63 (2.46)

RACE, % <0.001

Mexican American 9.35 (1.54) 10.56 (1.41) 11.36 (1.82) 16.30 (2.68)

Other Hispanic 3.09 (1.13) 3.43 (0.74) 5.74 (1.37) 8.09 (1.44)

Non-Hispanic white 73.10 (2.47) 68.10 (3.49) 59.24 (3.57) 47.66 (4.58)

Non-Hispanic black 9.88 (1.98) 13.34 (2.07) 17.10 (2.02) 22.70 (3.36)

Other race/ethnicity 4.58 (1.08) 4.57 (1.35) 6.56 (1.28) 5.25 (1.13)

Physical activity, % <0.001

Sedentary 21.99 (3.12) 16.92 (2.53) 20.76 (2.74) 15.37 (2.60)

Low 44.45 (2.68) 47.26 (2.86) 42.43 (2.97) 39.38 (3.88)

Moderate 28.92 (3.23) 31.11 (3.03) 28.40 (3.00) 26.25 (3.59)

High 4.65 (1.08) 4.71 (1.40) 8.40 (2.05) 19.00 (3.05)
Continuous variables are represented as mean (standard error). p-values were calculated using a weighted linear regression model. Categorical variables are represented as %; p-values were
calculated using the weighted chi-squared test.
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Baseline characteristics

Table 1 summarizes the demographic profiles of the participants

in different BLL quartiles. Individuals with the highest BLLs were

younger and predominantly male; they exhibited lower BMI and

vitamin D levels. In contrast, they exhibited higher eGFR, cotinine

levels, and calcium levels than those with the lowest BLLs.
Association between BLLs and PTH

Table 2 summarizes the correlation between blood PTH and BLLs.

According to the non-adjusted model, BLLs and PTH levels show a

positive association. Furthermore, the multivariable-adjusted model

revealed a positive correlation between BLLs and PTH. Each 1 mg/dL
increase in BLLs corresponded to a 0.67 pg/mL rise in PTH (b = 0.67,

95% CI: 0.16–1.18, p < 0.01). In addition, in both models 1 and 3, when

considering blood lead as a categorical variable (quartiles), the

participants in the highest BLL quartile exhibited higher PTH levels

compared with those in the lowest quartile (Q3: b = 3.15, 95% CI: 1.07–

5.24, p=0.003; Q4: b= 3.75, 95%CI: 1.61–5.90, p < 0.01 andQ3: b= 2.39,
95% CI: 0.32–4.47, p = 0.024; Q4: b = 2.87, 95% CI: 0.66–5.08, p = 0.011,

respectively). Next, sex-stratified subgroup analysis was performed. A

significant association was observed between BLLs and PTH levels in

males, as indicated by consistent findings in all multivariable linear

regression models. However, this association was not statistically

significant in females (Table 2). Furthermore, race-stratified subgroup

analysis revealed that this positive association persisted among Mexican

American individuals (b = 1.16, 95% CI: 0.11–2.20, p = 0.031), non-

Hispanic white individuals (b = 1.09, 95% CI: 0.10–2.08, p = 0.032), and

non-Hispanic black groups (b = 1.57, 95% CI: 0.15–3.00, p = 0.031).

Moreover, a weighted generalized additive model was employed

to consider the linear association and verify the results, while

employing techniques for fitting smooth curves. (Figures 2, 3).

We further conducted analysis by excluding 8 subjects with serum

lead levels ≥10mg/dL, and found that the results remained the same

(Supplementary Figures 1, 2).
Discussion

In the present study, we utilized data from a representative

sample of US adolescents aged 12–19 years to elucidate the potential
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association between BLLs and serum PTH levels. We observed that

BLL is positively associated with PTH. Their relationships remained

significant after adjustment for confounding factors. However, the

potential role may differ by gender. We observed linear

relationships between them, our multivariable linear regression

analysis showed similar trends. Furthermore, race-stratified

subgroup analysis revealed that this positive association persisted

among most racial groups, including Mexican American, non-

Hispanic white, and non-Hispanic black groups.

Research on the impact of lead on the endocrine system mainly

focuses on individuals who are exposed to lead in their occupation

and animal models used in experiments (24–27). In an 18-month

(January 2017–July 2018), cross-sectional, case–control study, PTH

levels and BLLs were significantly increase in 90 lead-exposed

participants compared with controls (19). Similarly, in a cross-

sectional survey including 146 people, Kristal-Boneh et al. reported
TABLE 2 Association between BLLs and PTH levels.

Model 1, b
(95% CI)

Model 2, b
(95% CI)

Model 3, b
(95% CI)

BLL, µg/dL 0.57 (0.05,
1.10) 0.030

0.21 (-0.31,
0.73) 0.424

0.67 (0.16,
1.18) <0.010

Quintiles
Q1 (<0.63)

Reference Reference Reference

Q2
(≥0.63,
<0.90)

1.42 (-0.79,
3.63) 0.207

0.64 (-1.55,
2.84) 0.566

0.67 (-1.46,
2.80) 0.536

Q3
(≥0.90,
<1.36)

3.15 (1.07,
5.24) 0.003

1.57 (-0.56,
3.69) 0.148

2.39 (0.32,
4.47) 0.024

Q4 (≥1.36) 3.75 (1.61,
5.90) <0.001

1.22 (-1.02,
3.46) 0.286

2.87 (0.66,
5.08) 0.011

P for trend 0.000 0.205 0.004

Stratified by gender

Male 1.08 (0.40,
1.76) 0.002

0.77 (0.10,
1.44) 0.024

1.16 (0.50,
1.83) <0.001

Famale 1.27 (-0.29,
2.83) 0.110

-0.26 (-1.83,
1.31) 0.742

0.54 (-1.02,
2.09) 0.499

Stratified by race

Mexican
American

0.59 (-0.45,
1.64) 0.265

0.60 (-0.47,
1.66) 0.270

1.16 (0.11,
2.20) 0.031

Other
Hispanic

-0.02 (-3.04,
2.99) 0.987

-0.29 (-3.47,
2.90) 0.859

0.17 (-3.12,
3.47) 0.919

Non-
Hispanic
white

0.84 (-0.16,
1.84) 0.099

0.85 (-0.15,
1.86) 0.097

1.09 (0.10,
2.08) 0.032

Non-
Hispanic
black

0.76 (-0.66,
2.19) 0.293

0.36 (-1.11,
1.82) 0.633

1.57 (0.15,
3.00) 0.031

Other
race/ethnicity

-1.21 (-6.86,
4.45) 0.676

-2.07 (-7.89,
3.75) 0.486

-2.94 (-8.55,
2.66) 0.305
Model 1: No covariates were adjusted.
Model 2: Age, gender, race were adjusted.
Model 3: Age, gender, race/ethnicity, body mass index, physical activities, estimated
glomerular filtration rate, serum calcium, vitamin D and cotinine adjusted.
Bold fonts mean statistically significant.
FIGURE 1

Flow chart of participants.
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that participants with occupational lead exposure exhibited

substantial compensatory increases in PTH levels (16). Notably,

the association demonstrated statistical significance among males

while not achieving significance among females. In addition, a

meta-analysis reported alterations in PTH levels following

exposure to lead in the workplace (18). The pooled results

revealed that the lead-exposed group had lower PTH levels than

the control group. However, these results did not reach statistical

significance, with unacceptable heterogeneity levels.

A NHANES study revealed that lead is positively associated

with PTH in the general population aged ≥18 years (28). However,

another study involving 105 children concluded that children with

sufficient nutritional status and low-to-moderate lead exposure do

not exhibit significant changes in vitamin D metabolism, as well as

calcium and phosphorus balance, along with bone mineral content

(29). In the present study, we revealed a stable positive association

between BLLs and PTH in males aged 12–19 years.

The potential impact of lead exposure on parathyroid function

may vary depending on gender. Baecklund et al. (30) revealed that
Frontiers in Endocrinology 05
BLLs were lower in women than in men (median 24 vs. 30 µg Pb/L).

These sex disparities can be attributed to differences in calcium

metabolism and calmodulin, renal sensitivity, iron storage status,

and genetic factors between males and females (31, 32).

Nevertheless, additional studies are warranted to examine the

possible mechanisms or factors.

In the body, PTH is a central regulator of calcium homeostasis

and plays a vital role in bone metabolism. It governs serum calcium

levels by affecting the bones, kidneys, and intestine; however, its

levels are regulated by the feedback mechanism of calcium levels

(33). PTH stimulates calcium release from the bones into the

bloodstream. Furthermore, it affects calcium reabsorption to

enhance renal retention. Elevated BLLs may disrupt the

hydroxylation of 25OH-vitamin D in the kidneys via the 1-a
hydroxylase enzyme, resulting in the decreased production of

active vitamin D [1,25 (OH)2D] (34). This subsequently results in

decreased calcium levels.

Therefore, lead has the potential to act as a disruptor of the

endocrine system and contribute to hormonal imbalances (15, 18,

24, 28). In this study, elevated BLLs could have decreased vitamin D

levels, which, in turn, decreased serum calcium levels and increased

PTH levels among lead-exposed individuals. However, our research

revealed a positive correlation between lead levels and serum

calcium levels, contradicting the previously mentioned

mechanism by which lead affects PTH via serum calcium.

Our study has many strengths. First, a positive relationship was

observed between BLL and PTH in adolescents; this has not been

reported in prior research. Second, we examined a more extensive

and representative multiracial population sample obtained from the

NHANES, with rigorous measures and adjustment for

important covariates.

Nevertheless, it is crucial to acknowledge the constraints of this

study. Firstly, given its cross-sectional design, we cannot draw any

causal inferences between blood lead levels (BLL) and parathyroid

hormone (PTH). Secondly, the NHANES dataset does not include

information regarding lead concentrations in bones, a commonly

utilized measure for assessing cumulative lead exposure. In

children, lead is primarily accumulated in trabecular bone, and its

turnover rate is high (35).
FIGURE 3

Sex-stratified association between BLLs and PTH levels. Age, race/
ethnicity, BMI, physical activity, eGFR, serum calcium, vitamin D and
cotinine were adjusted.
BA

FIGURE 2

Correlation between BLLs and PTH levels. (A) Each data point is represented using a black dot. (B) The smoothed curve fit between the variables is
represented by a solid red line, whereas the 95% confidence interval derived from the fit is indicated by the blue bands. Age, gender, race/ethnicity,
body mass index (BMI), physical activities, estimated glomerular filtration rate (eGFR), serum calcium, vitamin D and cotinine were adjusted.
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Conclusions

BLLs are positively correlated with serum PTH levels in

adolescents aged 12–19 years, particularly in males.
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