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Unveiling the molecular
complexity of proliferative
diabetic retinopathy through
scRNA-seq, AlphaFold 2,
and machine learning
Jun Wang1†, Hongyan Sun2†, Lisha Mou3,4, Ying Lu3,4,
Zijing Wu3,4, Zuhui Pu3,4* and Ming-ming Yang2*

1Department of Endocrinology, Shenzhen People’s Hospital (The Second Clinical Medical College of
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology),
Shenzhen, China, 2Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical
Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and
Technology), Shenzhen, China, 3Imaging Department, Shenzhen Institute of Translational Medicine,
The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital,
Shenzhen, China, 4MetaLife Center, Shenzhen Institute of Translational Medicine, Guangdong,
Shenzhen, China
Background: Proliferative diabetic retinopathy (PDR), a major cause of blindness,

is characterized by complex pathogenesis. This study integrates single-cell RNA

sequencing (scRNA-seq), Non-negative Matrix Factorization (NMF), machine

learning, and AlphaFold 2 methods to explore the molecular level of PDR.

Methods: We analyzed scRNA-seq data from PDR patients and healthy controls

to identify distinct cellular subtypes and gene expression patterns. NMF was used

to define specific transcriptional programs in PDR. The oxidative stress-related

genes (ORGs) identified within Meta-Program 1 were utilized to construct a

predictive model using twelve machine learning algorithms. Furthermore, we

employed AlphaFold 2 for the prediction of protein structures, complementing

this with molecular docking to validate the structural foundation of potential

therapeutic targets. We also analyzed protein−protein interaction (PPI) networks

and the interplay among key ORGs.

Results: Our scRNA-seq analysis revealed five major cell types and 14 subcell

types in PDR patients, with significant differences in gene expression compared

to those in controls. We identified three key meta-programs underscoring the

role of microglia in the pathogenesis of PDR. Three critical ORGs (ALKBH1, PSIP1,

and ATP13A2) were identified, with the best-performing predictive model

demonstrating high accuracy (AUC of 0.989 in the training cohort and 0.833 in

the validation cohort). Moreover, AlphaFold 2 predictions combined with

molecular docking revealed that resveratrol has a strong affinity for ALKBH1,

indicating its potential as a targeted therapeutic agent. PPI network analysis,
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revealed a complex network of interactions among the hub ORGs and other

genes, suggesting a collective role in PDR pathogenesis.

Conclusion: This study provides insights into the cellular and molecular aspects

of PDR, identifying potential biomarkers and therapeutic targets using advanced

technological approaches.
KEYWORDS

diabetic retinopathy, single-cell analysis, oxidative stress, AlphaFold 2, NMF, PPI,
machine learning, ALKBH1
Introduction

Proliferative diabetic retinopathy (PDR), an advanced stage of

diabetic retinopathy, is a leading cause of irreversible blindness in the

productive-age population worldwide (1, 2). Characterized by retinal

neovascularization leading to severe complications such as

neovascular glaucoma, vitreous hemorrhage, and retinal

detachment, the pathogenesis of PDR has not been fully elucidated

(3, 4). Despite recent advances in imaging and management (5),

understanding the underlying molecular mechanisms is crucial for

developing effective therapies.

Oxidative stress, which is notably exacerbated in diabetes, plays a

pivotal role in PDR pathogenesis (6). It damages mitochondrial

structures and DNA in the retinal vasculature, impairing cellular

function (7). This stress is a key contributor to neovascular unit

insults, underpinning the core pathophysiology of PDR. Additionally,

diabetic patients are more susceptible to oxidative stress due to

impaired defense mechanisms, further emphasizing the role of

oxidative stress in the development and progression of diabetic

retinopathy, including PDR (8).

Single-cell RNA sequencing (scRNA-seq) has significantly

advanced disease research by providing detailed insights into the

cellular and molecular dimensions of various diseases (9, 10). Its

ability to dissect gene expression at the individual cell level reveals

the intricate cellular landscape of PDR, distinguishing between

diseased and healthy states (11). The study carried out by Hu

et al. provides valuable insights into the use of scRNA-seq in

studying PDR (12). These authors highlighted the application of

scRNA-seq for gene expression profiling, identifying cell

populations in fibrovascular membranes from PDR patients, and

revealing the novel role of microglia in the fibrovascular membrane

of PDR. These studies collectively emphasize the significance of

scRNA-seq in unraveling the molecular and cellular complexities of
scRNA-seq, Single-cell
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PDR, offering a promising approach for further research and

potential therapeutic interventions.

Concurrently, the integration of machine learning algorithms,

particularly in predictive modeling, has introduced a new dimension

to biomedical research (13, 14). These algorithms, including LASSO,

Ridge, and Elastic Net, facilitate the development of predictive models

for PDR, thereby increasing the accuracy of diagnoses and informing

personalized treatment approaches.

In our study, we combined single-cell sequencing with advanced

machine learning methods, as well as Non-negative Matrix

Factorization (NMF), to uncover transcriptional and oxidative

stress signatures in PDR. Our goal was to pinpoint oxidative stress-

related genes (ORGs) that could serve as biomarkers, aiming to

enhance the diagnostic and therapeutic landscape of PDR.
Methods

Data processing

ScRNA-seq data from five proliferative diabetic retinopathy

(PDR) patients (GSE165784) (12) and three control samples (15)

were processed alongside two bulk RNA PDR patient cohorts from

the GEO database (cohort 1: GSE160306 (16), 76 samples; cohort 2:

GSE102485 (17), 25 samples). Oxidative stress-related genes (ORGs)

were identified from the Gene Ontology and PathCards databases.
Single-cell data analysis of PDR patients

The single-cell data of five PDR patients (12) and three healthy

controls (15) were analyzed via Seurat (18). We filtered cells based

on mitochondrial content (<10%), cell count (>300), and gene

number (1000-5000). The t-distributed stochastic neighbor

embedding (t-SNE) (19) and ‘RunHarmony’ functions (20)

facilitated visualization and batch effect correction. Cell subtypes

were annotated according to cell markers from the original study

(12, 15). In the differential expression analysis between microglia

and mesenchymal cells in PDR versus control samples, the
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mitochondrial and ribosomal genes were removed. We used the

Wilcoxon signed-rank test to identify significant genes (adjusted P

value <0.05, absolute log2FC >1).
Non-negative matrix factorization and
meta-program detection of microglia in
PDR patients

NMF analysis, specifically consensus NMF (cNMF), was

applied to microglia in PDR samples, standardizing negative

values to zero. After more than 100 iterations, we explored the

components (k) ranging from 2 to 10 signatures, determining the

optimal component number via a diagnostic plot from the provided

tutorial (https://github.com/dylkot/cNMF) (21). A two-step gene

ranking algorithm was used to identify nonoverlapping gene

modules, which were further analyzed for expression patterns

using Pearson correlations and hierarchical clustering, revealing

three distinct meta-programs.
Establishment of a machine learning-
driven predictive ORG model for
PDR patients

Twelve machine learning algorithms, including (1) Least

Absolute Shrinkage and Selection Operator (LASSO), (2) Ridge,

(3) Elastic network (Enet), (4) Stepglm, (5) Support Vector

Machines (SVM), (6) GlmBoost, (7) Linear Discriminant Analysis

(LDA), (8) Partial Least Squares Regression for Generalized Linear

Models (plsRglm), (9) Random Forest (RSF), (10) Generalized

Boosted Regression Models (GBMs), (11) XGBoost, (12) Naive

Bayes, were utilized to develop a predictive ORG model for PDR.

We constructed 109 model combinations, trained initial models

with the GSE160306 cohort and validated them with the

GSE102485 cohort. Model performance was assessed using

the AUC.
Prediction of the structure of proteins

We utilized AlphaFold 2, a tool that has achieved remarkably

accurate levels comparable to those obtained through human

observation via advanced techniques such as cryoelectron

microscopy, for the prediction of protein structures (22). For our

specific study objectives, we used AlphaFold 2 to predict the

structures of select proteins relevant to our research. We focused

on the proteins ALKBH1, PSIP1, and ATP13A2, which play

significant roles in the context of PDR. The sequences of these

proteins were meticulously retrieved from the NCBI database (23).
Molecular docking analysis

To investigate the binding affinities and interaction patterns of the

drug candidates with their targets, we utilized AutoDock Vina 1.2.2, a
Frontiers in Endocrinology 03
software designed for in silico protein–ligand docking (24). The

molecular structure of resveratrol was obtained from the PubChem

Compound database (https://pubchem.ncbi.nlm.nih.gov/) (25).

AlphaFold 2 was used to generate the 3D coordinates for ALKBH1.

Before docking analysis, all proteins and ligand files were prepared by

converting them into PDBQT format. This preparation involved the

removal of water molecules and the addition of polar hydrogen atoms

to ensure accurate docking simulations. The docking grid box was

strategically positioned to encompass the target protein’s domain,

allowing for unhindered molecular movement within the simulation.

The dimensions of the grid box were set to 30 Å × 30 Å × 30 Å, with a

grid point spacing of 0.05 nm to capture detailed interaction data. The

molecular docking studies were conducted using AutoDock Vina 1.2.2

(http://autodock.scripps.edu/).
Protein interaction network analysis of
key ORGs

In our study, we investigated protein interactions involving

three pivotal ORGs. The use of the STRING database (https://

string-db.org/) (26), a comprehensive resource, enabled us to

compile and amalgamate data on protein−protein interactions

(PPIs). Our focus was directed toward interactions with

confidence scores surpassing 0.7, a threshold set to ensure the

biological relevance and significance of these interactions.

To deepen our analysis and improve its visualization, we

transferred the relevant data into Cytoscape (version 3.8.2) (27).

Within the Cytoscape environment, we leveraged the capabilities of

the cytoHubba plugin. This allowed us to pinpoint and rank the top

10 nodes in the PPI network. The ranking process utilized seven

distinct algorithms, each contributing a unique perspective to the

analysis. These algorithms included the following: Radiality, which

measures the centrality of a node; Maximum Neighborhood

Component (MNC), which assesses the largest connected

component around a node; Maximum Clique Centrality (MCC),

which focuses on the largest clique a node belongs to; Edge

Percolated Component (EPC), which evaluates the connectivity

and clustering; DMNC, which is the Maximum Neighborhood

Component Centrality, a derivative of the MNC; Degree, which

counts the number of edges linked to a node; and Closeness, which

measures the average distance to other nodes. To synthesize and

present our findings, we utilized an UpSet diagram.
Identification of hub genes associated
with PDR

To identify the hub genes associated with PDR, we used the

Comparative Toxicogenomics Database (CTD, http://ctdbase.org/)

(28). Utilizing the CTD, we conducted an in-depth analysis to

unravel the connections between potential key genes and a

spectrum of relevant conditions. This included not only PDR but

also a broader scope of related health issues, such as other eye

diseases, retinal disorders, vascular diseases, complications arising

from diabetes, and diabetes mellitus itself.
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Statistical analysis

All the statistical analyses of single cells were performed with R

(version 4.3.1). A P value less than 0.05 was considered to indicate

statistical significance if not explicitly stated.
Results

Analysis of single-cell RNA
sequencing data

In this study, we conducted an in-depth analysis of single-cell

RNA sequencing data from five patients with proliferative diabetic

retinopathy (PDR) (GSE165784) (12) and three healthy controls

(15), implementing t-distributed stochastic neighbor embedding (t-

SNE) for visualization post-quality control and data normalization.

This approach effectively distinguished between cellular clusters of

the PDR and control cohorts.

Figure 1A displays the range and individual RNA counts per

cell, reflecting successful quality control measures for our sample

analysis. We highlighted the 2000 genes with the highest variability

across samples in Figure 1B. To further dissect this complexity, we

applied linear dimensionality reduction to compute principal

components (PCs), as illustrated in Figure 1C. The determination

of significant PCs was aided by the integration of both ElbowPlot

(Figure 1D) and JackStrawPlot (Figure 1E), setting the stage for

more nuanced analyses. The distribution of cells across the PDR

and control groups is presented in Figure 1F, with the study

encompassing 5 PDR and 3 control samples, as depicted in

Figure 1G. A total of 26 clusters were identified across the

samples (Figure 1H). Through marker analysis from the original

study (12), we classified cells into five primary types: microglia,

lymphocytes, myeloid cells, endothelial cells, and mesenchymal cells

(Figure 1I). This categorization was further refined, resulting in the

identification of 14 distinct subcell types (Figure 1J).
Analysis of gene expression variations and
cell-cell interactions in PDR

Our investigation of differential gene expression and

intercellular communication within the retinal microenvironment

of PDR patients highlighted important findings. We observed

pronounced ligand-receptor interactions among various cell types,

with notable interactions between microglia and mesenchymal cells,

as well as between microglia and endothelial cells (Figures 2A, B).

These interactions shed light on the intricate signaling pathways

that could be instrumental in the development and progression of

PDR, suggesting potential therapeutic targets.

In a detailed analysis of gene expression between microglia and

mesenchymal cells in PDR versus control samples, 40 genes were

upregulated, and 111 genes were downregulated in both cell types

(Figures 2C, D; Supplementary Tables 1–4). The upregulated genes,

including FN1, ATP5F1E, B2M, MALAT1, and ATP5MG, and

downregulated genes, such as ATP5E, ALDOA, ATP5L, ATP5I,
Frontiers in Endocrinology 04
and C14orf2, indicate a complex regulatory landscape.

Furthermore, we revealed nuanced gene expression patterns:

GLUL, DAB2, SELENOP, and ALDH1A1 were downregulated in

mesenchymal cells but upregulated in microglia (Figure 2E;

Supplementary Tables 5, 6), while C12orf75, ITM2C, and CCND1

showed the opposite pattern (Figure 2F; Supplementary Tables 7, 8).
Identification of transcriptional programs in
PDR microglia cells using non-negative
matrix factorization

In our detailed investigation of specific microglia within PDR

samples, we employed the sophisticated technique of NMF to

determine the unique transcriptional landscape of these cells. This

advanced approach allowed us to systematically catalog various gene

modules, which are fundamentally crucial in defining the distinct

states of cells. Through this meticulous process, we were able to

identify and analyze patterns of gene coexpression within individual

PDR samples.

Our comparative analysis across multiple PDR samples was

instrumental in revealing recurring gene modules. This aspect of

our study was particularly significant because it effectively

minimized the impact of technical variations, thereby enhancing

the reliability and accuracy of our findings. By focusing on these

gene modules, we gained valuable insights into the transcriptional

intricacies inherent in PDR microglia.

One of the most noteworthy outcomes of our analysis was the

identification of three distinct meta-programs. These meta-programs

were discerned and clustered based on their correlation coefficients,

providing a clear representation of the transcriptional synergy within

microglia. The top-scoring genes of these meta-programs were

characterized, as depicted in Figure 3A. Notably, Meta-Program 1

emerged as particularly prominent, exhibiting the highest level of

correlation among the three. These results suggest that the genes

within Meta-Program 1 are potentially central to the transcriptional

identity and function of microglia in the context of PDR.

Elucidation of these meta-programs is important to our

understanding of PDR. This study provides a novel perspective

on the transcriptional dynamics of microglia, a critical component

of disease pathology. This insight not only enhances our

understanding of the molecular mechanisms underlying PDR but

also opens up new directions for targeted therapeutic strategies

aimed at modulating these specific transcriptional programs.
Development and validation of the
oxidative stress-related gene predictive
model for PDR

To develop a predictive model for PDR based on ORGs, we

examined a subset of 15 genes that notably intersected within Meta-

Program 1, as illustrated in Figure 3B. We constructed ORGmodels

by twelve diverse machine learning algorithms, including (1) Least

Absolute Shrinkage and Selection Operator (LASSO), (2) Ridge, (3)

Elastic network (Enet), (4) Stepglm, (5) Support Vector Machines
frontiersin.org
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(SVM), (6) GlmBoost, (7) Linear Discriminant Analysis (LDA), (8)

Partial Least Squares Regression for Generalized Linear Models

(plsRglm), (9) Random Forest (RSF), (10) Generalized Boosted

Regression Models (GBMs), (11) XGBoost, (12) Naive Bayes

(Figure 4A). Among the 109 models constructed, the cream of

the crop emerged in the form of models based on a sophisticated

Stepglm [backward]+RF approach. These standout models
Frontiers in Endocrinology 05
prominently featured three key ORGs, ALKBH1, PSIP1, and

ATP13A2, as delineated in Figure 4B. The importance of this

model was unmistakably demonstrated in the training cohort

(GSE160306), in which an outstanding area under the curve

(AUC) of 0.989 was achieved. This exceptional level of predictive

accuracy underlines the model’s formidable potential as a tool for

diagnosing PDR.
A B

D E F

G

I

H

J

C

FIGURE 1

Single-cell RNA sequencing analysis of proliferative diabetic retinopathy (PDR) samples compared with normal samples. (A) Quality control of single-
cell RNA sequencing data for PDR and normal samples. (B) Identification of highly variable genes. The top 2000 variable genes are shown as red
dots. (C) Principal component analysis. Accordingly, we classified the cell groups into two categories. ElbowPlot (D) and JackStrawPlot (E) of
principal components. T-distributed stochastic neighbor embedding (t-SNE) analysis of different groups (F), 8 samples (G), 26 clusters (H), five major
cell types (I), and 14 subcell types (J).
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To further validate the model’s applicability in a clinical setting,

we undertook a validation study using an external cohort

(GSE102485). The results were encouraging, as the model

retained a significant level of diagnostic accuracy, as evidenced by

an AUC of 0.833. This performance in an external cohort not only

reinforces the model’s robustness but also underscores its potential

utility as an early detection and ongoing monitoring tool for PDR.
Structural prediction and molecular
docking analysis

In our study, we harnessed the ability of AlphaFold 2

technology to predict the complex structures of three pivotal

ORGs, ALKBH1, PSIP1, and ATP13A2, as shown in Figure 4C.

The predictive confidence for ALKBH1 and ATP13A2 was notably

high, whereas PSIP1 demonstrated lower confidence levels and was

subsequently not included in further analysis.
Frontiers in Endocrinology 06
Furthermore, to assess the binding affinity of potential therapeutic

agents for these targets, we conducted a molecular docking analysis.

Specifically, we explored the interaction between ALKBH1 and the

candidate drug resveratrol utilizing AutoDock Vina v.1.1.2 for this

purpose. The analysis provided insights into the binding modes and

calculated the binding energies for the interactions (Figures 5A–C).

The derived binding energy for the ALKBH1-resveratrol complex was

-6.471 kcal/mol, suggesting a highly stable interaction. This strong and

stable binding affinity further underscores the potential therapeutic

relevance of targeting ALKBH1 with resveratrol in the context of

oxidative stress-related conditions.
Protein interaction analysis of key ORGs
in PDR

Next, we explored the protein-protein interactions (PPIs) of

these ORGs. For this purpose, we utilized the STRING database,
A B

D

E F

C

FIGURE 2

Detailed analysis of cell-cell communication and gene expression in PDR. (A, B) Cell-cell communication network maps for five major cell types
based on the number of involved genes (A) and interaction weights/strengths (B). (C–F) Gene expression analysis of microglia and mesenchymal
cells. Upregulated (C) and downregulated (D) genes in both cell types. (E) Downregulated genes in mesenchymal cells but upregulated genes in
microglia. (F) Upregulated genes in mesenchymal cells but downregulated genes in microglia.
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which is renowned for its extensive protein interaction data. Our

focus was on interactions with confidence scores exceeding 0.7,

ensuring that only biologically significant and reliable interactions

were considered. This selective approach was instrumental in sifting

through vast data to identify meaningful connections that could be

crucial in the context of PDR.

The PPI network enriched with these curated data was then

intricately analyzed using Cytoscape. This platform enabled us to

visualize and dissect the complex web of interactions. Using the

cytoHubba plugin within Cytoscape, we systematically identified

the top 10 nodes in the network utilizing a suite of seven

sophisticated algorithms. These included Radiality, Maximum

Neighborhood Component (MNC), Maximum Clique Centrality

(MCC), EPC (Edge Percolated Component), DMNC (Maximum

Neighborhood Component Centrality), Degree, and Closeness, each

offering a unique lens to view and understand the network’s

structure. Figures 6A, B depict these findings, revealing a

comprehensive map of the interactions.

Furthermore, to emphasize the interconnected nature of these

interactions, we constructed an UpSet diagram (Figure 6C). This

visualization succinctly highlighted the convergence of hub genes

across different algorithms, revealing key proteins such as H2AC8,

H2BC12, H2AC13, and H2AC16 that were consistently central

across all algorithms, as detailed in Supplementary Table 9. This

representation was instrumental in highlighting the core genes

within the network, thereby elucidating their potential collective

role in the pathophysiology of PDR.
Frontiers in Endocrinology 07
Integrating comparative toxicogenomics
database analysis with PDR research

To complement our protein interaction analysis, we utilized

CTD as an instrumental resource. The CTD facilitated the

expansion of our study to investigate the connections between

our identified hub ORGs and a range of conditions associated

with PDR, such as diabetic retinopathy, various eye and retinal

diseases, vascular complications, and diabetes mellitus itself.

Figures 7A–F display these connections, emphasizing the marked

correlation between genes ALKBH1, PSIP1, ATP13A2, and the

aforementioned conditions, validated by substantial reasoning

scores within the CTD. Additionally, we incorporated a “negative

control” gene, PXDNL, an unrelated ORG, to bolster the

conclusiveness of our analysis.
Discussion

Proliferative diabetic retinopathy (PDR) poses a significant

challenge in diabetes management and often leads to irreversible

blindness. Current treatments such as panretinal photocoagulation

have limitations, including potential adverse effects on visual acuity

(29). Novel approaches such as CD40-TRAF6 inhibition (30) and

anti-IL17A therapy (31) show promise in mouse models but require

further clinical validation. These limitations underscore the

pressing need for more effective and precise therapeutic strategies.
A

B

FIGURE 3

Catalog of PDR gene modules in microglia. (A) Heatmap demonstrating the significance of the overlap between PDR gene modules in microglia,
identifying three consensus modules: Meta-Program 1, Meta-Program 2, and Meta-Program 3. (B) Identification of 15 genes at the intersection of
Meta-Program 1 and oxidative stress-related genes (ORGs) from the Gene Ontology and PathCards databases.
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In our study, the integration of single-cell sequencing and Non-

negative Matrix Factorization (NMF) was pivotal in revolutionizing

our understanding of the transcriptional intricacies in PDR. This

advanced methodological approach facilitated in-depth analysis of

the disease transcriptional landscape, revealing the existence of

specific gene modules and delineating three crucial meta-programs.

Our focused analysis, through the lens of NMF, allowed us to

dissect the intricate patterns of gene expression, revealing how

different gene modules interact and contribute to the
Frontiers in Endocrinology 08
pathophysiology of PDR. This nuanced understanding of gene

modules and their interplay is critical, as it sheds light on the

underlying mechanisms that drive the disease. In particular, the

discovery of oxidative stress-related genes (ORGs), which are key

players within these meta-programs, has been illuminating. This

highlights the significant role that oxidative stress, a known factor in

diabetic complications, plays in the progression of PDR.

In the context of oxidative stress and its implications for disease

pathogenesis, the identification and study of ALKBH enzymes,
A

B

C

FIGURE 4

Development of machine learning-derived predictive models. (A) AUC results for combinations of machine learning algorithms in the training and
validation cohorts. The training cohort was GSE160306, and the validation cohort was GSE102485. (B) Description of the three hub ORGs included
in the highest-performing model. (C) Protein structures of three hub ORGs predicted using AlphaFold 2.
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particularly ALKBH8, have been pivotal. Previous research has

elucidated the role of these enzymes in the intricate regulation of

reactive oxygen species (ROS) production and oxidative stress,

which are crucial processes in cellular homeostasis and disease

development. For example, studies have highlighted the role of

ALKBH8 in the development of human bladder cancer, where it

contributes to the disease process by downregulating NAD(P)H

oxidase-1 (NOX-1) and subsequently activating pathways such as

the c-jun NH2-terminal kinase (JNK) and p38 pathways, which are

involved in NADPH oxidase 1-dependent ROS production and

apoptosis induction (32). Additionally, ALKBH8 has been

implicated in the reduction of ROS production through similar

mechanisms and in the regulation of selenocysteine protein

expression, which serves as a defense against ROS damage in

response to oxidative stress (33). These findings collectively

underscore the substantial role of ALKBH, particularly ALKBH8,

in the regulation of oxidative stress and its relevance to various

disease processes.

Similarly, ATP13A2 has been extensively studied for its role in

the regulation of cellular responses to oxidative stress. This gene is

implicated in protective mechanisms against mitochondrial toxins

such as rotenone, which is an environmental risk factor for

Parkinson’s disease (34). The function of ATP13A2 in mitigating

oxidative stress is multifaceted. PSP not only aids in reducing levels

of intracellular oxidative damage but also enhances the clearance of

oxidatively damaged macromolecules (35). This finding suggested

that ATP13A2 plays a significant protective role against oxidative

stress, underscoring its importance in maintaining cellular health

and preventing damage. Furthermore, the impaired function of

ATP13A2 has been directly linked to increased oxidative stress in

human neuroblastoma cells, highlighting its critical role in cellular

defense mechanisms against oxidative damage (36).
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These insights into ALKBH and ATP13A2 provide a deeper

understanding of the molecular mechanisms by which oxidative

stress influences disease progression and pathology. The significant

relationship of these genes with the regulation of oxidative stress

emphasizes their potential as therapeutic targets. In the context of

PDR, where oxidative stress plays a central role, understanding

these mechanisms is crucial. This approach opens potential avenues

for targeted therapies that modulate oxidative stress pathways,

potentially offering more effective treatment options for

conditions such as PDR and beyond.

Therefore, elucidating the roles of ALKBH and ATP13A2 in

oxidative stress regulation not only enhances our understanding of

the cellular response to oxidative challenges but also positions these

genes as key players in the development of novel therapeutic

strategies for diseases where oxidative stress is a contributing factor.

Incorporating the AlphaFold 2 technology (22) into our

research represents an innovation in our study. AlphaFold 2, an

advanced protein structure prediction tool developed by DeepMind,

has revolutionized the field of structural biology. Its ability to

predict protein structures with unprecedented accuracy provides

invaluable insights into the functional mechanisms of proteins at

the molecular level.

In the context of our study on PDR, the application of

AlphaFold 2 allowed us to predict the structures of key ORGs,

namely, ALKBH1, PSIP1, and ATP13A2. This capability is crucial

because it provides a deeper understanding of protein

configurations and their potential interactions, which are often

pivotal in determining their functional roles in cellular processes.

The structural insights gained from AlphaFold 2 significantly

augmented our understanding of protein−protein interactions

(PPIs) and the molecular pathways in which these ORGs are

involved. The ability to visualize the precise structure of these
A

B

C

FIGURE 5

Molecular docking of resveratrol with ALKBH1. (A) Three-dimensional configuration of the ALKBH1 protein. (B) Illustration of the binding interaction
between the ALKBH1 protein and resveratrol. (C) A closer view of the molecular docking of resveratrol with ALKBH1, highlighting local
amplification details.
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proteins aids in elucidating their functional domains, interaction

sites, and potential binding mechanisms, which are essential for

elucidating their roles in the pathogenesis of PDR. Furthermore, the

application of the AlphaFold 2 in our study sets a precedent for

future research on diabetic retinopathy and other related diseases.

By enabling a more accurate prediction of protein structures, new

possibilities are available for the development of targeted

therapeutic interventions, as structural insights are crucial for

drug design and discovery.
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Our findings resonate with and build upon existing related

research in the field, such as the notable work of Hu et al., which

focused on the involvement of microglia in PDR (12). This

alignment with the findings of previous studies not only validates

our findings but also adds a new dimension to our collective

understanding of the disease. By contextualizing our results

within the broader scientific narrative, we underscore the

importance of oxidative stress in PDR pathogenesis and open

potential avenues for targeted therapeutic interventions.
A

B

C

FIGURE 6

Construction of the protein-protein interaction (PPI) network and functional enrichment analysis of the three hub ORGs. (A) The PPI network was
constructed based on 50 genes closely related to the three hub ORGs. (B) The top ten hub genes in the PPI network were identified using seven
analytical algorithms. (C) UpSet plot displaying overlapping genes identified by all algorithms.
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There are limitations to this study. While our bioinformatics

approach has provided significant insights into potential key players

in DR pathogenesis, we recognize that the identification of ALKBH,

ATP13A2, and PSIP1 as potential biomarkers or therapeutic targets

is preliminary and necessitates further experimental validation.

In conclusion, our study marks progress in molecular biology and

disease research through the application of technologies such as

AlphaFold 2, single-cell sequencing, machine learning and NMF.

This methodological synergy has not only enriched our

understanding of the molecular landscape of PDR but also

highlighted the importance of ORGs in its pathogenesis. Our

research underscores the value of harnessing advanced technologies

to explore disease mechanisms and therapeutic innovations.
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FIGURE 7

Interactions between three key ORGs and the negative control gene PXDNL across various disease conditions. The analysis was conducted with the
Comparative Toxicogenomics Database (CTD; http://ctdbase.org/). The inference scores between the three hub ORGs and (A) diabetic retinopathy,
(B) retinal diseases, (C) eye diseases, (D) vascular diseases, (E) diabetes complications, and (F) diabetes mellitus are shown in bar plots.
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