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Introduction: Gender incongruence (GI) is characterized by a marked

incongruence between an individual’s experienced/expressed gender and the

assigned sex at birth. It includes strong displeasure about his or her sexual

anatomy and secondary sex characteristics. In some people, this condition

produces a strong distress with anxiety and depression named gender

dysphoria (GD). This condition appears to be associated with genetic,

epigenetics, hormonal as well as social factors. Given that L-glutamate is the

major excitatory neurotransmitter in the central nervous system, also associated

with male sexual behavior as well as depression, we aimed to determine whether

metabotropic glutamate receptors are involved in GD.

Methods: We analyzed 74 single nucleotide polymorphisms located at the

metabotropic glutamate receptors (mGluR1, mGluR3, mGluR4, mGluR5,

mGluR7 and mGluR8) in 94 transgender versus 94 cisgender people. The allele

and genotype frequencies were analyzed by c2 test contrasting male and female

cisgender and transgender populations. The strength of the associations was

measured by binary logistic regression, estimating the odds ratio (OR) for each

genotype. Measurement of linkage disequilibrium, and subsequent measurement

of haplotype frequencies were also performed considering three levels of

significance: P ≤ 0.05, P ≤ 0.005 and P ≤ 0.0005. Furthermore, false positives

were controlled with the Bonferroni correction (P ≤ 0.05/74 = 0.00067).

Results: After analysis of allele and genotypic frequencies, we found twenty-five

polymorphisms with significant differences at level P ≤ 0.05, five at P ≤ 0.005 and

two at P ≤ 0.0005. Furthermore, the only two polymorphisms (rs9838094 and

rs1818033) that passed the Bonferroni correction were both related to the

metabotropic glutamate receptor 7 (mGluR7) and showed significant

differences for multiple patterns of inheritance. Moreover, the haplotype T/G
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[OR=0.34 (0.19–0.62); P<0.0004] had a lower representation in the transgender

population than in the cisgender population, with no evidence of sex

cross-interaction.

Conclusion: We provide genetic evidence that the mGluR7, and therefore

glutamatergic neurotransmission, may be involved in GI and GD.
KEYWORDS

gender dysphoria (GD), gender incongruence, membrane-bound estrogen receptors,
mERs, metabotropic glutamate receptors (mGluR), mGluR5, MGluR7, rapid
estradiol signaling
1 Introduction

Gender identity is the consciousness of being a man or a

woman. For the majority of the population this awareness is

congruent with the male or female aspect of their genitals; they

are cisgender men or women (CM and CW respectively). However,

for some people, gender identity is not congruent with their

genitalia (ICD-11; 1), 2022), they are transgender men or women

(TM and TW respectively). The transgender population is a

heterogeneous group: some feel they belong to the binary male-

female dichotomy (binary transgender people), while others feel

they are agender, bigender, gender fluid, etc., they are non-binary

transgender people (2). In some transgender persons the gender

incongruence could drive deep depression and anxiety, called

gender dysphoria (GD) by DSM-5 (3), that require gender

affirming hormone treatment (4).

Since the studies of Swaab (5) on post mortem brains of male

and female cisgender and female transgender people showing that

the central part of the bed nucleus of the stria terminalis was

feminized in female transgender, genetic and neuroimaging in vivo

studies have been carried out within the framework of

sexual differentiation, and a cortical neurodevelopmental theory

has been put forward (6, 7). The genetic analysis of sex

steroid receptor polymorphisms (8–16) and coactivator

polymorphisms (17) in transgender population support the above

mentioned theory.

Within the scope of sex differences, polymorphisms of the a
and b estrogen receptors as well as of the androgen receptor present

particular interest (13). In transgender women, complex interaction

between estrogen and androgen receptor polymorphisms was

unveiled. Thus, an inverse allele interaction between rs113770630

(ERb) and rs193922933 (AR) is characteristic of the TW

population: when either of these polymorphisms is short, the

other is long. rs9340799 (ERa) and rs113770630 (ERb) are also

related to the TM population although no interaction between these

two polymorphisms was evidenced (13).

The ERa and ERb receptors were initially identified as

intracellular, ligand-regulated transcription factors that are
02
expressed throughout the body, and in numerous brain regions

(18). But this classical mechanism only partially explains the wide

variety of effects produced by estradiol (19). Thus, recent studies

suggest that the rapid effects of estrogens are the result of a novel

signaling mechanism from the cell membrane (20) resulting from

the coupling of classical ERs localized at the membrane (mERs)

with metabotropic glutamate receptors (mGluRs) (21). In the

central nervous system, the signaling cascades initiated by the

mER/mGluR coupling has been shown to be involved in many

physiological functions in both sexes (19).

The mGluRs are a heterogeneous group that is categorized into

three subgroups based on sequence homology, pharmacology, and

downstream signaling (22): Group I, consists of mGluR1 and

mGluR5, group II includes mGluR2 and mGluR3, while receptors

mGluR4, mGluR6, mGluR7, mGluR8 form group III. Evidence of

ER interactions with the three mGluR groups has been found.

Group I is primarily characterized by their postsynaptic localization

and their association with Gq G proteins. Group II is primarily

localized presynaptically and associate with Gi/o G proteins. While

Group III is also primarily expressed presynaptically and couple to

Gi/o G proteins (23). All these receptors are expressed in the

brain (23).

At behavioral level, mGluRs are implicated in sexual behavior.

Specifically, mGluR5 and mGluR7 receptors influence rodent male

sexual behavior (24–26). Furthermore, Schwarz and McCarthy

reported that antagonizing glutamate receptors during the critical

period of sexual differentiation blocks estradiol-induced

defeminization but not masculinization of behavior in

adulthood (27).

Moreover, mGluR receptors are of particular interest for

transgender people because they show higher rates of attempted

and suicidal ideation compared to the overall population (28, 29)

and they are nearly twice as likely to die than cisgender people (30).

Interestingly, it is worth noting that glutamatergic transmission is

dysregulated in suicidal individuals (28, 31, 32).

Because of the coupling of classical ERs and mGluRs, and the

implications of both types of receptors in brain sex differences and

behavior, in order to delve into the molecular bases of gender
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identity, we analyzed 74 polymorphisms located at the

metabotropic glutamate receptors (mGluR1, mGluR3, mGluR4,

mGluR5, mGluR7 and mGluR8) in a homogeneous male and

f ema l e t r an s g end e r v e r s u s t o a ma l e and f ema l e

cisgender populations.
2 Methods and materials

2.1 Participants

The analyzed population consisted of 47 transgender women

(TW) and 47 transgender men (TM) diagnosed and recruited

through the Gender Identity Unit of the Clıńic Hospital of

Barcelona (Spain), and 50 cisgender women (CW) and 44

cisgender men (CM) obtained from the biobank of the Regional

University Hospital of Málaga (Spain).

The inclusion criterion for the entire population that

participated in the study was being older than 18 years, and

specifically for the transgender population, the presence of the

first symptoms of GI (ICD-11) before puberty (defined as

early onset).

The exclusion criteria for all participants were: presence of

medical or psychiatric disorders, and previous history of alcohol

and/or drug abuse. All participants were matched by geographical

origin (Spanish), ethnicity (Caucasian) and the sex assigned at birth.

(Supplementary Table 1).
2.2 Molecular analysis

In the case of the transgender population, genomic DNA was

obtained from blood using the DNeasy Blood & Tissue Kit from

Qiagen (Madrid, Spain). For the cisgender population, we obtained

the DNA samples from the biobank of the Regional University

Hospital of Málaga (Spain).

All analyzed polymorphisms were single nucleotide

polymorphisms (SNPs) located, according to the Ensembl

database (www.ensembl.org/), at the metabotropic glutamate

receptors (Supplementary Table 2). Genotyping was performed by

the microarray Axiom Spanish Biobank (Affymetrix). Statistical

analyses were performed using the free online software SNPStats

(https://www.snpstats.net/) (33). SNPStats is a simple, free, ready-

to-use software which has been designed to analyze genetic-

epidemiology studies of association using SNPs. Once the

genotype frequencies were uploaded, and for each selected SNP,

the following were calculated: allele and genotype frequencies, test

for Hardy-Weinberg equilibrium, analysis of association with a

response variable based on linear or logistic regression, multiple

inheritance models, linkage disequilibrium statistics, haplotype

frequency estimation, analysis of association of haplotypes with

the response and analysis of interactions (haplotypes-covariate).

The study was approved by the ethical committees of the National

University of Distance Education (UNED, Madrid). At the start of the

study, written informed consent was obtained from all participants.
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2.3 Statistical analyses

The genetic analyses were conducted contrasting populations

by their sex assigned at birth, considering three levels of

significance: P ≤ 0.05, P ≤ 0.005 and P ≤ 0.0005. Moreover, we

applied the Bonferroni correction (P ≤ 0.05/74 = 0.00067) to

control the overall type I error rate. The allele and genotype

frequencies were analyzed by c2 test. The strength of the

associations with GI was measured by binary logistic regression,

estimating the odds ratio (OR) for each genotype for multiple

patterns of inheritance. Furthermore, measurement of linkage

disequilibrium, and subsequent measurement of haplotype

frequencies were performed using logistic regression models to

determine the strength of the associations.
3 Results

We analyzed the allele and genotypic frequencies, the

interactions with the covariate sex assigned at birth, and the

linkage disequilibrium of 74 polymorphisms at the metabotropic

glutamate receptors (mGluR) (Supplementary Table 2), in a

transgender population versus a cisgender population with similar

geographic origin (Spanish) and ethnicity (Caucasian).

The analyses were conducted considering three levels of

significance: P ≤ 0.05, P ≤ 0.005 and P ≤ 0.0005, finding

significant differences at the three levels: at the P ≤ 0.05 level, we

found significant differences in 25 polymorphisms distributed

among the mGluR1, mGluR4, mGluR5, mGluR7, and mGluR8

receptors (Supplementary Table 2). At the P<0.005 level, five

polymorphisms (Supplementary Table 2), distributed among the

metabotropic receptors mGluR5 and mGluR7, reached statistical

significance (rs62237207, rs62237212, rs62237216, rs62237226,

rs7782149). While at the P<0.0005 level, only two polymorphisms

located at the mGluR7, rs9838094 and rs1818033, reached statistical

significance. These two polymorphisms that passed the Bonferroni

correction, were surrounded by other polymorphisms that reached

significance at 0.05 or 0.005 levels (Supplementary Table 2).

The analysis of the allele and genotype frequencies with respect

to the polymorphism rs9838094, showed significant differences at

level P ≤ 0.0005 and P ≤ 0.005 respectively (Table 1). The ancestral

allele G and the genotype G/G were over represented in the

transgender population, while genotypes T/G and T/T were more

frequent in the cisgender population. The genotype T/T was absent

in the transgender population (Table 1).

The analysis of the genotype frequencies according to the

different models of inheritance (Table 2) showed significant

differences for all the inheritance patterns. The analysis of the

covariate sex assigned at birth showed no statistical differences

between males and females (Table 3).

With respect to the polymorphism rs1818033, the C allele and

the C/C genotype were overrepresented in the transgender

population (Table 1). The association analysis with GI showed

significant differences for multiple patterns of inheritance

(codominant, dominant, recessive and log-additive) (Table 2).
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The analysis of the covariate sex assigned at birth showed no

evidence of sex cross-interaction (Table 4).
3.1 Haplotype analysis

We carried out the haplotype analysis of the two polymorphisms at

the mGluR7 that passed the Bonferroni correction (D: 0.1215; D’:

0.9993; r: 0.6883 and P: 0). Linkage disequilibrium analysis between

polymorphisms rs9838094 and rs1818033 showed that allele G from

polymorphism rs9838094 was linked to allele C from polymorphism

rs1818033 (haplotype 1: GC) (Table 5) and forms the most frequent

haplotype (68.88%) in transgender and cisgender populations. Respect

to the haplotype 2 (TG), it was more frequent in the cisgender

population with an OR≤ 0.34 (0.19 - 0.62; P ≤ 0.0006; global

haplotype association P ≤ 0.0004). Haplotype interaction analysis

with the covariate sex assigned at birth showed that the haplotype T-

G was more frequent in the cisgender population for both, the male,
Frontiers in Endocrinology 04
and the female populations, with no evidence of sex cross-

interaction (Table 5).
4 Discussion

Seventy-four polymorphisms located at the metabotropic

glutamate receptors (mGluRs) were analyzed at three levels of

significance (P ≤ 0.05, P ≤ 0.005 and P ≤ 0.0005), founding 27

polymorphisms that reached statistical significance, two of which,

located at the mGluR7, passed the Bonferroni correction. This is the

first communication on the involvement of mGluR7 in gender identity.

Today, it is widely accepted that estradiol can act independently

of the classical nuclear receptors, ERa and ERb, by activating

membrane-localized receptors (mER). Recent research indicates

that mER signaling through mGluRs is an important and rapid

mechanism by which estrogens can modulate neuronal and glial

physiology, affecting various aspects of nervous system function (21,
TABLE 1 Analysis of the allele and genotype frequencies for polymorphisms rs9838094 and rs9838094 in trans and cis populations.

rs9838094

Allele frequencies (n=187)

All subjects Cis group Trans group
P-value

Allele Count Proportion Count Proportion Count Proportion

G 308 0.82 142 0.76 166 0.89
0.0005†

T 66 0.18 46 0.24 20 0.11

Genotype frequencies (n=188)

All subjects Cis group Trans group
P-value

Genotypes Count Proportion Count Proportion Count Proportion

G/G 127 0.68 54 0.57 73 0.78

0.002**
G/T 54 0.29 34 0.36 20 0.22

T/T 6 0.03 6 0.06 0 0

NA 1 — 0 — 1 —

rs1818033

Allele frequencies (n=188)

All subjects Cis group Trans group
P-value

Allele Count Proportion Count Proportion Count Proportion

C 259 0.69 113 0.6 146 0.78
0.0003†

G 117 0.31 75 0.4 42 0.22

Genotype frequencies (n=188)

All subjects Cis group Trans group
P-value

Genotypes Count Proportion Count Proportion Count Proportion

C/C 89 0.47 34 0.36 55 0.59

0.0009**C/G 81 0.43 45 0.48 36 0.38

G/G 18 0.1 15 0.16 3 0.03
fro
** Reached significance at level P≤0.005.
† Reached significance at level P≤0.0005.
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TABLE 2 rs9838094 and rs1818033 polymorphism association analysis with gender incongruence in trans and cis populations, in different models
of inheritance.

rs9838094 association with GI (n=187, adjusted by sex)

Model Genotypes
Cis group
Count/

Proportion

Trans group
Count/

Proportion
OR (95% CI) P-value AIC BIC

Codominant
G/G 54 (57.5%) 73 (78.5%)

Reference
1.00

5.00E-04*† 252.1 265

T/G 34 (36.2%) 20 (21.5%)
0.43

(0.23–0.84)

T/T 6 (6.4%) 0 (0%)
0.00

(0.00-NA)

Dominant
G/G 54 (57.5%) 73 (78.5%)

Reference
1.00

0.0018* 255.4 265.1

T/G-T/T 40 (42.5%) 20 (21.5%)
0.37

(0.19–0.70)

Recessive
G/G-T/G 88 (93.6%) 93 (100%)

Reference
1.00

0.0033* 256.5 266.2

T/T 6 (6.4%) 0 (0%)
0.00

(0.00-NA)

Overdominant
G/G-T/T 60 (63.8%) 73 (78.5%)

Reference
1.00

0.026* 260.2 269.9

T/G 34 (36.2%) 20 (21.5%)
0.48

(0.25–0.93)

Log-additive
— — —

0.36
(0.20–0.65)

4.00E-04*† 252.5 262.2

rs1818033 association with GI (n=188, adjusted by sex)

Codominant

C/C 34 (36.2%) 55 (58.5%)
Reference

1.00
6.00E-04*† 253.5 266.4

C/G 45 (47.9%) 36 (38.3%)
0.50

(0.27–0.92)

G/G 15 (16%) 3 (3.2%)
0.12

(0.03–0.45)

Dominant

C/C 34 (36.2%) 55 (58.5%)
Reference

1.00
0.002* 256.9 266.6

C/G-G/G 60 (63.8%) 39 (41.5%)
0.40

(0.22–0.72)

Recessive

C/C-C/G 79 (84%) 91 (96.8%)
Reference

1.00
0.0017* 256.5 266.3

G/G 15 (16%) 3 (3.2%)
0.17

(0.05–0.60)

Overdominant

C/C-G/G 49 (52.1%) 58 (61.7%)
Reference

1.00
0.19 264.7 274.4

C/G 45 (47.9%) 36 (38.3%)
0.68

(0.38–1.21)

Log-additive — — —
0.42

(0.26–0.67)
2.00E-04*† 252.3 262
F
rontiers in Endocri
nology
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* Reached statistical significance.
† Passed the Bonferroni correction.
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23). There are data showing interaction between mGluRs and the

ERs in several brain regions (23) that show sex differences in

animals (34) and humans (35, 36). Sexual differentiation of the

brain is developed by the intertwining work of gonadal hormones

and neurotransmitters (37, 38). There are brain structural (6) and

functional (7) differences between male and female cisgender and

transgender people and a neurodevelopmental theory was proposed

to explain these differences (6). The polymorphisms analyzed here

show that some SNPs in the mGluR7 and mGluR5 receptors are

more prevalent in transgender than in cisgender populations,

suggesting the involvement of these receptors, at least mGluR7, in

the development of transgender identity.

It is becoming clear that ER signaling through mGluRs is one

important and rapid mechanism by which estrogens can modulate

neuron and glial physiology, ultimately impacting various aspects of
Frontiers in Endocrinology 06
nervous system function (23). Studies of ERa and ERb
overexpression showed that a subpopulation of these classical

receptors is trafficked to the membrane (membrane-bound

estrogen receptors, mERs) activating intracellular signaling (23,

39). In addition, mERs interact with metabotropic glutamate

receptors (mGluRs) (40, 41), such that mER/mGluR coupling

initiates G-protein signaling cascades that rapidly affect cellular

excitability and gene expression (19), influencing neuronal

physiology, structure and behavior (23, 42).

Estrogens are known to be potent regulators of neuronal

structure (increasing dendrite length and spine density) (43). In

addition, rapid effects of estrogens have also been described for

sexual behavior (44). On the basis of the above, we believe that it

would be also necessary to analyze polymorphisms located in the

GPER-1 (G protein-coupled estrogen receptor 1) gene, a specific
TABLE 3 Interaction analysis of the rs9838094 polymorphism with the covariate natal sex.

Interaction analysis with covariate natal sex

rs9838094 sex cross-classification interaction (n=187, crude analysis)

Females Males

Genotypes Cis group
Trans
group

OR
(95% CI)

P-value Cis group
Trans
group

OR
(95% CI)

P-value

G/G 30 37 Reference 1.00 – 24 36 1.22 (0.60–2.46) 0.592

T/G 18 10 0.45 (0.18–1.12) 0.086 16 10 0.51 (0.20–1.28) 0.155

T/T 2 0 0.00 – 4 0 0.00 –

Natal sex within rs9838094 (n=187, crude analysis)

Genotypes Natal sex Cis group Trans group OR (95%CI) P-value

G/G Females 30 37 Reference 1.00 –

Males 24 36
1.22

(0.60–2.46)
0.592

T/G Females 18 10 Reference 1.00 –

Males 16 10
1.12

(0.37–3.40)
0.851

T/T Females 2 0 Reference 1.00 –

Males 4 0 1.00 –

Test for interaction in the trend: 0.76

rs9838094 within natal sex (n=187, crude analysis)

Natal sex Genotypes Cis group Trans group OR (95%CI) P-value

Females G/G 30 37 Reference 1.00 –

T/G 18 10 0.45
(0.18–1.12)

0.086

T/T 2 0 0.00 –

Males G/G 24 36 Reference 1.00 –

T/G 16 10 0.42
(0.16–1.07)

0.073

T/T 4 0 0.00 –

Test for interaction in the trend: 0.99
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membrane estrogen receptor (45, 46) that have not yet been

analyzed in the transgender population.

On the other hand, the great variety of receptor pairs that are

possible due to the existence of multiple subtypes of ER (a and b)
and mGluRs (1–8 and subtypes), gives rise to a great diversity of

molecular results that affect processes as diverse as cognition,

motivation, movement or sexual behavior. For example, the

mGluR5 plays an important role in the regulation of synaptic

plasticity and the modulation of the neural network activity (47,

48) And both, mGluR5 and mGluR7 influence rodent male sexual

behavior (24–26).

mGluR5, which is mainly located at the postsynaptic regions

(49), is an important regulator of both excitatory and inhibitory

pathways, and alterations in its expression are often related to a

number of neurological and psychiatric conditions, including

epilepsy, anxiety, and autism spectrum disorder (ASD) (50).
Frontiers in Endocrinology 07
mGluR7, which is expressed presynaptic (51), is also widely

distributed in the brain (52), and couples to G proteins. Under high

glutamate concentrations, mGluR7 acts as auto-receptor to inhibit

further neurotransmitter release (53). Moreover, mGluR7 also

functions as a hetero receptor inhibiting GABA release (51, 54).

Thus, activation of these receptors modulates glutamate release (55,

56) controlling the excitatory synapse function (57).

In addition, evidence suggests that mGluR7 exhibits a basal

signaling (constitutive activity), even in the absence of its natural

ligand (glutamate). When expressed in neurons, mGluR7 shows

detectable basal calcium channel modulation without the need for

strong receptor activation. This constitutive activity implies that

mGluR7 may have a physiological role even when not fully activated

by glutamate (58).

On the other hand, mGluR5 and mGluR7 are known to mediate

emotional and social behavior (57, 59, 60). Thus, some studies have
TABLE 4 Interaction analysis of the rs1818033 polymorphism with the covariate natal sex.

Interaction analysis with covariate natal sex

rs1818033 sex cross-classification interaction (n=187, crude analysis)

Females Males

Genotypes Cis group Trans group
OR

(95% CI)
P-value Cis group Trans group OR (95% CI) P-value

C/C 18 28 Reference 1.00 – 16 27 1.08 (0.46–2.55) 0.870

C/G 26 18 0.45
(0.19–1.03)

0.063 19 18 0.61 (0.25–1.46)
0.275

G/G 6 1 0.11
(0.01–0.97)

0.058 9 2 0.14 (0.03–0.74)*
0.016*

Natal sex within rs1818033 (n=187, crude analysis)

Genotypes Natal sex Cis group Trans group OR (95% CI) P-value

C/C Females 18 28 Reference 1.00 –

Males 16 27 1.08 (0.46–2.55) 0.870

C/G Females 26 18 Reference 1.00 –

Males 19 18 1.37 (0.57–3.30) 0.491

G/G Females 6 1 Reference 1.00 –

Males 9 2 1.33 (0.10–18.19) 0.840

Test for interaction in the trend: 0.85

rs1818033 within natal sex (n=187, crude analysis)

Natal sex Genotypes Cis group Trans group OR (95% CI) P-value

Females C/C 18 28 Reference 1.00 –

C/G 26 18 0.45 (0.19–1.03) 0.063

G/G 6 1 0.11 (0.01–0.97) 0.058

Males C/C 16 27 Reference 1.00 –

C/G 19 18 0.56 (0.23–1.37) 0.204

G/G 9 2 0.13 (0.03–0.69) 0.010*

Test for interaction in the trend: 0.93
* Reached statistical significance.
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shown that mGluR5 protein levels in the amygdala increase

concomitantly with anxiety behaviors in adolescent mice after

two weeks of isolation (61). mGluR7 is also implicated in the

pathogenesis of depression. Thus, some genetic polymorphisms

located in this receptor are known to increase susceptibility to

depression (62). Given that in the present study all transgender

individuals who participated showed GD, we believe that to better

understand this trait in the future, it might help to address the study

of different polymorphisms located in mGluR5–7 genes.
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Moreover, the GABAergic/glutamatergic system has been

implicated in suicidal behaviors (63) and transgender population

shows higher suicide ideation and attempts (28, 29). Post mortem

studies of the dorsal prefrontal cortex show a generalized disruption

of the regulation of the glutamate receptors in suicidals (32). Taking

all this together, we believe that more attention should be paid to the

possible link between mGluRs polymorphisms and suicide risk in

transgender people. But we should not underestimate the obvious

social, cultural, relational, and multiple other difficulties
TABLE 5 Haplotype and Haplotype interaction analyses with the covariate natal sex. The table shows the haplotype frequencies estimation and the
haplotype association with GI.

Haplotype analysis

Haplotype frequencies estimation (n=188)

Haplotypes rs9838094 rs1818033 Total Cis group Trans group Cumulative frequency

1 G C 0.6888 0.6011 0.7766 0.6888

2 T G 0.1786 0.2447 0.1117 0.8674

3 G G 0.1326 0.1543 0.1117 1

4 T C 0 0 0 1

Haplotype association with response (n=188, adjusted by sex)

rs9838094 rs1818033 Freq OR (95% CI) P-value

1 G C 0.6888 Reference 1.00 —

2 T G 0.1781 0.34 (0.19 - 0.62) 6.00E-04*†

3 G G 0.133 0.54 (0.28 - 1.04) 0.065

Global haplotype association p-value: 0.00046*†

Haplotype interaction analysis with covariate natal sex

Haplotype and sex cross-classification interaction table (n=188, crude analysis)

Haplotype Frequency Females P-value Males P-value

OR (95% CI) OR (95% CI)

GC 0.6888 Reference 1.00 – 1.13 (0.49 - 2.58) 0.785

GG 0.1332 0.47 (0.19 - 1.19) 0.106 0.70 (0.26 - 1.90) 0.491

TG 0.178 0.34 (0.14 - 0.82) 0.016* 0.38 (0.15 - 0.95) 0.039*

Interaction p-value: 0.91

Haplotypes within sex (n=188, crude analysis)

GC 0.6888 Reference 1.00 – Reference 1.00 –

GG 0.1332 0.47 (0.19 - 1.19) 0.106 0.62 (0.25 - 1.57) 0.312

TG 0.178 0.34 (0.14 - 0.82) 0.016* 0.34 (0.15 - 0.77) 0.009*

Sex within haplotypes (n=188, crude analysis)

OR (95% CI) OR (95% CI)

GC 0.6888 Reference 1.00 – 1.13 (0.49 - 2.58) 0.785

GG 0.1332 Reference 1.00 – 1.49 (0.48 - 4.62) 0.499

TG 0.178 Reference 1.00 – 1.11 (0.40 - 3.10) 0.852
* Reached statistical significance.
† Passed the Bonferroni correction.
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experienced by people with a non-conforming transgender identity.

Not being fully accepted in society is an obvious non-negligible risk

factor for mood disorders and suicide in transgender populations.
5 Limitations and strengths

Our work has limitations as well as strengths. The main

limitation is that the population analyzed was small. It would be

necessary to replicate the data in a larger transgender population.

Moreover, as with other studies, there is a lack of representativeness

of cases because participants were recruited from a gender unit, this

could be contributing to selection bias.

The strengths of our study are the control of the sample

homogeneity. Although transgender people comprise a

heterogeneous population, they can be stratified according to

variables such as age of onset of dysphoria, geographic origin,

and ethnicity. Our sample was rigorously controlled in all

these aspects.
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33. Solé X, Guinó E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the
analysis of association studies. Bioinformatics. (2006) 22:1928–9. doi: 10.1093/
bioinformatics/btl268

34. Segovia S, Guillamón A. Sexual dimorphism in the vomeronasal pathway and sex
differences in reproductive behaviors(1993) (Accessed January 30, 2018). doi: 10.1016/
0165-0173(93)90007-M

35. Garcia-Falgueras A, Junque C, Gimenez M, Caldu X, Segovia S, Guillamon A.
Sex differences in the human olfactory system. Brain Res. (2006) 1116:103–11.
doi: 10.1016/j.brainres.2006.07.115

36. Ruigrok ANV, Salimi-Khorshidi G, Lai M-C, Baron-Cohen S, Lombardo MV,
Tait RJ, et al. A meta-analysis of sex differences in human brain structure. Neurosci
Biobehav Rev. (2014) 39:34–50. doi: 10.1016/j.neubiorev.2013.12.004

37. Segovia S, Guillamón A, del Cerro MC, Ortega E, Pérez-Laso C, Rodriguez-Zafra
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