AUTHOR=Ye Xiaomei , Zhang Guangru , Han Chenyu , Wang Ping , Lu Jiaping , Zhang Min TITLE=The association between Chinese visceral adiposity index and cardiometabolic multimorbidity among Chinese middle-aged and older adults: a national cohort study JOURNAL=Frontiers in Endocrinology VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2024.1381949 DOI=10.3389/fendo.2024.1381949 ISSN=1664-2392 ABSTRACT=Objective

This study aimed to explore the association between the Chinese visceral adiposity index (CVAI) and cardiometabolic multimorbidity in middle-aged and older Chinese adults.

Methods

The data used in this study were obtained from a national cohort, the China Health and Retirement Longitudinal Study (CHARLS, 2011-2018 wave). The CVAI was measured using previously validated biomarker estimation formulas, which included sex, age, body mass index, waist circumference, triglycerides, and high-density lipoprotein cholesterol. The presence of two or more of these cardiometabolic diseases (diabetes, heart disease, and stroke) is considered as cardiometabolic multimorbidity. We used Cox proportional hazard regression models to examine the association between CVAI and cardiometabolic multimorbidity, adjusting for a set of covariates. Hazard ratios (HRs) and 95% confidence intervals (CIs) were used to show the strength of the associations. We also conducted a subgroup analysis between age and sex, as well as two sensitivity analyses. Receiver operator characteristic curves (ROC) were used to test the predictive capabilities and cutoff value of the CVAI for cardiometabolic multimorbidity.

Results

A total of 9028 participants were included in the final analysis, with a mean age of 59.3 years (standard deviation: 9.3) and women accounting for 53.7% of the sample population. In the fully-adjusted model, compared with participants in the Q1 of CVAI, the Q3 (HR = 2.203, 95% CI = 1.039 – 3.774) and Q4 of CVAI (HR = 3.547, 95% CI = 2.100 – 5.992) were associated with an increased risk of cardiometabolic multimorbidity. There was no evidence of an interaction between the CVAI quartiles and sex or age in association with cardiometabolic multimorbidity (P >0.05). The results of both sensitivity analyses suggested that the association between CVAI and cardiometabolic multimorbidity was robust. In addition, the area under ROC and ideal cutoff value for CVAI prediction of cardiometabolic multimorbidity were 0.685 (95% CI = 0.649-0.722) and 121.388.

Conclusion

The CVAI is a valid biomarker with good predictive capability for cardiometabolic multimorbidity and can be used by primary healthcare organizations in the future for early warning, prevention, and intervention with regard to cardiometabolic multimorbidity.