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bioinformatics analysis
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Hongqin Wang4, Yao Chen1,2, Qingbing Zhou2, Fengqin Xu1,2*

and Ying Zhang1,2*

1Department of General Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences,
Beijing, China, 2Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences,
Beijing, China, 3Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical
Sciences, Beijing, China, 4Innovation Research Institute of Traditional Chinese Medicine, Shandong
University of Traditional Chinese Medicine, Jinan, China
Introduction: Type 2 diabetes mellitus (T2DM) is a major cause of atherosclerosis

(AS). However, definitive evidence regarding the common molecular

mechanisms underlying these two diseases are lacking. This study aimed to

investigate the mechanisms underlying the association between T2DM and AS.

Methods: The gene expression profiles of T2DM (GSE159984) and AS (GSE100927)

were obtained from the Gene Expression Omnibus, after which overlapping

differentially expressed gene identification, bioinformatics enrichment analyses,

protein–protein interaction network construction, and core genes identification

were performed. We confirmed the discriminatory capacity of core genes using

receiver operating curve analysis. We further identified transcription factors using

TRRUST database to build a transcription factor–mRNA regulatory network. Finally,

the immune infiltration and the correlation between core genes and differential

infiltrating immune cells were analyzed.

Results: A total of 27 overlapping differentially expressed genes were identified

under the two-stress conditions. Functional analyses revealed that immune

responses and transcriptional regulation may be involved in the potential

pathogenesis. After protein–protein interaction network deconstruction, external

datasets, and qRT-PCR experimental validation, four core genes (IL1B, C1QA,

CCR5, and MSR1) were identified. ROC analysis further showed the reliable value

of these core genes. Four common differential infiltrating immune cells (B cells,
Abbreviations: T2DM, type 2 diabetes mellitus; AS, atherosclerosis; DEGS, differentially expressed genes;

PPI, protein–protein interaction; ROC, receiver operating curve; Tregs, regulatory T cells; TF, transcription

factors; TRRUST, transcriptional regulatory relationship unraveled by sentence-based text mining; IICs,

infiltrating immune cells; AUC, area under the ROC curve; LAPTM5, lysosomal-associated protein

transmembrane 5; Ig, immunoglobulin; MSRI, macrophage scavenger receptor 1; SPI1, SPI-1

proto-oncogene.
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CD4+ T cells, regulatory T cells, and M2 macrophages) between T2DM and AS

datasets were selected based on immune cell infiltration. A significant correlation

between core genes and common differential immune cells. Additionally, five

transcription factors (RELA, NFkB1, JUN, YY1, and SPI1) regulating the transcription

of core genes were mined using upstream gene regulator analysis.

Discussion: In this study, common target genes and co-immune infiltration

landscapes were identified between T2DM and AS. The relationship among five

transcription factors, four core genes, and four immune cells profiles may be

crucial to understanding T2DM complicated with AS pathogenesis and

therapeutic direction.
KEYWORDS

atherosclerosis, type 2 diabetes mellitus, bioinformatics, immune infiltration,
molecular mechanisms
1 Introduction

Atherosclerosis (AS) is a fatal complication of diabetes mellitus

and the leading cause of death for patients worldwide (1). In 2021,

there were approximately 537 million people with diabetes

worldwide, and patients with type 2 diabetes mellitus (T2DM)

represent over 90% of this population. Recent data have suggested

that patients with T2DM have advanced coronary plaques with

larger necrotic core areas and higher arterial media calcification (2).

Severe and extensive AS develops almost two decades earlier than

people without T2DM (3). Therefore, to reduce cardiovascular

events, improving the diagnosis and treatment of high-risk

plaques in susceptible populations is essential (4).

T2DM and AS are chronic inflammatory diseases primarily caused

by metabolic disorders. Hyperinsulinemia increases the circulating fat

levels of pro-inflammatory and pro-atherogenic factors (5). Similarly,

glucose overload induces oxidative stress and activates pro-

inflammatory signaling pathways (6). In addition, metabolic disorders

are associated with an altered immune response. Autoimmunity is

crucial in the coronary artery formation process, such as fat streak

formation, plaque calcification, plaque rupture, and thrombosis.

Although these factors contribute to the modification of

microvascular and macrovascular structures and plaque formation

(7), the systematic pathological mechanism of T2DM complicated

with AS in a genetic and cellular level is still unclear. Therefore, it

restricts the research and development of targeted drugs.

Bioinformatics analysis based on high-throughput data and gene

microarray technology have provided new strategies for discovering

therapeutic targets in recent years. We obtain high-throughput data

and microarray datasets from GEO to investigate overlapping

differentially expressed gene (DEGs) between T2DM and AS. Then,

the network deconstruction method was used to dimension reduction

to obtain the core genes. The biological function of the core genes

were determined by enrichment analysis, and the correlation between
02
core genes and the differential infiltrated immune cells (IICs), which

was screened by immune infiltration analysis, was confirmed by

Spearman test. To sum up, IL1B, C1QA, CCR5, and MSR1 were

identified as core genes that might serve as biomarkers for T2DM

complicated with AS. They were very informative for diagnosis and

may become new therapeutic targets for therapy.

2 Materials and methods

2.1 Data collection

We searched for related gene expression or high-throughput

sequencing datasets using 1) “atherosclerotic” and “type 2 diabetes”

as keywords, 2) the test specimens in datasets derived from human

tissues, and 3) the largest possible sample size. Finally, two high-

throughput sequencing datasets (GSE159984 and GSE164416) and

two microarray datasets (GSE100927 and GSE28829) were obtained

from the National Center for Biotechnological Information (NCBI)

Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/)

database. GSE159984 (including 28 patients with T2DM and 58

controls) and GSE100927 (comprising 29 patients with AS and 12

controls) were used to screen for DEGs, while GSE164416 (including

39 patients with T2DM and 18 controls) and GSE28829 (comprising

16 patients with advanced carotid plaque and 13 with early carotid

plaque) were used as external validation datasets. Table 1 summarizes

the information for the datasets selected.
2.2 Overlapping DEG identfication and
enrichment analyses

DEG analysis was filtered using the “edgeR” or “limma” package

(8, 9) in R (version 4.3.1), and the results were visualized using the

“ggplot2” package. We obtained DEGs with |log2fold change≥1 and
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fendo.2024.1381229
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Qi et al. 10.3389/fendo.2024.1381229
p.adj<0.05 in T2DM and AS diseases, respectively. Overlapping

DEGs in the same direction between T2DM and AS were identified

using the online Venn diagram tool (https://bioinfogp.cnb.csic.es/

tools/venny/). KEGG and GO enrichment analyses of the

overlapping DEGs were performed using the “clusterProfiler”

package (10).
2.3 Protein–protein interaction network
construction and hub gene screening

The overlapping genes were imported into the STRING database

(http://string-db.org) (11) to construct a protein–protein interaction

(PPI) network with complex relationships (interactions combined

score >0.4), and this network was visualized in Cytoscape 3.82

(version 3.8.1). Four algorithms (MCC, MNC, Degree, and

Closeness) take intersection to identify hub genes using the

cytoHubba plug-in (12). Enrichment analysis and co-expression

networks of hub genes were performed using “clusterProfiler”

package and GeneMANIA (http://www.genemania.org/) (13),

respectively. The molecular complex detection technology

(MCODE), a plugin in Cytoscape, was used to deconstruct the

functional modules. The selection criteria were set as degree

cutoff=2, K-core=2, node score cutoff=0.2, and maximum depth=100.
2.4 External database verification and qRT-
PCR experiments analysis

The GSE164416 and GSE28829 datasets were used for external

verification. Significance was calculated using the Student’s t-test,

and p < 0.05 was considered statistically significant. Then,

statistically significant genes were selected for further quantitative

real-time PCR (qRT-PCR) analysis in animal models. Male C57BL/

6J and ApoE−/− mice were purchased from Weitonglihua

Corporation (Beijing, China). To induce diabetic atherosclerosis

models, ApoE−/− mice were given streptozocin (50 mg/kg/day) by

intraperitoneal injection for 5 days consecutively and fed on high-

fat diet for 16 weeks (14). C57BL/6J mice were fed on normal-chow

diet for 16 weeks after injected with vehicle used in the control

group, pool of two groups, five mice per group. The total RNA of
Frontiers in Endocrinology 03
thoracic aortas was isolated with RNA extraction reagent (G3013,

Servicebio, China) and reverse transcribed with SweScript All-in-

one RT SuperMix (G3337, Servicebio, China). Reactions were run

using CFX Connect (Bio-Rad) with 2× Universal Blue SYBR Green

qPCR Master Mix (G3326, Servicebio, China). GAPDH was

deemed as an internal control, and the results were determined

with the 2−DDCt method.

Similarly, the level of significance used was 0.05.

Primers sequences are listed in Supplementary Table S1. All

animal care and experimental procedures were approved by the

animal ethics committee of the Ethics Committee of Xiyuan

Hospital, China Academy of Chinese Medical Sciences.
2.5 Core gene identification
and diagnosing

Based on the results of qRT-PCR analysis, genes with significant

statistical differences (p < 0.05) were regarded as core genes. Thus,

core genes were identified successfully through multiple

bioinformatics mining, external datasets validation, and qRT-PCR

experimental verification. To determine the value of each core genes

and multiple genes in diagnosis of T2DM complicated with AS, we

executed receiver operating characteristic (ROC) curve analysis,

respectively. The diagnostic capacity of core genes was quantified

using the area under ROC curve (AUC) in GSE164416 and

GSE28829 datasets. The “pROC” R package was used to generate

ROC curves (15). The greater the AUC value, the more superior the

discriminatory ability of the model. An AUC closer to 1 indicates

better prediction, and an AUC>0.7 indicates good diagnostic efficacy.
2.6 Transcription factor prediction

Transcriptional regulatory relationships unraveled by sentence-

based text mining (TRRUST) were used to obtain candidate

transcription factors (TFs) that regulate core genes (16). This

database contains abundant information about TFs associated with

target genes and their regulatory relationships with TFs. Statistical

significance was defined as an adjusted p<0.05. We constructed a TF

mRNA regulatory network and visualized it using Cytoscape.
TABLE 1 The information of GEO datasets.

GEO
dataset

Type Platform
Disease
samples

Sample type
in patients

Control
samples

Sample type in controls

GSE159984
high

throughput
sequencing

GPL16791 28
human islets from type 2

diabetic donor
58 human islets from non-diabetic donor

GSE100927 array GPL17077 29
human atherosclerotic carotid

artery from donor
12

human carotid artery arteries without
atherosclerotic lesions from control donor

GSE164416
high

throughput
sequencing

GPL16791 39
human islets from type 2

diabetic donor
18 human islets from non-diabetic donor

GSE28829 array GPL570 16
advanced

atherosclerotic plaque
13 early atherosclerotic plaque
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2.7 Immune cell infiltration calculation and
correlation analysis

We performed immune infiltration analysis to reveal the

underlying immune pathogenesis of T2DM complicated with AS.

QuanTIseq is a validated deconvolution-based algorithm that

estimates the absolute proportions of relevant immune cell types.

Thus, we used quanTIseq algorithm to obtain the immune cell

infiltration differences between normal group and disease group.

Based on “IOBR” packages, relative percentage, different immune

cell types were analyzed using GSE164416 and GSE100927 datasets.

The results were output as bar graphs and violon plots, respectively.

Subsequently, the correlations between core genes and IICs were

conducted using Spearman analysis, and the results were visualized

using “ggplot2” package.
3 Results

3.1 Identification and functional analysis of
overlapping DEGs

The study’s flow chart is shown in Figure 1. In total, 116 and

803 DEGs were obtained from the GSE159984 and GSE100927
Frontiers in Endocrinology 04
datasets, respectively (Figures 2A, B). After taking the

intersection between the two datasets, 27 overlapping DEGs

with the same expression trends (26 upregulated and 1

downregulated) were identified from the two datasets

(Figures 2C, D). The list of the differential gene expression is

included as Supplementary Data. The DEGs lists have been

included as Supplementary Tables 2–4.

To explore the potential biological function, GO enrichment

and KEGG pathway for the overlapping DEGs were performed

using R. According to the GO analysis findings, positive regulation

of cytokine production, activation of immune response, and

negative regulation of leukocyte activation were significantly

enriched in the biological process (BP) entries, specific granule,

collagen trimer, and specific granule membrane were significantly

enriched in the cellular component (CC) entries, and

oxidoreductase activity, growth factor receptor binding, and

phosphotyrosine residue binding were significantly enriched in

the molecular function (MF) entries (Figure 3A; Supplementary

Table S5). In addition, complement and coagulation cascades,

chemokine signaling pathway, and IL-17 signaling pathway were

significantly enriched in the KEGG entries (Figure 3B;

Supplementary Table S6). These results indicate that immune-

related processes and chemokines may be crucial in the

development of T2DM complicated with AS.
FIGURE 1

Flow diagram for this study.
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3.2 PPI network construction and hub
genes selection

The PPI network of overlapping DEGs contained 26 nodes and 77

interaction pairs. The topological parameters of nodes in this network

were are in Supplementary Table S7. Four algorithms (MCC, MNC,

Degree, and Closeness) in the CytoHubba plugin were used to identify

the hub genes (Supplementary Table S8). The middle part of Figure 3C

represents the intersection of the four algorithms. The schematic

diagram of PPI network deconstruction and the network constructed

with hub genes is shown in Figure 3D. A total of 12 hub genes were

identified, and these genes were TYROBP, IL1B, C1QA, C3AR1, FGR,

CCR5, LAPTM5, C1QC, CD52, MSR1, HAVCR2, and ALOX5AP. To

further investigate the biological characteristics of these genes, we

analyzed the related functions of hub genes’ co-expression network

using GeneMANIA database. The biological functions are associated

with immune and inflammatory-related processes, such as the

regulation of humoral immune response, complement activation,

humoral immune response, interleukin-2 production, and negative

regulation of immune system process (Supplementary Figure S1).
3.3 MCODE module partition and analysis

Molecular complex detection (MCODE) plugin was used to

screen out an important subnetwork in hub genes network, and this
Frontiers in Endocrinology 05
subnetwork included 7 nodes and 18 pairs. The seven nodes were

TYROBP, IL1B, C1QA, C3AR1, CCR5, C1QC, and MSR1, and the

scores are shown in Supplementary Table S9. Then, the enrichment

analysis revealed that the nodes inMCODE network were significantly

enriched in inflammatory response and cytokine transcript regulation,

specifically, the results of BP enrichment in activation of immune

response, leukocyte-mediated immunity, and positive regulation of

cytokine production, and the KEGG pathway enrichment in

complement and coagulation cascades, efferocytosis, cytokine–

cytokine receptor interaction, and type I diabetes mellitus (Figure 4;

Supplementary Tables S10, S11). Together with the preceding results,

we suggest that changes in the immune microenvironment affected by

cytokines and inflammatory responses may be a common mechanism

of the T2DM complicated with AS.
3.4 Diagnostic efficacy of core genes

To identify reliable core genes, we carried out both external

validation and animal experiments according to genes in MCODE

network. The expression levels of seven genes, except for C3AR1, in

the T2DM dataset (GSE164416) were significantly higher than that

in the control samples (Figure 5A). Similarly, the expression levels

of the seven genes were upregulated in atherosclerotic samples

compared with control (GSE28829, Figure 5B), and p<0.05 was

considered statistically significant. Then, we detected the expression
B

C D

A

FIGURE 2

Venn diagram shows the intersection of differentially expressed genes (DEGs) between type 2 diabetes mellitus (T2DM) and atherosclerosis (AS). The
volcano plot of the DEGs in GSE159984 and GSE100927 is shown in panels (A, B). Red indicates gene upregulation, green indicates gene
downregulation, and gray indicates that the genes had no significant changes. (C) Venn diagram shows the downregulated genes in GSE159984 and
GSE100927. (D) Venn diagram shows the upregulated genes in GSE159984 and GSE100927.
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levels of TYROBP, IL1B, C1QA, CCR5, C1QC, and MSR1 in

thoracic aortas of mice. The results demonstrated that the

expression of IL1B, C1QA, CCR5, and MSR1 was increased

(p<0.05) in the model mice of T2DM complicated with AS

compared with control groups (Figure 5C). Therefore, combining

the above results, we identified four core genes, which are IL1B,

C1QA, CCR5, and MSR1.

Subsequently, ROC curves were generated to further evaluate the

diagnostic value of the validated core genes. The AUCs of IL1B,

C1QA, CCR5, and MSR1 were 0.722, 0.778, 0.668, and 0.749,
Frontiers in Endocrinology 06
respectively, in the T2DM-related validation dataset (Figure 5D).

Moreover, the AUC values of all validated core genes were >0.7 in the

AS-related validation dataset, with AUC of 0.721, 0.938, 0.962, and

0.856 for IL1B, C1QA, CCR5, and MSR1, respectively (Figure 5E). At

the multigene expression level, after linear fitting of all validated core

gene expression models, the AUC value of the multigene combined

diagnosis of T2DM and AS was 0.802 and 1.0, respectively

(Figures 5F, G). These results reveal that core genes possess good

discriminatory ability, and multigene combined diagnosis has a

significantly higher predictive power than single gene.
B

C D

A

FIGURE 3

Enrichment analysis, protein–protein interaction (PPI) network, and sub-network construction of overlapping DEGs between T2DM and AS. (A) The
GO enrichment analysis of the overlapping DEGs. (B) The pathway enrichment analysis of the overlapping DEGs. (C) The number of screened genes
from four algorithms (MCC, MNC, Degree, and Closeness) in the PPI network was indicated as Venn diagrams. (D) The results of the PPI network of
overlapping genes and sub-network obtained from it. From top to bottom is the overlapping genes’ PPI network, hub genes’ network, and MCODE
module network, respectively.
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3.5 Immune cell infiltration and
correlation analysis

As described above, the result of the enrichment analysis

suggested that the immune response might play a crucial role in

the course of T2DM complicated with AS. We examine how the

immune system works by immune infiltration analyses. This

analysis revealed that T2DM diseases were infiltrated by several

immune cells, of which regulatory T cells (Tregs), myeloid dendritic

cells, and M2 macrophages occupied the top 3 most counts of

immune cell subpopulations (Figure 6A). Subsequently, we further

analyzed differences in immune cell subgroups between the T2DM

samples and the control pools (Figure 6B). The number of M1 and

M2 macrophages and CD4+ T cells in the T2DM group was

significantly higher than that in the control group (p<0.05 or

p<0.01), while the number of B cells and Tregs was lower (p<0.01).

For the case of AS, the immune cell compositions of the AS and

control group are shown in Figure 6C. M1 and M2 macrophages

and myeloid dendritic cells occupied the top 3 most counts of

immune cell subpopulations. Patients with AS had significantly

higher numbers of M2 macrophages and CD4+ T cells than the

controls (p<0.001), and there were fewer B cells, monocytes, and

Tregs than those in the control group (p<0.01) (Figure 6D).

In order to investigate whether or not core genes were linked to

IICs, the correlations were conducted using Spearman analysis. In

T2DM, there is a positive relationship between C1QA, CCR5,

MSR1, and M1 macrophages, and a negative relationship between
Frontiers in Endocrinology 07
C1QA, MSR1, and CD8+ T cells, Tregs, and myeloid dendritic cells

(p<0.05 or p<0.01). In AS, there have a positive relationship

between IL1B, C1QA, CCR5, MSR1, and M1 macrophages, M2

macrophages, CD4+ T cells, CD8+ T cells, and myeloid dendritic

cells, and a negative relationship between MSR1 and B cells and

Tregs (p<0.05 or p<0.01) (Figure 6E). The details of differential IICs

selection results and correlation analysis are shown in

Supplementary Tables S12, S13, respectively.
3.6 Integrated TF-mRNA network

TRRUST is a TF–target interaction database that shows

regulatory regulation between TF and target genes. According to

TF binding site information provided in TRRUST, potential key

regulators for core genes were selected, a total of 10 associations

between five TFs (SPI1, RELA, NFKB1, YY1, and JUN) and four

core genes (IL1B, C1QA, CCR5, and MSR1). As shown in

Supplementary Table S14, SPI1 regulated two genes (IL1B and

MSR1), YY1 regulated two genes (IL1B and CCR5), JUN regulated

two genes (IL1B and MSR1), RELA regulated two genes (IL1B and

CCR5), and NFKB1 regulated two genes (CCR5 and IL1B). Based

on this result, we constructed a regulatory TF-mRNAs network

using Cytoscape software (Figure 7). We use different shapes or

colors to distinguish different types of mRNA and TFs. This figure

shows the potential pathological regulation process found in

this study.
BA

FIGURE 4

Biological process (A) and KEGG pathway analysis (B) of the genes in MCODE module.
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4 Discussion

Bioinformatics can help us better understand the complex

biological processes. We identified 116 and 803 DEGs from the

T2DM and AS datasets, respectively. Among these, 27 communal

DEGs were identified between the two diseases. Based on

enrichment analysis, these genes were significantly enriched in

positive regulation of cytokine production, activation of immune

response and negative regulation of leukocyte activation.
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Subsequently, 12 hub genes (TYROBP, IL1B, C1QA, C3AR1,

FGR, CCR5, LAPTM5, C1QC, CD52, MSR1, HAVCR2, and

ALOX5AP) were identified from four algorithms using the

CytoHubba plugin. Then, MCODE was used to deconstruct the

network for further dimension reduction. After external dataset and

qRT-PCR experimental verification to these genes, a total of four

core genes (IL1B, C1QA, CCR5, and MSR1) were obtained. ROC

analysis indicated that those core genes owned higher diagnostic

value both in T2DM and AS. Based on functional annotation
B

C

D E

F G

A

FIGURE 5

Core genes validation and diagnosis. (A, B) External validation: the genes expression in GSE164416 and GSE28829. (C) qRT-PCR experimental validation: the
genes expression in model mice and control group. Receiver operating curve (ROC) for core gene in (D) GSE164416 and (E) GSE28829, respectively. Multi-
index (all core genes) combined diagnosis in (F) GSE164416 and (G) GSE28829, respectively. *P < 0.05, **P < 0.01, ***P < 0.001. ns, not statistically significant.
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B

C D

E

A

FIGURE 6

Immune cell infiltration analysis. The relative proportion of infiltrating immune cells (IICs) in (A) T2DM and (C) AS. Violin plot of distinct immune cell subtype
compositions in T2DM vs. control (B) and AS vs. control (D). (E) Correlation between core genes and immune infiltrating cells. Only statistically significant
differences are reported in this heatmap. Red represents positive correlation, and blue represents negative correlation. *P < 0.05, **P < 0.01, ***P < 0.001.
FIGURE 7

Schematic presentation of the TF-mRNA network. The green and blue rectangles on the left- and right-hand sides indicate the DEGs in T2DM and
AS, respectively, and the common DEG analyses are shown in the middle. Ovals represent hub genes. Among them, genes included in the MCODE
module are highlighted in green and core genes highlighted by red elliptical borders. Purple boxes indicate remaining genes in overlapping DEGs.
Trigonal nodes in red represent key transcription factor genes regulating core gene expression.
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analysis results, the immune system was emphasized as a critical

component of T2DM complicated with AS. To further elucidate the

potential biological roles of the core genes, we predicted their TFs in

upstream and constructed a TF-mRNA regulatory network. Finally,

based on CIBERSORT analysis, the correlation between key hub

genes and IICs was evaluated to reveal the immune mechanism of

T2DM and AS.

According to the immune infiltrating analysis, four differential

immune cells (M2 macrophages, CD4+ T cells, B cells, and Tregs)

regulated by C1QA, CCR5, and MSR1 may participate in the

pathological process of T2DM complicated with AS. T2DM is a

metabolic inflammatory disease mediated by a variety of immune

cells and cytokines (17). In addition to innate immunity, such as

macrophage and monocyte, adaptive immunity has also been

confirmed to involved in this pathological process. CD4+T cells are

an important subset of T cells, which are involved in the metabolic

inflammation progressing through autocrine or paracrine. According

to the functional characteristics of CD4+T cells, they can be divided

into pro-inflammatory subsets (Th1, Th17, and Th22) and anti-

inflammatory subsets (Tregs) (18). A proper balance between pro-

inflammatory and anti-inflammatory subsets of CD4+T cells is

essential for maintaining immune homeostasis and avoiding

inflammatory response. The changes in the number and frequency

of CD4+ Th subsets and the inflammatory response produced by

cytokines are related to T2DM (19). Instead, Treg is a protective

subtype of CD4 cells, which is related to its effect on macrophage

exocytosis promoting and plaque remodeling (20, 21). The results of

this study showed that CD4+T cells and Tregs showed an upward

and downward trend in both two datasets, respectively.

B cells contribute significantly to innate and adaptive immunity

by producing antibodies and cytokines (22, 23). B1 cell is an

important subtype of B cell. It can synthesize and release IgM,

a natural antioxidant low-density lipoprotein, which inhibits

the uptake of ox-LDL by macrophages and ultimately inhibits the

production of foam cells. In addition, the IgM can also inhibit the

formation of necrotic core in AS plaque (24). However, the related

research on this cell is rarely reported in the field of diabetes. In this

study, the relative proportions of B cells showed significant decrease

in two diseases, respectively. In addition to B cells and T cells, the

changes in the number of macrophages show multiplicity changes.

Different from the single view that M1 macrophages are involved in

pro-inflammatory responses and M2 macrophages are involved in

anti-inflammatory responses (25), the results of this study show that

the relative proportion of M1 and M2 macrophages in T2DM is

increased, while that of M2 macrophages in AS is significantly

decreased. This exhibits that the macrophages have a high degree of

plasticity in response to microenvironmental stimulus.

Complement protein C1q is a complex glycoprotein component

of the classical complement pathway with 18 polypeptide chains.

C1QA is among the three genes encoding C1q and is crucial in the

innate immune response (26). C1q is significantly higher in

advanced atherosclerotic plaques and those in patients with acute

coronary syndrome than in early lesions and those with stable

angina pectoris (27). In T2DM, C1QA protein abundance is altered

in patient serum (28). Conversely, C1q has pro- and

atheroprotective effects; however, few studies have focused on its
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role in T2DM (29). These results indicate that C1q is involved in the

progression of AS and T2DM.

Some studies have shown that MSR1 polymorphisms are

associated with AS and plasma fatty acid distribution (30). It is a

scavenger receptor and can promote macrophage inflammation (31,

32). MSR1 was distributed in the macrophages and smooth muscle

cells (33, 34), and its induction of atherosclerotic lesion formation

facilitates phagocytosis (35, 36). Previous studies have demonstrated

that high MSR1 expression causes cholesterol to feed into the vessel

wall, whereas its deficiency causes a reduction in spontaneously

developed AS (37). Advanced glycation end products are crucial in

diabetes. Under high-advanced glycation end-product intake, MSR1

expression showed a tendency towards with insulin levels and may

promote endocrine-related diseases (38).

Our enrichment results suggest that positive regulation of

cytokine production and signaling in the immune system may

regulate diseases. RELA (p65) and NFkB1 (p50) belong to the

NFkB family. Both contain a Rel homologous domain at the N-

terminal, which can mediate the specific binding, dimerization, and

binding of NFkB to DNA. RELA and NFkB1 can also combine and

form homologous or heterodimers. The binding of different dimers

to DNA has different effects on inflammation regulation. The

binding of p50/p50 and p65/p65 homodimers to DNA suppresses

the expression of inflammatory genes, while p50/p65 heterodimer

promotes the expression of pro-inflammatory factors related to

NFkB (39, 40). Activating NFkB finally induces the synthesis and

release of cytokines, such as TNF-a and IL-1b, and affects ROS

levels, which can directly stimulate islet b-cell apoptosis and cause

damage by activating macrophage and T-cell attack on islet b cells

(41). In addition, NFkB can cause vascular endothelial injury,

vascular smooth muscle proliferation, and foam cell formation (42).

The JUN family includes c-Jun, Jun B, and Jun D, which are the

downstream proteins of the primary functions of the JNK signaling

pathway. C-Jun exacerbates atherogenesis by decreasing cholesterol

efflux from macrophages in atherosclerotic plaques (43). c-Jun is a

novel regulator of T-cell lineage development and decision-making

(44). In T2DM, the activation of JNK directly phosphorylates

insulin receptor substrate 1, producing ROS and impairing

insulin signaling. The active ASK1 induces pancreatic b-cell death
(45). Emerging evidence suggests that JNK is involved in regulating

cellular senescence by downregulating hypoxia-inducible factor-1a
to accelerate hypoxia (46). This may be associated with the

progression of T2DM. The SPI-1 proto-oncogene (SPI1) is crucial

in the hematopoietic system, normal and pathogenic (47). SPI1

upregulation reportedly stimulated the TLR4/NFkB axis and

aggravated myocardial infarction (48). Further findings suggested

that SPI1 regulates copper homeostasis in diabetic cardiomyopathy

(49). However, experimental evidence of SPI1 expression is lacking.

Various innate and adaptive immune cells promote the

formation of an inflammatory microenvironment and are crucial in

the progression of AS. Low-grade inflammation, essential for AS

development, is an important feature of diabetes (50). The

development of diabetic AS induces an immune microenvironment

that shifts the normal balance toward a pro-inflammatory state.

Although the immune microenvironment remains investigated, its

exact role remains unknown. We hypothesized that AS and T2DM
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share a common pathogenesis correlated with B cells, CD4+ T cells,

Tregs, and M2 macrophages. Our results reveal that the relationship

among five TFs, four core genes, and four immune cells profile may

be crucial in understanding the pathogenesis therapeutic direction of

T2DM complicated with AS. This represents a promising avenue to

treat and prevent diseases. This study focuses on the common

mechanisms and identification of hub genes and immune

infiltration profiles in patients with AS and T2DM.

However, there are a few limitations to this study. First, despite

the large sample size and experimental verification, it is a

retrospective study that requires validation through a prospective

study. Second, although validated in animal models, these core

genes have not been evaluated in humans. Third, specific molecular

mechanisms of immune responses regulated by core genes in

T2DM complicated with AS remain poorly determined. These

will be the focus of our future studies.
5 Conclusion

We identified four core genes (IL1B, C1QA, CCR5, and MSR1)

and four diff-IICs (B cells, CD4+ T cells, Tregs, and M2

macrophages). The evidence of common pathogenesis points

toward the immune microenvironment after core genes

modulation, which might be modulated by five TFs (RELA,

NFkB1, JUN, YY1, and SPI1). These results provide a direction

for future studies on the potential key genes in patients with T2DM

complicated with AS.
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