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Genetic changes in the FH gene
cause vagal paraganglioma
Anastasiya V. Snezhkina1*, Vladislav S. Pavlov1,
Dmitry V. Kalinin2, Elena A. Pudova1, George S. Krasnov1,
Asiya F. Ayupova1, Anastasiya A. Kobelyatskaya1,
Alexey A. Dmitriev1, Dmitrii A. Atiakshin3, Maria S. Fedorova1

and Anna V. Kudryavtseva1

1Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia,
2Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia,
3Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital
Spatial Profiling and Ultrastructural Analysis”, RUDN University, Moscow, Russia
Vagal paraganglioma (VPGL) is a rare neuroendocrine tumor that originates from

the paraganglion associated with the vagus nerve. VPGLs present challenges in

terms of diagnostics and treatment. VPGL can occur as a hereditary tumor and,

like other head and neck paragangliomas, is most frequently associated with

mutations in the SDHx genes. However, data regarding the genetics of VPGL are

limited. Herein, we report a rare case of a 41-year-old woman with VPGL carrying

a germline variant in the FH gene. Using whole-exome sequencing, a variant, FH

p.S249R, was identified; no variants were found in other PPGL susceptibility and

candidate genes. Loss of heterozygosity analysis revealed the loss of the wild-

type allele of the FH gene in the tumor. The pathogenic effect of the p.S249R

variant on FH activity was confirmed by immunohistochemistry for S-(2-succino)

cysteine (2SC). Potentially deleterious somatic variants were found in three

genes, SLC7A7, ZNF225, and MED23. The latter two encode transcriptional

regulators that can impact gene expression deregulation and are involved in

tumor development and progression. Moreover, FH-mutated VPGL was

characterized by a molecular phenotype different from SDHx-mutated PPGLs.

In conclusion, the association of genetic changes in the FH gene with the

development of VPGL was demonstrated. The germline variant FH: p.S249R

and somatic deletion of the second allele can lead to biallelic gene damage that

promotes tumor initiation. These results expand the clinical andmutation spectra

of FH-related disorders and improve our understanding of the molecular genetic

mechanisms underlying the pathogenesis of VPGL.
KEYWORDS

head and neck paraganglioma, vagal paraganglioma, mutation profile, LOH, biallelic
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1 Introduction

Vagal paraganglioma (VPGL) is a neuroendocrine tumor with an

extremely low annual incidence rate (1 per 100,000) (1). VPGL arises

from a parasympathetic paraganglion within or adjacent to the vagus

nerve accounting for approximately 13% of head and neck

paragangliomas (HNPGLs) (2). The clinical signs and symptoms of

VPGL vary; the most frequent symptoms include neck mass, pulsatile

tinnitus, pharyngeal mass, hoarseness, and hearing loss. Metastasis

occurs in 16–19% of cases (3). Up to 40% of VPGLs are characterized

by multicentricity (multifocal cases) and predominantly occur

together with HNPGLs in other locations (4). VPGL present

challenges in terms of diagnostics and treatment. Despite the use of

various instrumental diagnostic methods (computed tomography

[CT], magnetic resonance imaging, and angiography), the diagnosis

of VPGL is often made at the time of surgery. Tumor resection carries

the risk of cranial nerve damage but remains the only treatment

option for individuals diagnosed with VPGL.

VPGL, a part of PPGL, is highly heritable (5). However, the

genetics of VPGL have been poorly investigated owing to its rarity.

Data on VPGL are mostly limited to reports on cases and case series,

usually devoted to the clinical description of tumors, treatment

experience, and patient management. Recently, we presented a series

of genetic analyses of HNPGLs covering VPGLs. Germline mutations

have been observed in PPGL susceptibility genes, such as SDHB,

SDHD, NF1, FH, and IDH2, as well as in candidate PPGL-associated

genes, ACLY, OGDH, and PDHA2 (6). Most SDHx-mutated VPGLs

were multifocal tumors that manifest simultaneously as carotid

paragangliomas. Somatic variants of ACO1, PIK3CA, and TP53 have

been identified (6). Ding et al. reported germline mutations in SDHB

andMAP3K13 in malignant VPGLs (7). A few other studies have also

found germline variants in the SDHB and SDHD genes (8–11). Familial

VPGLs are associated with earlier disease onset (mean age, 45 vs. 60

years) and a higher risk of multifocality (78% vs. 23%) than sporadic

tumors (4, 12). Due to the rarity of VPGLs, their etiology remains

unclear. However, several conditions such as familial inheritance,

genetic alterations in susceptibility genes, sex (female predominance),

young age, Carney’s triad, and possibly chronic hypoxia may increase

the risk of VPGL development (12, 13).

This study presents an analysis of the clinical phenotype and

molecular genetics of VPGL with germline missense variant in the

FH gene, which have been previously revealed in a comprehensive

mutation profile analysis of HNPGLs (6). FH is considered a

susceptibility gene for PPGLs; however, the frequency of FH-

related cases is low (~ 1%) (14). VPGLs are predominantly

caused by mutations in SDHx genes. To date, there have been no

reports of FH-mutated VPGLs in the literature. Therefore, this case

can be regarded as extremely rare and interesting.
2 Materials and methods

2.1 Patient

The patient was admitted to the Vishnevsky Institute of Surgery,

Ministry of Health of the Russian Federation. Informed consent was
Frontiers in Endocrinology 02
obtained from the patient for molecular genetic studies and use of the

data for scientific purposes and publication. The study was approved

by the ethics committee of the Vishnevsky Institute of Surgery (ethics

committee approval no. 007/18, October 2, 2018) and was performed

in accordance with the Declaration of Helsinki (1964).
2.2 Immunohistochemistry

Pathomorphological studies were performed by the chief

pathologist at the Department of Pathology, of Vishnevsky Institute

of Surgery. Immunohistochemistry (IHC) was done on 3–5 mm thick

sections made from the formalin-fixed, paraffin-embedded (FFPE)

blocks with tumor and lymph node tissues of the patient as previously

described (15). Immunoreactions were performed using the following

primary antibodies: Chromogranin A (DAK-A3, DAKO, USA),

Synaptophysin (MRQ-40, Cell Marque, USA), CD56 (123C3,

DAKO), S100 protein (polyclonal, DAKO), Pancytokeratin (AE1/

AE3, Biocare, USA), Ki67 (MIB-1, DAKO), SDHB (21A11AE7,

Abcam, UK), FH (monoclonal, clone J-13, from Santa Cruz

Biotechnology, USA), 2SC (polyclonal, Cambridge Research

Biochemicals, UK), and 5-hydroxymethylcytosine (5-hmC)

(polyclonal, Active Motif, USA). Secondary antibodies were

conjugated to horseradish peroxidase (HRP) and detected using a

Histofine DAB-2V system (Nichirei Biosciences, Japan). Automated

staining was performed using a Lab Vision Autostainer 360-2D

(Thermo Fisher Scientific). The slides were visualized using an

Axio Imager 2 microscope (Carl Zeiss Microscopy, Germany).

Stromal cells were used as internal positive controls for FH and 5-

hmC, and as internal negative controls for 2SC. FH staining was

considered “negative” in the absence of FH expression in tumor cells

compared to a positive internal control and “positive” in other cases.

2SC staining was defined as “positive” if tumor cells displayed strong/

diffuse staining in cytoplasm, nuclear, or both compared to negative

internal control and “negative” in other cases. Slides were classified as

“low 5-hmC” or “high 5-hmC” if tumor cells showed absent/low

staining or slightly inferior/equivalent staining compared tomarkedly

high staining of endothelial cells, respectively. Sporadic VPGL

(without mutations in any susceptibility genes) and normal lymph

node tissues were used as external negative controls for 2SC IHC

(Supplementary Figure S1). Negative reagent controls for primary

antibodies and the detection system were used to ensure the

specificity of the IHC tests. Uterine leiomyomatous tissue from

patients with hereditary leiomyomatosis was used as an external

positive control for 2SC staining, and as an external negative control

for FH immunoreactivity (Supplementary Figure S1). This control

was kindly provided by Alexandra Asaturova, head of the Pathology

Department, Gynecology and Perinatology Named after

Academician V.I. Kulakov of Ministry of Healthcare of

Russian Federation.
2.3 Whole-exome sequencing

Whole-exome sequencing was performed on tumor and normal

(lymph node) tissues of the patient. Genomic DNA was extracted
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using a High Pure FFPET DNA Isolation Kit (Roche, Basel,

Switzerland). Exome libraries were prepared with a TruSeq

Exome Library Prep Kit (Illumina, USA) and sequenced using an

Illumina NextSeq 500 system under 76 × 2 bp paired-end mode.

The raw reads were aligned to the reference human genome

(GRCh37/hg19) using BWA-MEM (16). Default parameters were

used to start the alignment. Secondary (supplementary) alignments

in the BWA output were removed with samtools [samtools view -F

2048] (17). Mapping statistics were obtained with samtools flagstat.

The BAM files were preprocessed using Picard-tools (18) [picard.jar

FixMateInformation ADD_MATE_CIGAR=true]. Then, duplicated

reads were identified and marked [picard.jar MarkDuplicatesWith

MateCigar MINIMUM_DISTANCE=600]. Germline variant calling

was performed using GATK4 HaplotypeCaller, including the

options -A StrandBiasBySample, -A StrandOddsRatio, -A

BaseQualityRankSumTest, -A MappingQualityRankSumTest, -A

RMSMappingQuality, -A ReadPosRankSumTest, and -A

FisherStrand (19). Other parameters were set to default, except

for –max-reads-per-alignment-start 0. GATK VariantFiltration was

used for germline variant filtering [SNVs - QD < 2.0, QUAL < 35.0,

MQ < 40, MQRankSum < -12.5, FS > 60.0, SOR > 3.0,

ReadPosRankSum < -8.0; indels - QD < 2.0, QUAL < 33.0, FS >

200.0, ReadPosRankSum < -20.0]. Somatic variants were discovered

using GATK Mutect2 (20). First, we created a list of variants

observed in normal tissues, which were obtained from patients

with HNPGLs (PoN, panel of norms) (6), with the GATK Mutect2,

GenomicsDBImport and CreateSomaticPanelOfNormals tools.

Then we supplied it to the final GATK Mutect2 search for

tumor-paired sample which was started with the default

parameters except for max-reads-per-alignment-start 0, –f1r2-tar-

gz <filename>, –germline-resource <gnomad_vcf>, -A StrandBiasBy

Sample, -A StrandOddsRatio, -A AS_StrandOddsRatio. Somatic

variant filtration was performed with GATK FilterMutectCalls.

However, because FFPE samples were examined, preliminary

steps were performed to eliminate FFPE artifacts and potential

cross-sample contamination. Orientation bias artifacts were

evaluated using GATK LearnReadOrientationModel. Read counts

supporting reference, alternate, and other alleles for GnomAD

known SNP sites were calculated using the GATK GetPileup

Summaries tool (with the –min-mapping-quality 27 argument).

Cross-sample contamination and tumor segmentation were

evaluated using GATK CalculateContamination. Finally, GATK

FilterMutectCalls was run with the derived information on tumor

segmentation, cross-sample contamination, and orientation bias.

All variants were annotated using ANNOVAR (21). The identified

variants were filtered based on objective criteria, including mutation

region (exonic and splicing), mutation type (missense, nonsense,

insertion, deletion, stop-loss, start-loss), population allele frequency

(<0.01, gnomAD), genomic region conservation score (>0.5,

phastCons), clinical significance (not benign, ClinVar), and

predicted as deleterious by more than 3 pathogenicity prediction

algorithms (SIFT, PolyPhen2, LRT, and others). InterVar (22) and

Varsome (23) tools were used for clinical interpretation of genetic

variants. To verify all variants of interest, the IGV browser was

utilized (24). The mutational load (ML) was calculated using an

algorithm previously developed for FFPE PPGL samples (25). Copy
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number variations were analyzed using the beta allele frequency

(BAF) method (6).

A total of 34.4 and 93.9 million reads were identified in normal

and tumor samples, respectively; of these, 97.8% and 96.52% were

mapped. 91.5% and 87.9% of reads were properly paired; 1.63% and

2.27% of reads were singletons; 16.1% and 42.9% of reads

were duplicates.
2.4 Transcriptome sequencing

Total RNA was isolated from FFPE tumor tissues using a High

Pure FFPET RNA Isolation Kit (Roche) and subjected to cDNA

library preparation with a TruSeq Stranded Total RNA Ribo-Zero

H/M/R Gold Kit (Illumina) following the manufacturer’s protocols.

Sample sequencing was performed along with the collection of 104

HNPGLs on an Illumina NextSeq 500 system in a single-end run

with a sequencing read length of 76 bp. Totally, 51.3 million reads

(read quality > 30) were obtained for the sample. Primary

bioinformatics analysis of raw sequencing data included quality

control using FastQC (26) and read trimming, filtering, and adapter

removal using Trimmomatic (27). Further sequencing reads were

aligned using STAR (28) with the GRCh38.p12. The parameters

that differed from the default were: outFilterMismatchNmax – 6,

outFilterMultimapNmax – 1, quantMode – TranscriptomeSAM,

outSAMstrandField – intronMotif, outFilterIntronMotifs –

RemoveNoncanonicalUnannotated. The mapped reads were

counted at the transcriptional level using featureCounts (Subread

package) (29). Gene Set Variation Analysis (GSVA) was performed

using the GSVA 1.46.0 (30) and clusterProfiler 4.6.2 (31) packages

from Bioconductor, using the KEGG database for SDHx-mutated

and non-mutated tumors. A total of 340 KEGG pathways were

identified. The pathways identified with a p-value < 0.05 were sorted

based on the [(1-adj. p-value)*(1-p-value)*absolute LogFC] score to

identify the most significant and striking changes. A hierarchical

clustering analysis was performed using the top 50 biological

pathways based on this score. The clinical and pathological

characteristics of the patient cohort with HNPGLs are shown in

Supplementary Table S1.
2.5 Loss of heterozygosity analysis

LOH analysis was performed in tumor and normal tissues of the

patient using three dinucleotide microsatellite repeats flanking the

FH locus (1q43, GRCh37/hg19): D1S304, D1S204, and D1S321

(1q43), D1S235 (1q42.3) and D1S423 (1q44), as well as seven

microsatellite markers located at different regions on

chromosome 11: D11S1984, D11S1313, D11S907, D11S4088,

D11S969, D11S1339, and D11S5030) as described in (32).

Polymerase chain reaction (PCR) was performed using primers

for microsatellites described previously (33). The obtained

fluorescence-labeled PCR products were processed on a

NANOPHORE-05 (Syntol, Russia) and analyzed using

GeneMarker software (SoftGenetics, USA). A score < 0.7 or > 1.3

indicates LOH.
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3 Results

3.1 Case description

A 42-year-old woman was referred to the Vishnevsky Institute

of Surgery, Ministry of Health of the Russian Federation, with a

mass on the right side of the neck, which had been growing for a

long time. The patient had experienced frequent episodes of throat

pain since the age of 26 years. She underwent tonsillectomy, which

had no positive effects. She also complained of hoarseness.

A computed tomography (CT) revealed a solid tumor in the

area of the right carotid artery bifurcation, with an oval shape and

clear smooth contours, measuring 47 × 30 × 70 mm. An early

arterial phase study revealed bright heterogeneous accumulation of

the contrast agent and lobulations with hypodense central areas.

Laterally, it deformed the surface of the neck and pushed the larynx.

The lower pole of the lesion was located medial to the common

carotid artery (CCA) bifurcation, in the area of the fork of the

internal carotid artery (ICA) and external carotid artery (ECA),

pushing the vessels anteriorly. Superiorly the lesion spread to the

base of the skull (Figure 1).

In 2018, the patient underwent surgical tumor removal. During

the procedure, the CCA, ICA, and ECA were isolated. The ICA was

surrounded by the tumor up to its entry into the skull. When

isolating the carotid arteries, three enlarged lymph nodes had to be

removed. The tumor originated from the vagus nerve and partly

from the sympathetic trunk. The vagus nerve was carefully

dissected, ligated and sutured. During isolation of the ICA from

the tumor, hypervascularization of the mass was noted due to active

bleeding. The ICA was isolated up to the cranial entrance and

requiring expansion of access, crossing of the digastric muscle, and

removal of the styloid process. Following isolation of the ICA, the

paraganglioma was excised from the base of the skull. It is

noteworthy that the vagus nerve expanded to approximately 1 cm

at the entrance to the skull. Careful hemostasis, wound drainage,

and layer-by-layer suturing of the wound were performed after

tumor extraction. The patient was transferred to the intensive care

unit without experiencing any neurological symptoms.
Frontiers in Endocrinology 04
Histological examination of the resected tumor confirmed

paraganglioma (Figure 2). Hematoxylin and eosin staining

revealed a Zellballen structure typical of PPGLs. The chief tumor

cells were positive for chromogranin A, synaptophysin, and CD56

antibodies, indicating a neuroendocrine tumor. S100 protein was

expressed in sustentacular cells. The tumor cells tested negative for

pancytokeratin. Ki67 stained about 2% of the cells. SDHB was

positively expressed in tumor cells, suggesting no deleterious

mutation in the SDHx genes and the presence of a stable

succinate dehydrogenase complex (15, 34).
3.2 Mutation profiling and biological
pathways enrichment

To reveal tumor-associated genetic changes, whole-exome

sequencing was performed on the tumor and normal (lymph

node) tissues of the patient as described previously (6). FFPE

lymph node tissue slides containing normal cells were examined

by a pathologist. Based on these results, a heterozygous germline

variant, NM_000143: c.747T>A, p.S249R (chr1:241669460), was

identified in the FH gene, with a variant allele frequency (VAF) of

0.57 in tumor and 0.45 in lymph node. This variant was recently

submitted to the ClinVar database and was classified as a variant of

uncertain significance. The FH: p.S249R variant was characterized

by low population frequency (close to 0), high genomic region

conservation score (0.89, set of 20 placental mammals), and “strong

deleterious” predicted by all used in silico prediction algorithms

(Table 1). According to the ACMG/AMP 2015 guideline (InterVar),

this variant was interpreted as “uncertain significance” in the same

way as in the GeneBe platform, whereas Varsome classified this

variant as “likely pathogenic.” In the protein crystal structure of FH

(35), serine 249 is located in the alpha chain in the central domain

and forms a hydrogen bond with asparagine 310, another monomer

in the functional homotetrameric enzyme (Supplementary Figure

S2) (35–37). The substitution of serine 249 for arginine can lead to

the destabilization of the tetrameric assembly and dynamics, leading

to reduced FH activity. No mutations were found in other PPGL
FIGURE 1

Preoperative computed tomography of the patient’s head and neck. CT scan (left), 3D reconstruction (right). Yellow arrows indicate the tumor.
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susceptibility genes (EGLN1, EGLN2,MDH2, SDHA, SDHB, SDHC,

SDHD, SDHAF2, MAX, RET, TMEM127, VHL, EPAS1, NF1,

H3F3A, IDH1, IDH2, ATRX, and HRAS) and 60 candidate genes

in the reported panel (38). The identified FH: p.S249R variant was

visualized using IGV (24) and was verified using Sanger sequencing

(Supplementary Figure S3).

A total of 21 somatic variants that affected 18 genes were

identified. Potential deleterious somatic variants were found in

only three genes (SLC7A7, ZNF225, and MED23) with variant

allele frequency (VAF) ranging from 0.06 to 0.13 (Table 1). The

SLC7A7 gene carried two frameshift deletions. Mutational load
Frontiers in Endocrinology 05
(ML) was calculated based on exome sequencing data. VPGL was

characterized by a low ML, 0.01 at VAF 0.15 (or 0.06 at VAF 0.2).

An analysis of copy number variations was performed for all

chromosomes using the BAF method. The tumor showed a

potential loss of chromosomes 1, 11, and 20 in some cells

(Supplementary Figure S4).

RNA sequencing was performed on the tumor tissue of the

patient, along with the collection of 104 HNPGLs. Only the

mutational profile has been previously studied for a subset of

these tumors (6). Hierarchical clustering analysis of the top-50

enriched KEGG biological pathways between SDHx-mutated and
FIGURE 2

Histologic and immunohistochemical definition of paraganglioma. Hematoxylin-eosin (H&E) staining displays a specific “Zellballen” growth pattern
with small nests of chief cells surrounded by supporting cells and further separated by fibrovascular stroma. Chief tumor cells stain positive for
CD56, synaptophysin (Syn), chromogranin A (ChrA), and SDHB antibodies and negative for pancytokeratin (AE1/AE3). S100 staining occurs
predominantly in sustentacular cells. Ki67 stains approximately 2% of the nuclei. ×400 magnification, scale bar 50 mm.
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TABLE 1 Germline and somatic variants identified in the patient.

ype Variant
status

VAF Average
coverage

Population allele
frequency
(gnomAD)

Pathogenicity
prediction algorithms

InterVar Varsome

Germline 0.57 (tumor),
0.45
(lymph node)

183 0 Polyphen2 – D,
SIFT – D, LRT – D,
MutationTaster – D, CADD –

1, DANN - 1

US LP

deletion Somatic 0.13 130 0 NA NA LP

Somatic 0.06 127 0 NA NA LP

letion Somatic 0.11 159 0 NA NA LP

Somatic 0.09 124 0.00003 Polyphen2 – D,
SIFT – D, LRT – D,
MutationTaster – D, CADD –

1, DANN - 1

US US
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Gene Variant description Variantt

FH NM_000143: c.747T>A,
p.S249R (chr1:241669460)

Missense

SLC7A7 NM_001126105: c.1266delT,
p.I422fs (chr14: 23243304)

Frameshift

NM_001126105:
c.1246_1262del, p.L416fs
(chr14: 23243308)

ZNF225 NM_013362: c.1777_1860del,
p.593_620del
(chr19: 44636543)

In-frame d

MED23 NM_004830: c.2317G>A,
p.E773K (chr6: 131919805)

Missense

VAF, variant allele frequency; D, deleterious; T, tolerated; CADD and DANN scores ran
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non-mutated tumors (GSVA, P < 0.05) was conducted. This

revealed that FH-mutated VPGL were related to a cluster

consisting predominantly of non-SDHx-mutated HNPGLs. Genes

upregulated in SDHx-mutated tumors were mainly downregulated

in FH-mutated VPGL. Sample clustering did not depend on carotid

or vagal tumor localization (Supplementary Figure S5).
3.3 Biallelic inactivation of the FH gene

Based on BAF analysis (6), probable FH wild-type allele loss was

observed. To validate these data, LOH analysis was performed on

the tumor and normal tissues of the patient using three dinucleotide

microsatellite repeats located near the FH locus (1q43, GRCh37/

hg19), D1S304, D1S204, and D1S321 (1q43), as well as two more

distant markers, D1S235 (1q42.3) and D1S423 (1q44)

(Supplementary Figure S6). Two microsatellite markers, one close

to the FH gene (D1S321) and the left distant marker (D1S235)

demonstrated LOH with allelic imbalance ratios of < 0.7 or > 1.3

(LOH = 1.36 and 1.41, respectively); the right distant marker

(D1S423) showed retention of heterozygosity. The other

microsatellite repeats, D1S304 and D1S204, were homozygous

(noninformative). Microsatellite analysis confirmed allelic loss in

regions near the FH locus, indicating inactivation of the normal

copy of the gene (Supplementary Figure S6).

BAF analysis revealed a potential loss of chromosome 11 in FH-

mutated tumors. The loss of chromosome 11 has previously been

shown in PPGLs with germline mutations in SDHAF2, SDHD, VHL,

and SDHB genes (39). To examine this result, LOH was analyzed for

seven microsatellite markers located in different regions of

chromosome 11 (D11S1984, D11S1313, D11S907, D11S4088,

D11S969, D11S1339, and D11S5030) (Supplementary Figure S6).

Three of these seven markers (D11S5030, D11S1984, and D11S1339)

were not informative. Two microsatellite repeats showed LOH at

11p13 (D11S907) and 11q25 (D11S969) regions, whereas loci

11q.12.1 (D11S1313) and 11p15.5 (D11S4088) were characterized

by the retention of both alleles in tumor tissue (Supplementary Figure
Frontiers in Endocrinology 07
S6). Thus, the summarized results from the BAF analysis and

microsatellite examination indicated deletions of particular regions

on chromosome 11 rather than the loss of the whole chromosome in

the studied patient.
3.4 Fumarate hydratase deficiency

The presence of FH deficiency in the tumor was estimated by

IHC staining of two markers: FH and 2SC. The latter is a marker of

loss or reduction in FH enzymatic activity associated with elevated

fumarate levels, resulting in increased protein succination and

production of 2SC (40). Strong positive staining for FH was

observed in the studied tumor, indicating that the mutant protein

was stable and detectable using the anti-FH antibody (Figure 3).

Simultaneously, the tumor showed positive diffuse cytoplasmic

staining for 2SC, a marker of deficient FH activity (41).

In addition, the impact of the FH variant on methylation was

studied using 5-hmC IHC. Accumulation of succinate and fumarate

blocks the hydroxylation of 5-mC to 5-hmC catalyzed by ten-eleven

translocation (TET) enzymes, leading to the loss of 5-hmC, which is

an evidence of DNA hypermethylation (42). The 5-hmC level was

assessed by comparison with that of adjacent endothelial cells as a

positive internal control. In tumor cells, 5-hmC staining was

characterized by nuclear labeling with an intensity equivalent to

that in endothelial cells (Figure 3).
4 Discussion

The FH gene encodes for the fumarate hydratase enzyme, which

is a component of the tricarboxylic acid (TCA) cycle and catalyzes

the conversion of fumarate to malate. FH is a housekeeping

and tumor suppressor gene, and its germline inactivating

mutations cause severe pathologies such as uterine and cutaneous

leiomyomata and renal cell carcinoma (43). Recently, several studies

revealed FH as a new susceptibility gene for PPGLs, with a mutation
FIGURE 3

Immunostaining for FH, 5-hmC, and 2SC in FH-mutated VPGL. The tumor shows strong positive staining for FH (top left), diffuse cytoplasmic
staining for 2SC (top right), and high nuclear labeling for 5-hmC (top middle). (C1-C2) Negative control reactions were performed for the antibodies
used in the study. Negative immunostaining of 2SC in non-FH-mutated vagal paraganglioma (C1, bottom left). Isotype control image for 5-hmC and
2SC antibodies (C2, bottom right). Other control images can be found in Supplementary Figure S1. ×400 magnification, scale bar 50 mm.
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frequency varying from 0.83% to 2.8% (Table 2) (14, 44–46). We

detected an FH mutation frequency in HNPGLs of 0.66%, which is

lower than that reported for PPGLs predominantly enriched with

pheochromocytomas (PCCs). Only four cases of FH-mutated

HNPGLs (three carotid body tumors and one case of VPGL - the

index case) have been reported to date (14, 45, 47). The age of

the identified PPGL patients with germline FH variants ranged

from 6–70 years, and somatic FH variants were found in patients

aged 27–77 years. Importantly, FH mutations were associated with

metastasis and multifocal development of PPGLs in approximately

one-fourth of the cases (Table 2). The index patient with the

germline FH: p.S249R variant was diagnosed with VPGL at 41

years of age; however, symptoms of the disease had been a concern

for her for more than 16 years. No regional or distant metastases

were detected at the time of diagnosis by CT or histopathological

analyses. However, the patient lacked long-term follow-up;

therefore, possible metastasis cannot be excluded. Thus, FH-

related PPGLs appear to manifest at a young age and are likely to

predispose to malignant tumors. Therefore, the identification of

germline FH mutations and subsequent monitoring of carriers are

important for early diagnosis and prevention of disease progression.

The identified FH variant p.S249R was previously poorly

described in the clinical databases. Its effect on protein was

interpreted as “likely pathogenic” (Varsome) and “uncertain

significance” (ACMG/AMP 2015). According to the protein

crystal structure, the replaced amino acid (serine 249) is located

in the central domain and is involved in the interactions of

monomers in homotetrameric mitochondrial FH proteins. FH

acts as a tumor suppressor, and the biallelic loss of this gene can

cause cancer (51). LOH analysis revealed the loss of the wild-type

FH allele in the studied tumor. Moreover, the potential loss of

chromosome 11 predicted by BAF analysis was examined, but only

specific chromosomal deletions were confirmed. Similar deletions

are typical along chromosomes 1 and 20, which have also been

detected with potential loss using BAF analysis.

The FH damage was confirmed by IHC staining of the 2SC.

Tumor cells displayed 2SC positivity with simultaneous positive

immunostaining for the FH protein. Immunostaining for FH and

2SC is widely used to detect FH deficiency caused by germline FH

mutations in hereditary leiomyomatosis and renal cell carcinoma

syndrome (52). A recent study demonstrated the rational utility of

this approach for identifying FH variants in PPGL (45). Fuchs et al.

screened 589 PPGLs using FH and 2SC staining and identified eight

FH-deficient tumors, the majority of which had germline FH

mutations. They also observed that FH-deficient tumors did not

exhibit SDH complex deficiencies. This is consistent with our

results, as FH-mutated VPGL were shown to have a positive

SDHB expression pattern, indicating a stable SDH complex. The

study of Fuchs et al. also demonstrated the high specificity of 2SC

IHC for detecting FH deficiency in PPGLs associated with germline

FH mutations. Interestingly, they found only one case of FH-

mutated HNPGLs, a carotid body tumor. Similar to our case, the

tumor showed positive FH and 2SC staining and carried a

pathogenic/likely pathogenic FH: p.Thr234Ala variant. Buelow

et al. reported several cases of positive FH and 2SC IHC results

associated with pathogenic FH: p.R233H mutation in multiple
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cutaneous leiomyomas (53). Thus, our finding of positive FH

expression and positive diffuse cytoplasmic staining in 2SC is

consistent with the presence of a pathogenic/likely pathogenic

missense mutation. Together with the results of LOH analysis, a

positive FH pattern indicated the expression of a stable mutant

protein. Simultaneously, the FH: p.S249R variant impaired FH

activity and caused increased levels of protein succination, as

reflected by positive diffuse 2SC IHC. This demonstrates the

potential pathogenic effect of the FH p.S249R variant and the

presence of FH deficiency in the tumor. We believe that the

results obtained may provide evidence to classify the variant as

“likely pathogenic” based on the following ACMG/AMP 2015

criteria: PS3, PM2, PP2 and PP3.

A deficiency of SDH or FH in successive reactions in the TCA

cycle leads to the accumulation of the oncometabolites succinate and

fumarate. Both succinate and fumarate can act as antagonists of a-
ketoglutarate (a-KG) inhibiting a-KG-dependent dioxygenases,

including JmjC domain-containing histone demethylases (KDMs)

and the TET family of DNA hydroxylases that lead to alterations in

histone and DNA methylation (42). FH- and SDH-deficient PPGLs

are likely characterized by similar molecular phenotypes, which were

confirmed by the common development of a hypermethylation

phenotype and related gene expression profiles (47). Interestingly,

the opposite results were observed. Cluster analysis of the biological

pathways revealed that FH-mutated tumors did not display an “SDH-

like” phenotype. This might be explained by the specificity of the

molecular profiles of HNPGLs, which are not characterized by clear

SDHx-mutated and non-mutated transcriptomic clusters compared

with PCCs. However, an additional IHC test for a specific epigenetic

marker, 5-hmC, showed the absence of DNA hypermethylation in

the tumor and confirmed a different molecular phenotype of the

studied FH-mutated tumor. Different DNA methylation has

previously been shown in FH-deficient renal cell carcinoma (RCC)

(54). Approximately 20% of FH-deficient RCC did not exhibited the

CpG island methylator phenotype (CIMP), which was associated

with lower incidence of metastasis. Thus, our result is consistent with

the heterogeneity of DNA methylation in FH-deficient tumors and

may also be related to benign tumor behavior. Notably, the clustering

analysis of FH-related tumors was limited to one sample. Moreover,

the sampling and assay designs were different from those in a

previously reported study, which can also explain the specific

sample clustering.

Somatic mutation profile analysis revealed three genes, SLC7A7,

ZNF225, and MED23, with potentially deleterious variants. The

SLC7A7 gene encodes for the light subunit of a cationic amino acid

transmembrane transporter that is involved in the activity of the

y+L amino acid transport system (55, 56). No variants in SLC7A7

have been previously reported in PPGLs; the role of short SLC7A7

deletions in FH-mutated VPGL remains unclear. ZNF225 and

MED23 encode proteins involved in the transcriptional activation

of genes. ZNF225 is predicted to be a DNA-binding transcriptional

activator specific for RNA polymerase II; however, little is known

about this. MED23 is a subunit of the mediator complex that plays a

key role in regulating gene expression via RNA polymerase II and

other post-transcriptional steps (57). Interestingly, decreased

MED23 expression was correlated with malignant PCCs with a
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TABLE 2 Characteristics of reported PPGL cases with FH variants.

FH
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FH variant frequency in the studied
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1.1% (45)

Yes

Yes

Yes

Yes

Yes

Yes

Yes

(Continued)

Sn
e
zh

kin
a
e
t
al.

10
.3
3
8
9
/fe

n
d
o
.2
0
2
4
.13

8
10

9
3

Fro
n
tie

rs
in

E
n
d
o
crin

o
lo
g
y

fro
n
tie

rsin
.o
rg

0
9

Patient Sex Age Tumor Metastasis
Multiple
PPGL

Variant
type

Variant
status

Variant
description

LOH

1 F 63 PCC No Yes

Missense Germline
c.349G>C,
p.Ala117Pro

Yes

Missense Somatic
c.1043G >
C, p.Gly348Ala

2 F 20
PCC, extra-
adrenal PGL

Yes No Splicing Germline c.268-2A>G, p.? Yes

3 M 28
Extra-
adrenal PGL

Yes Yes Missense Germline
c.1142C>T,
p.Thr381Ile

Yes

4 F 54
PCC, extra-
adrenal PGL

Yes Yes Missense Germline
c.580G>A,
p.Ala194Thr

NA

5 M 70
HNPGL
(carotid body)

No No Missense Germline
c.986A>G,
p.Asn329Ser

NA

6 M 6 PCC No No Missense Germline
c.1301G>A,
p.Cys434Tyr

NA

7 M 41 PCC No No Missense Germline
c.157G>A,
p.Glu53Lys

NA

8 NA 20 NA NA NA NA NA NA NA

9 NA 63 NA NA NA NA NA NA NA

10 M 30 PCC No Yes Missense Germline
c.1142C>T,
p.Thr381Ile

NA

11 F 36
Extra-
adrenal PGL

No No Missense Somatic
c.1516A>G,
p.Met506Va

Yes

12 F 69 PCC No No Missense Germline
c.222A>T,
p.Arg74Ser

No

13 M 77
Extra-
adrenal PGL

No
Other
tumor

Missense Somatic
c.203A>G,
p.Tyr68Cys

No

14 F 59 PCC No
Other
tumor

Missense Germline
c.1142C>T,
p.Thr381Ile

NA

15 F 32 PCC No
Other
tumor

Missense Germline
c.1142C>T,
p.Thr381Ile

NA

16 M 57
HNPGL
(carotid body)

Yes No Missense Germline
c.700AC>T,
p.Thr234Ala

Yes

17 F 53
Extra-
adrenal PGL

Yes No Missense Germline
c.222A>T,
p.Arg74Ser

NA
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TABLE 2 Continued

riant
scription

LOH
FH
deficiency

FH variant frequency in the studied
cohort (Germline)

Reference

17G>A,
Ala273Thr

NA NA NA (49)

17G>A,
Ala273Thr

Yes Yes

1.25% (50)

06G>Ab,
Gly69Asp

No Yes

93G>A,
Asp65Asn

Yes No

99C>G,
Pro267Ala

No No

373C>T,
Ala458Val

NA NA

142C>T,
Thr381Ile

NA Yes

<1.1% (45)

22A>T,
Arg74Ser

No Yes

142C>T,
Thr381Ile

NA Yes

142C>T,
Thr381Ile

NA Yes

00A>G,
Thr234Ala

Yes Yes

22A>T,
Arg74Ser

NA Yes

516A>G,
Met506Val

Yes Yes

47T>A, p.S249R Yes Yes 0.66% (frequency only in HNPGLs)
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Patient Sex Age Tumor Metastasis
Multiple
PPGL

Variant
type

Variant
status

V
d

18 F 33
Extra-
adrenal PGL

No No Missense Germline
c
p

19 F 36
Extra-
adrenal PGL

No No Missense Germline
c
p

20 F 27 PCC No
Other
tumor

Missense Somatic
c
p

21 M 57
PCC, extra-
adrenal PGL

No Yes Missense Germline
c
p

22 F 46
Extra-
adrenal PGL

No No Missense Germline
c
p

23 M 50 PCC No No Missense Germline
c
p

24 M 30 PCC No Yes Missense Germline
c
p

25 F 69 PCC No NA Missense Germline
c
p

26 F 59 PCC No
Other
tumor

Missense Germline
c
p

27 F 32 PCC No
Other
tumor

Missense Germline
c
p

28 M 57
HNPGL
(carotid body)

Yes NA Missense Germline
c
p

29 F 53
Extra-
adrenal PGL

Yes NA Missense Germline
c
p

30 F 36
Extra-
adrenal PGL

No NA Missense Somatic
c
p

31 F 41 HNPGL (vagal) No No Missense Germline c

F, female; M, male; NA, data unavailable.
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high degree of sensitivity but suboptimal specificity (58). Thus,

somatic genetic alterations in transcriptional activators may be

involved in the development of FH-mutated VPGL. These

mutations could lead to the downregulation of many genes,

as observed in the pathway enrichment analysis of the

tumors (Figure 3).
5 Conclusion

The fourth case of FH-mutated HNPGLs has been reported;

notably, this is the first reported case of VPGL. In this patient, the

germline FH variant p.S249R co-occurred with LOH at the gene

locus and FH deficiency. This strongly suggests that FH acts as a

tumor suppressor gene in paragangliomas and may serve as

evidence of variant pathogenicity. Despite the clear common

change in cell metabolism driven by FH and SDH mutations, FH-

mutated VPGL did not display an “SDH-like”molecular phenotype,

indicating a different mechanism of tumor development. The

identified somatic variants in the transcriptional activators

ZNF225 and MED23 seem to be associated with the deregulation

of gene expression and play a role in tumor pathogenesis and

potential progression (particularly MED23). This case highlights

the association between HNPGLs and hereditary FHmutations and

firmly supports its consideration as a tumor susceptibility gene.

Despite the rarity of FH mutations in PPGLs, carriers seem to be

inclined toward early onset tumors with potential for metastasis.

Genetic testing for germline mutations in FH is recommended for

patients with HNPGL without variants in the SDHx genes, with

subsequent screening of family members.
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