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integrating radiomics from
multimodal ultrasound via
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and Wanqing Liu 2*

1Department of Ultrasound, Deyang People’s Hospital, Deyang, Sichuan, China, 2Department of
Obstetrics and Gynecology, Deyang People’s Hospital, Deyang, Sichuan, China
Background: Recurrent pregnancy loss (RPL) frequently links to a prolonged

endometrial receptivity (ER) window, leading to the implantation of non-viable

embryos. Existing ER assessment methods face challenges in reliability and

invasiveness. Radiomics in medical imaging offers a non-invasive solution for

ER analysis, but complex, non-linear radiomic-ER relationships in RPL require

advanced analysis. Machine learning (ML) provides precision for interpreting

these datasets, although research in integrating radiomics with ML for ER

evaluation in RPL is limited.

Objective: To develop and validate an ML model that employs radiomic features

derived from multimodal transvaginal ultrasound images, focusing on improving

ER evaluation in RPL.

Methods: This retrospective, controlled study analyzed data from 346

unexplained RPL patients and 369 controls. The participants were divided into

training and testing cohorts for model development and accuracy validation,

respectively. Radiomic features derived from grayscale (GS) and shear wave

elastography (SWE) images, obtained during the window of implantation,

underwent a comprehensive five-step selection process. Five ML classifiers,

each trained on either radiomic, clinical, or combined datasets, were trained

for RPL risk stratification. The model demonstrating the highest performance in

identifying RPL patients was selected for further validation using the testing

cohort. The interpretability of this optimal model was augmented by applying

Shapley additive explanations (SHAP) analysis.

Results: Analysis of the training cohort (242 RPL, 258 controls) identified nine key

radiomic features associated with RPL risk. The extreme gradient boosting

(XGBoost) model, combining radiomic and clinical data, demonstrated superior

discriminatory ability. This was evidenced by its area under the curve (AUC) score

of 0.871, outperforming other ML classifiers. Validation in the testing cohort of
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215 subjects (104 RPL, 111 controls) confirmed its accuracy (AUC: 0.844) and

consistency. SHAP analysis identified four endometrial SWE features and two GS

features, along with clinical variables like age, SAPI, and VI, as key determinants in

RPL risk stratification.

Conclusion: Integrating ML with radiomics from multimodal endometrial

ultrasound during the WOI effectively identifies RPL patients. The XGBoost

model, merging radiomic and clinical data, offers a non-invasive, accurate

method for RPL management, significantly enhancing diagnosis and treatment.
KEYWORDS

recurrent pregnancy loss, endometrial receptivity, radiomics, machine learning, shear
wave elastography
Introduction

In the quest to understand the complexities of recurrent

pregnancy loss (RPL), a condition impacting up to 5% of couples

striving for conception, a comprehensive exploration into its causes

has been undertaken (1). This includes investigations into

anatomical, endocrine, and immunological factors, among others

(2). Despite these efforts, a significant proportion of RPL cases

remain unexplained (3). It is recognized that the causes of RPL can

generally be categorized into maternal and embryonic aspects (4).

Recent studies have suggested that fetal chromosomal anomalies

may account for 30 to 60% of miscarriages in RPL cases (5). It is

noteworthy that chromosomal instability within preimplantation

embryos is a common phenomenon, even among younger women

of childbearing age (6). The maternal reproductive system is known

to possess a natural quality control mechanism, designed to prevent

the implantation of embryos with compromised viability (7). Thus,

in many instances, RPL can be viewed as a failure of this natural

selection process, resulting in the implantation and subsequent

miscarriage of embryos unlikely to achieve full-term development.

Inadequate natural embryonic selection often results in a state of

biological ‘superfertility’, characterized by insufficient decidualization

of stromal cells and a misaligned maternal response to embryonic

signals (8–10). This condition is thought to prolong the endometrial

receptivity (ER) window, potentially leading to the delayed

implantation of compromised embryos, a concept supported by

research from Wilcox et al. (11). Since ER can be improved with

individualized therapies (12), understanding the timed changes in the

endometrial immune environment is key to assessing the optimal ER

state, which could facilitate a balance between successful implantation

and pregnancy in RPL women (13).

The clinical evaluation of the endometrium continues to be a

critical component in the investigation of couples facing

unexplained RPL (uRPL). Current research on ER predominantly

focuses on endometrial parameters significant for predicting
02
assisted reproduction outcomes, including endometrial

morphology and Doppler b lood flow assessed using

ultrasonography (14, 15). However, the reliability of these

parameters in identifying RPL patients remains a matter of debate

(16). Invasive procedures like hysteroscopy, though offering

detailed examination, are less suitable for routine screening and

repeated measures (17). The progress in molecular testing offers

hope, yet it requires extensive validation (18). Consequently, the

development of more precise and objective non-invasive methods

for ER assessment is essential for enhancing diagnostic accuracy in

RPL and improving patient prognosis.

To address this need, our study introduces an enhanced

approach by integrating radiomics into the established

multimodal transvaginal ultrasound protocol. Radiomics,

endorsed by the European Society of Radiology (19) as a leading-

edge method in medical imaging, offers comprehensive feature

extraction from imaging data (20), which facilitates potential

clinical correlations in ER evaluation. Its recent application has

shown promise in non-invasive ER evaluation (21). However, the

complexity and non-linearity inherent in the relationships between

radiomic features and clinical outcomes necessitate advanced

analytical methods. Traditional linear models are inadequate for

the required precision, highlighting the necessity for artificial

intelligence, especially machine learning (ML) algorithms, to

better analyze these intricate datasets (22). The combination of

radiomics and ML presents a compelling synergy, particularly

beneficial due to the large datasets provided by radiomics through

its high-throughput extraction of quantitative features frommedical

images (23).

Given this potential, our study focuses on the development and

validation of an ML model that utilizes radiomic features from

grayscale (GS) and shear wave elastography (SWE) images of the

endometrium obtained via transvaginal ultrasound. The aim is to

refine ER evaluation in RPL patients, facilitating the identification

of specific ER states. This improved identification process is crucial
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for the timely application of customized therapies, addressing the

unique needs of RPL patients.
Materials and methods

Conducted with a retrospective and controlled methodology,

this study adhered rigorously to the ethical guidelines outlined in

the Declaration of Helsinki. Ethical approval was secured from the

Institutional Review Board of Deyang People’s Hospital (2022-04-

083-K01). In light of the study’s retrospective nature, the

requirement for informed consent was waived by the ethical

committee. To ensure the confidentiality and privacy of the

participants, a comprehensive anonymization process was applied

to all participant data before their inclusion in the research analysis.
Subjects

Between 2021 and 2023, data from 400 patients with uRPL were

collected for the RPL group. These cases were defined as

experiencing the consecutive spontaneous loss of two or more

clinically recognized pregnancies before the 24th week of

gestation, based on the criteria from the European Society of

Human Reproduction and Embryology (ESHRE) and the

American Society for Reproductive Medicine (ASRM) (24, 25).

This definition excludes ectopic, molar, and biochemical

pregnancies. Autoimmune, anatomic, genetic, endocrine,

infectious, and male factors were excluded upon initial

assessment. For the control group, 400 women seeking to

enhance their chances of conception were selected. These control

subjects had undergone various assessments at our center, including

evaluations of ovarian reserve and ER, and had subsequently

achieved a full-term pregnancy without previous pregnancy loss.

Criteria for inclusion of both groups encompassed an age range

of 20 to 40 years, regular menstrual cycles of 27 to 35 days, and

normal ovarian reserve. Participants were also required to have

normal ovarian and uterine ultrasonography, absent of cysts,

fibroids, polyps, or significant structural anomalies, and a history

free from major gynecological surgeries, except minor procedures

like curettage, diagnostic laparoscopy, and hysteroscopy. Women

with a history of heavy drinking, systemic diseases affecting

hemodynamic indexes, or recent use of steroid hormones,

antibiotics, or other medications influencing pregnancy outcomes,

were excluded from both groups.

Following rigorous selection processes, 346 RPL patients and

369 control individuals were enrolled in this study. To ensure the

robustness and validity of our model, the subjects were randomly

assigned to a training cohort of 500 individuals (242 RPL, 258

controls) and a validation cohort of 215 individuals (104 RPL, 111

controls) in a 7:3 ratio. Comprehensive clinical data collected

during the initial consultation included age, body mass index

(BMI), history of previous miscarriages, and ovarian reserve

indicators such as follicle-stimulating hormone (FSH), luteinizing

hormone (LH), estradiol (E2), antral follicular count (AFC), and

antimüllerian hormone (AMH) levels.
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Transvaginal ultrasound for ER

During the window of implantation (WOI), typically 7-9 days

following ovulation (days 21–23 of the cycle), uniform transvaginal

ultrasound scanning was performed on all subjects using the Resona

R9T system (Shenzhen Mindray Corporation, Shenzhen, China).

The standard measurements included endometrial thickness

(EMT), as well as the analysis of blood flow dynamics within the

uterine arteries (UA) and the spiral arteries (SA). This analysis

incorporated the calculation of the mean pulsatility index (PI) and

resistance index (RI) for the bilateral UAs and SAs. Additionally,

SWE and three-dimensional (3D) imaging modes were routinely

employed as part of the ER assessment. Following the manual

delineation of the endometrial outline, the system autonomously

calculated various parameters including the Young’s modulus value

of the endometrium and volumetric data. This data encompassed

the endometrial volume, along with the vascularization index (VI),

flow index (FI), and vascularization flow index (VFI). The VI was

defined as the proportion of power Doppler information, the FI

reflected the power Doppler signal’s intensity, and the VFI

integrated both these measurements (26). To enhance the

reliability of these assessments, each examination was repeated

twice and the average values were recorded.
Endometrial segmentation process

Endometrial segmentation was performed on offline Duplex

SWE images, which depicted the endometrium in a longitudinal

section. These images featured a dual representation of GS and SWE

color scales, reflecting tissue stiffness variations from lower (deep

blue) to higher (red) levels. As outlined in Figure 1, the workflow

involved sequential stages of image segmentation, radiomic

analysis, and the training of ML models. Segmentation was

executed using the 3D Slicer software (version 5.6.1), focusing on

the precise delineation of the entire endometrium as the region of

interest (ROI). Two expert sonographers, unaware of the study’s

objectives, meticulously marked these ROIs to ensure observer

consistency. ROIs on the right side of the SWE images were

aligned with the endometrial contours, while corresponding ROIs

were identified on the left-side GS images.
Radiomic feature extraction

Subsequent to the delineation of ROIs, the Pyradiomics toolkit

was employed for extracting radiomic features from the segmented

images. This step transformed segmented medical images into a

highly structured dataset with multidimensional attributes, crucial

for the quantification and characterization of ER. A total of 1316

unique features were extracted from each segmented image,

comprising 12 shape-related, 18 first-order statistical, and 75

textural features from the initial images. The textural features

were further categorized based on their originating matrix,

including gray-level co-occurrence, gray-level dependence, gray-

level run length, gray-level size zone, and neighboring gray tone
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difference. In addition, six preprocessing filters (Exponential,

Gradient, Logarithm, Square, Square-root, and Wavelet) were

applied to the initial images, generating an additional 1209

filtered features. All extracted features were systematically

cataloged in an Excel fi le for the subsequent feature

selection process.
Radiomic and clinical data preprocessing

In preparation for the predictive model development, a critical data

preprocessing step, encompassing both extracted radiomic features and

clinical data, was undertaken to normalize the comprehensive dataset,

thereby ensuring the integrity and objectivity of the subsequent

analysis. Continuous variables were normalized using the Z-score

method, aligning them to a standard scale with a mean of zero and a

standard deviation of one. Meanwhile, categorical variables underwent

binary transformation, being encoded as ‘0’ and ‘1’. In defining clinical

outcomes, patients with RPL were coded as ‘1’, distinguishing them

from control subjects, who were coded as ‘0’.
Radiomic feature selection

For the radiomic features extracted from each segmented image,

a structured multi-step process was utilized to select features
Frontiers in Endocrinology 04
associated with RPL. This process initiated with the assessment of

interobserver agreement, quantified using the intraclass correlation

coefficient (ICC) with a threshold of 0.8 to ensure observer

concordance. Subsequent statistical analyses began with the

Wilcoxon rank sum (WRS) test, identifying RPL-related features

based on a false discovery rate-adjusted P-value under 0.1. Further

refinement employed the minimum redundancy maximum

relevance (mRMR) method, isolating the top 20 features with

high relevance and minimal redundancy to RPL. The final

selection phase applied least absolute shrinkage and selection

operator (LASSO) logistic regression, focusing on isolating the

most predictive features for RPL.
Training of ML models

The entire model training process, from algorithm selection to

hyperparameter tuning, was executed using the Scikit-Learn library

in Python. Five supervised ML classifiers were deployed for RPL

risk stratification. These classifiers included logistic regression

(Logit), support vector machines (SVM), random forests (RF), k-

nearest neighbors (KNN), and extreme gradient boosting

(XGBoost). Hyperparameter optimization was conducted using a

grid search algorithm, detailed in Supplementary Table S1, to

mitigate overfitting and enhance model robustness. For data

partitioning, a 10-fold cross-validation method was adopted. This
FIGURE 1

Multimodal radiomics-based ML workflow for ER assessment. The depicted workflow begins with endometrial segmentation through Duplex SWE
imaging. It advances to comprehensive radiomic analysis and concludes with the refinement and optimization of multiple ML classifiers for
precise assessment.
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involved sequentially segmenting the dataset into ten subsets, using

each in turn as an inner validation set while the remaining subsets

constituted the training set.
Internal and external validations of
ML models

For each participant in the training cohort, three distinct sets of

ML models were developed based on radiomic data, clinical data,

and a combined dataset of both. These models underwent a

thorough internal validation process to assess their discriminative

accuracy, calibration, and clinical applicability. The selection of the

most effective model was informed by its excellence in

discrimination, robust calibration, and relevance in a clinical

setting. External validation of the optimal model was conducted

using the testing cohort, also focusing on assessing the model’s

discrimination, calibration, and clinical utility, thereby ensuring its

clinical applicability. To comprehensively quantify the model’s

utility in practical scenarios, key performance metrics, including

accuracy, precision, recall, and F1 score, were analyzed within the

testing cohort.
Interpretability of the optimal ML model

In order to demystify the inherent opacity of ML models, we

employed the Shapley Additive Explanations (SHAP) approach.

This technique quantifies and ranks the influence of each variable

on the model’s predictions, offering a clear depiction of their relative

importance (27). By arranging features in descending order based

on SHAP values, the key predictive factors within the model are

highlighted. To further assess potential collinearity among the most

influential variables, we generated a heatmap of the correlation

matrix for these top predictors. This visualization helps identify any

redundancy or high collinearity that could affect the

model’s quality.
Statistical analysis

A tailored approach to statistical analysis was employed to

discern differences between training and testing cohorts.

Continuous data, depending on their distribution, were subjected

either to the independent-sample t-test (for normally distributed

data) or the Mann–Whitney U test (for non-normally distributed

data). Model performance was evaluated through receiver operating

characteristic (ROC) curve analysis, with the area under the curve

(AUC) assessing discrimination capability. AUC values were

compared using Delong’s test. The goodness of fit for each model

was assessed using calibration curve analysis and the Brier Score. To

determine the clinical applicability, decision curve analysis (DCA)

was implemented for evaluating net benefits at varied threshold

probabilities. All analyses were performed using Python (version

3.12.0), considering a p-value below 0.05 as statistically significant.
Frontiers in Endocrinology 05
Results

Cohort characteristics

Figure 2 illustrates the workflow for participant selection and

the subsequent development phases of the ML model in this study.

A total of 715 participants were enrolled, comprising 346

individuals with RPL and 369 controls. Within the RPL sufferers,

recurrent miscarriage occurrences were 58.3% for two, 30.6% for

three, and 10.9% for four or more. These participants were

randomly assigned to training and testing cohorts for model

development and validation. Table 1 reveals uniform

demographic and clinical features across both cohorts, with no

significant disparities in baseline characteristics (all P-values >

0.05), ensuring a balanced evaluative basis.
Radiomic features extraction and selection

In the training cohort of this study, the delineation of endometrial

ROIs in GS and SWEmodalities was conducted on duplex transvaginal

ultrasound images for each participant. This process led to the

extraction of a comprehensive set of 2626 radiomic features, with an

equal distribution across both GS and SWE images. Subsequent

standardization procedures resulted in the identification of 1145 GS-

derived features and 1202 SWE-derived features, each demonstrating

an ICC equal to or above 0.8, thereby qualifying for further analysis.

The WRS test identified 117 GS and 141 SWE features as potential

indicators of increased RPL risk. Subsequent refinement via the mRMR

algorithm shortlisted the top 20 features from each modality,

prioritizing those with maximal relevance to RPL risk and minimal

redundancy. The final phase of feature selection involved LASSO

logistic regression, which highlighted 4 GS and 5 SWE features with

significant RPL risk correlations, each exhibiting non-zero coefficients.

The distribution patterns of these selected features are illustrated in

Figure 3, along with detailed descriptions and weight information in

Supplementary Table S2.
Training and evaluation of ML models

Employing the nine selected radiomic features and standardized

clinical data, the efficacy of five distinct ML classifiers was explored.

These included Logit, SVM, RF, KNN, and XGBoost. Each classifier

underwent a comprehensive optimization process facilitated by 10-

fold cross-validation, ensuring hyperparameter refinement for

optimal performance. Figure 4 presents a comparative analysis of

these models, organized into three sets. The outcomes from models

based on radiomic features are shown in sections Figures 4A–C, those

based on clinical data in Figures 4D–F, and models utilizing a

combination of both in Figures 4G–I. Each section includes ROC

curves, calibration plots, and DCA, providing a multifaceted view of

each classifier’s predictive capacity in the context of elevated RPL risk.

The investigation found that models integrating both clinical

and radiomic data yielded superior discriminative ability, as
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reflected in the AUC values. Models combining both types of data

exhibited AUCs ranging from 0.737 to 0.871, outperforming those

based solely on clinical (0.618 to 0.747) or radiomic features (0.717

to 0.834). Notably, the RF and XGBoost classifiers achieved the

highest AUCs of 0.860 and 0.871, respectively. These models also

showed impressive calibration, characterized by calibration curves

closely approximating the 45-degree line and low Brier Scores (RF:

0.0052, XGBoost: 0.0062), thereby enhancing their predictive

reliability. Furthermore, both RF and XGBoost demonstrated

significant clinical utility, offering substantial net benefits across a

broad threshold probability range (20-100%). Despite their close

performance, XGBoost marginally outperformed RF, emerging as

the optimal choice for assessing RPL risk.
Frontiers in Endocrinology 06
Validation of the optimal model

The robustness of the XGBoost model for RPL risk stratification

was validated using an independent testing cohort composed of

RPL and control women, which was not used in the training phase,

ensuring an unbiased evaluation of the model’s performance.

Analysis involved inputting cohort data into the model, yielding

estimations subsequently compared with the actual status of

participants. Figure 5 details the validation outcomes, featuring an

ROC curve with an AUC of 0.844, indicating substantial predictive

accuracy (Figure 5A). The calibration curve reflected close

agreement between the predicted probabilities and the observed

frequencies, demonstrating model calibration integrity (Figure 5B).
FIGURE 2

Workflow illustrating participant selection and cohort distribution for ML model development in RPL risk assessment.
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TABLE 1 Comparative analysis of demographic and clinical parameters between training and testing cohorts.

Indicators
Training cohort

(n = 500)
Testing cohort

(n = 215)
t/z value P value

Age, year 33 (30–35) 33 (31–35) 1.011 0.312

BMI, kg/m2 21.52 ± 3.41 21.71 ± 3.79 0.654 0.513

FSH, IU/L 7.27 (6.17-8.69) 7.19 (6.01-8.63) 0.559 0.576

LH, IU/L 6.75 (5.89-7.65) 6.75 (5.89-7.58) 0.080 0.937

E2, pg/mL 34.9 (29.6-39.3) 34.2 (29.2-39.7) 0.073 0.941

AMH, ng/ml 1.47 ± 0.42 1.49 ± 0.41 0.566 0.571

EMT, mm 8.91 ± 1.79 8.88 ± 1.87 0.230 0.818

Endometrial volume, ml 4.95 ± 0.96 4.95 ± 0.98 0.060 0.952

Young’s modulus value, kPa 12.5 (10.6-14.3) 12.7 (10.9-14.3) 0.988 0.323

SAPI 0.97 (0.85-1.13) 0.96 (0.84-1.12) 0.475 0.635

SARI 0.54 ± 0.05 0.54 ± 0.52 0.723 0.470

UAPI 2.12 ± 0.20 2.12 ± 0.21 0.092 0.927

UARI 0.82 (0.80-0.84) 0.83 (0.79-0.84) 0.085 0.932

VI, % 2.39 ± 0.59 2.44 ± 0.58 1.062 0.289

FI 26.78 ± 6.58 27.39 ± 6.42 1.135 0.257

VFI 0.60 (0.47-0.78) 0.60 (0.48-0.78) 0.472 0.637
F
rontiers in Endocrinology
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FIGURE 3

LASSO logistic regression analysis of radiomic features. (A, C) display the trajectory of LASSO coefficients for GS and SWE features, respectively, with
the optimal lambda value indicated by the vertical red dashed line. (B, D) highlight the selected features with non-zero coefficients at this optimal
lambda value, demonstrating their significance in the assessment of RPL risk.
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DCA revealed significant clinical net benefit for probability

thresholds exceeding 10% (Figure 5C). Performance indicators

derived from the confusion matrix, including accuracy, precision,

recall, and F1 score, were determined to be 0.803, 0.850, 0.704, and

0.770, respectively. These statistics reinforce the XGBoost model as

a robust tool for RPL risk evaluation.
Model interpretation

SHAP value analysis enhanced the interpretability of the

XGBoost model for RPL risk assessment by quantifying the

contribution of each predictor. Mean absolute SHAP values

identified four significant radiomic features from endometrial

SWE images, two from GS images, and clinical variables such as

age, SAPI, and VI as key determinants. As shown in Figure 6A,

these features are ranked by their SHAP values, with Figure 6B
Frontiers in Endocrinology 08
providing a detailed visualization of their combined effects. The top

four indicators, each with a mean impact exceeding 0.5, include two

radiomic features from SWE images, one from GS images, and age.

Figure 7 presents a heatmap of the correlation matrix for these nine

critical features, showing minimal inter-feature correlation, with the

highest correlation coefficient being less than 0.2. This indicates low

collinearity, confirming that each feature independently contributes

to the prediction accuracy for RPL risk.
Discussion

In the specialized field of RPL, this study innovates by

incorporating ML techniques to interpret complex radiomic data

from transvaginal ultrasound. Focused on enhancing ER assessment

for RPL risk stratification, it integrates quantitative radiomic

features from both GS and SWE images of the endometrium.
FIGURE 4

Comparative performance of ML classifiers for RPL risk assessment. (A–C) evaluate models using clinical data, (D–F) focus on radiomic features, and
(G–I) combine both datasets, depicted through ROC curves, calibration plots, and DCA. These visualizations provide insights into the discriminative
accuracy, calibration, and clinical utility of the Logit, SVM, RF, KNN, and XGBoost classifiers, with RF and XGBoost showing superior performance,
particularly when leveraging the integrated dataset.
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Crucial to this approach is the finding that the XGBoost model

excels as the most effective tool. This model, relying on a selected

group of 4 GS and 5 SWE features, along with key clinical

parameters including age, SAPI, and VI, effectively identifies

distinct ER patterns. The robustness of the XGBoost model is

consistently demonstrated across both training and validation

cohorts, affirming its reliability and accuracy. This method offers

a non-invasive, reproducible way to differentiate RPL patients from

healthy individuals, potentially guiding more targeted and

effective treatments.

Accurate ER evaluation is crucial for identifying RPL risk. There

is a clear connection between RPL and the disrupted process of

decidualization, where endometrial stromal cells transform into

decidual cells (28). This key transformation concludes the

implantation window and enables the endometrium to identify,

react to, and remove non-viable embryos (29). Impairments in this

functional aspect of decidualization increase the likelihood

associated with delayed implantation, insufficient embryo quality

control, and early placental dysfunction (30). Moreover, enhancing

ER through personalized treatments highlights the need for optimal

ER state assessment (31). Such assessments are crucial not only for

identifying women at risk of RPL but also for improving their

endometrial conditions, thus potentially boosting their pregnancy

success rates.
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The utilization of radiomics, characterized by a range of

mathematically extracted parameters, has attracted considerable

attention due to its potential in delineating heterogeneity within

specific regions (32). In reproductive medicine, these parameters

are promising for advancing clinical diagnostics and

prognostication, providing a non-invasive method to detect subtle

microstructural details, which surpasses the capabilities of

conventional ultrasonography (33). The introduction of radiomics

in identifying features associated with RPL represents a significant

advancement toward innovative therapeutic interventions and

preventive strategies. By facilitating detailed assessment of ER,

radiomics enables clinicians to customize interventions to

enhance the uterine environment for pregnancy. In this context,

the study conducted by Huang et al. (21) represents a pioneering

exploration, identifying unique radiomic characteristics associated

with uRPL and showing advantages over traditional ER indicators.

However, these findings await further validation in test cohorts for

the assessment of their predictive robustness and stability.

Our study extends previous research by extracting radiomic

features from both GS and SWE ultrasound imaging of the

endometrium, thereby broadening the scope of endometrial

condition evaluation. The extraction of approximately 2600

radiomic features from both GS and SWE endometrial

segmentation in each subject, and the subsequent analysis of over
FIGURE 5

Validation metrics for the XGBoost model in RPL risk stratification. Panel (A) displays the ROC curve with an AUC of 0.844, panel (B) shows the
calibration curve illustrating agreement between predicted probabilities and observed frequencies, and panel (C) depicts the DCA indicating the
notable net benefits at different threshold probabilities.
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one million data points in the training cohort of 500 participants,

underscores the complexity and high-dimensional nature of this

dataset. Such intricacy and the interplay of multiple factors render

traditional linear predictive models inadequate, necessitating the

application of ML algorithms (34). After a series of optimizations

and comparative evaluations, it was observed that models

combining both radiomic and clinical indicators outperformed

those based solely on either type of data. Among the various ML

models, the XGBoost algorithm emerged as the most effective in

stratifying RPL risk, demonstrating high and consistent predictive

performance in the testing cohort. This underlines the ability of the

XGBoost model to proficiently manage large datasets and its

robustness against overfitting, efficiently handling non-linearities

and interactions between features, making it particularly suitable for

complex datasets (29).

Employing SHAP for feature significance evaluation and a

heatmap to assess collinearity, this investigation quantified

individual feature impacts on model predictions, thereby

enhancing model interpretability (35). The integration of SHAP

with the XGBoost model rendered a transparent illustration of the

paramount impact of nine critical variables, highlighting four SWE

and two GS radiomic indices. This suggests a greater relevance of
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SWE attributes, which represent endometrial stiffness, in RPL

compared to GS indicators, yet the Young’s modulus value,

indicative of mean endometrial elasticity, did not emerge as a

highly correlated variable with RPL. The identified SWE and GS

radiomic features predominantly encompassed first-order and

textural characteristics, reflective of image heterogeneity and

high-intensity regions. These features, challenging to identify

through traditional visual analysis, necessitated the application of

multiple filters for quantifying the uniformity, variability, and

anomalies within endometrial imagery, thereby establishing their

correlation with RPL.

Meanwhile, SHAP analysis revealed the non-negligible

contributions of age, SAPI, and VI to the stratification of RPL

risk. These clinical parameters, not derivable from ultrasonic

radiomics, have demonstrated associations with RPL in previous

reports (36–38). It is acknowledged that RPL women often exhibit

an extended WOI, leading to diminished endometrial perfusion

during the implantation window, typically observed 7-9 days post-

ovulation (39). This impaired perfusion, characterized by

heightened vascular resistance and suboptimal blood flow

distribution (34), was evident in our findings through increased

SAPI and lower VI compared to controls. Additionally, it is
FIGURE 6

SHAP analysis for feature importance in the XGBoost model for RPL risk evaluation. (A) ranks the predictors by mean absolute SHAP values,
highlighting the most impactful radiomic features from SWE and GS endometrial imaging, along with key clinical variables. (B) provides a summary
plot illustrating the aggregate effect of these predictors on RPL risk, with the color gradient from blue to red denoting increasing feature values. The
horizontal placement of data points represents the impact of SHAP values on risk prediction, with rightward and leftward points suggesting higher
and lower RPL risk, respectively.
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important to note that with advancing age, a more pronounced

increase in the likelihood of these aberrations is observed (40).

Hence, the integration of clinical variables remains crucial for a

comprehensive and accurate prediction. Despite the complexity in

interpreting the linkage between radiomic features and RPL, the

potential of radiomics in predictive analysis is evident. These

features could facilitate more precise and extensive assessments of

ER, potentially filling existing gaps in the understanding of the

etiology of uRPL. By extracting detailed information about the

endometrium, radiomics could enrich our comprehension of ER,

thereby aiding in refining diagnostic and therapeutic strategies for

RPL. This includes leveraging the model’s predictive capabilities to

guide clinical interventions, such as adjusting hormonal therapy

and optimizing the timing of embryo transfer, based on the

identified ER states, ultimately improving pregnancy success rates.

In the preliminary investigation of integrating radiomics and

ML with multimodal transvaginal ultrasound for stratifying RPL,

the findings are promising but constrained by several factors. The

single-center design and limited cohort size may not reflect the

broader population accurately. Additionally, variability in GS and

SWE settings across institutions could impact the reproducibility

and effectiveness of the proposed models. The retrospective nature

of the study limited it to recording the number of miscarriages at the

initial visit, thus not exploring the correlation between miscarriage

frequency and RPL risk, and precluded the prediction of subsequent
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pregnancy success rates in RPL patients. Although the inclusion and

exclusion criteria effectively screened out many conditions that play

a crucial role in implantation, such as polycystic ovary syndrome

and endometriosis, the study design also limited the use of more

advanced and precise detection techniques, potentially leaving some

cases undetected.

Considering the potential for intervention and modification of

endometrial receptivity (ER), irrespective of RPL status, future

research should focus on larger, multicenter prospective studies.

These studies are necessary not only to validate and refine the ML

models but also to improve the prediction of successful ER

regulation by incorporating more advanced detection techniques,

such as the assessment of immunological interactions between the

embryo and the endometrium. This approach will lead to better

outcomes for RPL patients.

In conclusion, this research demonstrates the effectiveness of

the XGBoost model in accurately identifying RPL patients. Utilizing

GS and SWE radiomic features derived from duplex

ultrasonography of endometrium, coupled with clinical factors

such as age, SAPI, and VI, robust results were observed in both

training and validation cohorts. This integration of radiomics-based

ML represents a significant advancement in precision medicine,

offering a more refined approach to RPL risk stratification. Such

enhanced accuracy and predictive capacity of the model show

promise in facilitating more individualized management of RPL.
FIGURE 7

Heatmap of the correlation matrix for the nine critical features identified by SHAP analysis. The heatmap demonstrates minimal inter-feature
correlation, with the highest correlation coefficient being less than 0.2. This indicates low collinearity among the features, suggesting that each
feature independently contributes to the prediction accuracy of RPL risk.
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