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Objective: Hyperuricaemia and gout are common metabolic disorders.

However, the causal relationships between blood metabolites and serum urate

levels, as well as gout, remain unclear. A systematic evaluation of the causal

connections between blood metabolites, hyperuricemia, and gout could

enhance early screening and prevention of hyperuricemia and gout in clinical

settings, providing novel insights and approaches for clinical treatment.

Methods: In this study, we employed a bidirectional two-sample Mendelian

randomization analysis utilizing data from a genome-wide association study

involving 7,286 participants, encompassing 486 blood metabolites. Serum urate

and gout data were sourced from the Chronic Kidney Disease Genetics

consortium, including 288,649 participants for serum urate and 9,819 African

American and 753,994 European individuals for gout. Initially, LDSC

methodology was applied to identify blood metabolites with a genetic

relationship to serum urate and gout. Subsequently, inverse-variance weighting

was employed as the primary analysis method, with a series of sensitivity and

pleiotropy analyses conducted to assess the robustness of the results.

Results: Following LDSC, 133 blood metabolites exhibited a potential genetic

relationship with serum urate and gout. In the primary Mendelian randomization

analysis using inverse-variance weighting, 19 bloodmetabolites were recognized

as potentially influencing serum urate levels and gout. Subsequently, the IVW p-

values of potential metabolites were corrected using the false discovery rate

method. We find leucine (IVW P FDR = 0.00004), N-acetylornithine (IVW P FDR =

0.0295), N1-methyl-3-pyridone-4-carboxamide (IVW P FDR = 0.0295), and

succinyl carnitine (IVW P FDR = 0.00004) were identified as significant risk

factors for elevated serum urate levels. Additionally, 1-oleoylglycerol (IVW P FDR

= 0.0007) may lead to a substantial increase in the risk of gout. Succinyl carnitine

exhibited acceptable weak heterogeneity, and the results for other blood

metabolites remained robust after sensitivity, heterogeneity, and pleiotropy

testing. We conducted an enrichment analysis on potential blood metabolites,
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followed by a metabolic pathway analysis revealing four pathways associated

with serum urate levels.

Conclusion: The identified causal relationships between these metabolites and

serum urate and gout offer a novel perspective, providing new mechanistic

insights into serum urate levels and gout.
KEYWORDS

blood metabolite, Mendelian randomization, hyperuricemia, gout, risk factor
1 Introduction

Hyperuricaemia stands as the primary risk factor for gout,

playing a central role in its pathogenesis. The primary routes for

urate excretion involve the kidneys, intestine, and liver, with

impaired renal excretion as the principal cause of hyperuricaemia.

Saturation of SU results in the deposition of monocrystalline

sodium urate (MSU) in the joints (1). Substantial MSU

deposition leads to the formation of gout stones, causing

additional damage to joint cartilage. Prolonged hyperuricaemia

contributes to both renal function decline and kidney

inflammation (2). Effective prevention and treatment are key to

reducing hyperuricaemia incidence. Understanding the biological

mechanisms of hyperuricaemia is crucial for preventing and

treating gout. Despite significant contributions from genetic

studies, the development of hyperuricaemia and gout remains a

complex process (3). Recent evidence indicates a close relationship

between SU levels, gout, and metabolic abnormalities. Widely

recognized, hyperuricaemia is a common complication in

individuals with metabolic syndrome (4). Individuals with insulin

resistance face an elevated risk of developing hyperuricaemia, linked

to the well-established, long-standing negative correlation between

insulin resistance and renal clearance. Specifically, a reduction in

renal clearance increases susceptibility to hyperuricaemia (5).

Weight loss measures, particularly for those with visceral obesity,

can decrease susceptibility to hyperuricaemia (6). Previous research

has shown that hyperuricemia may increase the risk of

cardiovascular disease by causing endothelial dysfunction through

oxidative stress (7). Specifically, serum uric acid (SUA) production

is closely linked with xanthine oxidoreductase (XOR). The oxidants

produced by XOR activation can oxidize low-density lipoprotein

(LDL), leading to the activation of inflammasomes and

atherosclerosis, thus increasing the risk of cardiovascular disease

(8). In this context, urate-lowering therapy appears to be a feasible

treatment option for hyperuricemia with concomitant

cardiovascular disease (9). Lowering uric acid levels is considered

a method to optimize blood pressure regulation (10). Additionally,

urate-lowering treatment with allopurinol can inhibit the renal

reabsorption of uric acid, providing protection to the kidneys (11).
02
Gout stands as the most prevalent global form of inflammatory

arthritis, primarily triggered by a sustained increase in uric acid

levels, resulting in hyperuricemia and ultimately leading to the

onset of gout (12). Clinical manifestations encompass intense pain

in the joints of the lower limbs, primarily attributed to the

deposition of MSU, intricately linked with both patient mortality

and morbidity rates (13). As gout progresses, some individuals may

experience advanced symptoms, characterized by persistent chronic

pain and the formation of gout stones. The incidence of gout has

steadily risen since the 20th century, possibly influenced by shifts in

population age demographics, metabolic syndrome, and

environmental factors. Reports from Europe and North America

reveal an adult gout prevalence ranging from 0.68% to 3.9%,

featuring gender disparities in both incidence and mortality,

favoring males at a ratio of approximately 2:1 (14–17). Presently,

treatment options for gout patients are severely limited, with less

than one-third undergoing treatment and fewer than half adhering

to prescribed regimens. This limitation has contributed to increased

hospitalization and disability rates, resulting in diminished social

productivity for both patients and their families, along with a

heightened economic burden (18).

Researchers have diligently investigated the mechanisms

underlying the inflammatory response triggered by MSU. However,

persistent questions remain, such as the variability in patients

developing either acute or chronic gout. The specific triggers for

gout attacks and the factors preventing most hyperuricemia patients

from transitioning to gout remain elusive. Consequently, there is an

urgent need for exploring potential biomarkers indicating elevated

SU levels and the initiation of gout. This represents a critical area that

requires focused investigation.

Long-term metabolic disruptions lay the groundwork for the

onset of hyperuricemia and gout, prompting an intensified

examination of the roles played by metabolomics and

immunomics in unraveling the intricate pathogenic mechanisms

and physiological-pathological changes associated with this

condition. Researchers have unearthed a correlation between

hyperuricemia and gout not only with uric acid but also with

other blood metabolites, prompting a novel avenue of exploration

(19). Currently, blood metabolites exhibit substantial advantages in
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disease diagnosis and prognosis, offering fresh insights into

predicting both hyperuricemia and gout (20). Thus, blood

metabolites assume a pivotal role in anticipating the development

of gout and uric acid level. However, the relationship between blood

metabolites, SU, and gout remains unclear due to limitations in

sample size and interference from confounding factors.

As a novel and robust epidemiological research approach, MR

analysis employs genetic variations as instrumental variables to

investigate causal relationships between exposure and outcomes.

The genetic type is determined at conception, eliminating

interference from external confounding factors and allowing MR

studies to effectively minimize bias. Recent extensions of MR studies

into metabolomics necessitate (21–24) assessing whether causal

relationships exist between blood metabolites, SU, and gout,

shedding light on the roles of blood metabolites in the disease.

The objectives of this study involve employing various MR analysis

methods to identify blood metabolites influencing SU levels and

gout, examining the reciprocal impact of SU levels and gout on

blood metabolites, and elucidating potential metabolic pathways

affecting SU levels and gout. These insights aim to contribute novel

perspectives for early diagnosis and prevention.
2 Research design

The study design involved several crucial steps. Initially, we

employed Linkage Disequilibrium Score Regression (LDSC)
Frontiers in Endocrinology 03
analysis to assess the genetic correlation using 486 blood

metabolites as exposures, and SU and gout as outcomes.

Subsequently, a comprehensive evaluation was conducted to

determine the causal relationships between blood metabolites

exhibiting potential genetic correlations and the risks of SU and

gout. To ensure the rigor of the MR study, three conditions were

met: (1) Instrumental Variables (IVs) were directly related to

exposure; (2) IVs were unrelated to the outcome and remained

unaffected by confounding factors; (3) IVs influenced outcomes

solely through exposure. Importantly, data on blood metabolites,

SU, and gout were sourced from independent Genome-Wide

Association Study (GWAS) datasets to prevent sample overlap.

The research methodology adhered to the STROBE-MR checklist

(25), and a visual representation of the study design is provided

in Figure 1.
2.1 Human blood metabolites
GWAS dataset

The study harnessed a comprehensive GWAS dataset

encompassing 486 human blood metabolites, as derived from

Shin et al.’s research (26). Accessible through the Metabolomics

GWAS database (http://metabolomics.helmholtz-muenchen.de/

gwas/), this dataset was meticulously curated, with Shin and

colleagues meticulously measuring the 486 blood metabolites

within a European cohort of 7824 individuals. Notably, the
FIGURE 1

Mendelian randomization research process.
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dataset comprises data from two primary studies: the German

KORA F4 study (1768 participants) and the British Twin study

(6056 participants). Ethical approval was diligently obtained from

local ethics committees before the initiation of both studies, and

active informed consent was secured from all participants. Out of

the entire spectrum of blood metabolites, 309 are identified, while

309 blood metabolites are identified, the classification of the rest as

‘unknown’ is attributed to the ambiguity of their chemical

properties. Researchers further categorized the known blood

metabolites into 8 distinct metabolic classes, aligning with the

Kyoto Encyclopedia of Genes and Genomes (KEGG) database

definition (27).
2.2 GWAS dataset on serum urate and gout

The study relies on extensive data from the Chronic Kidney

Disease Genetics Consortium (CKDGen), representing the most

comprehensive GWAS datasets for SU and gout to date. These

datasets include SU data from 288,649 individuals and encompass

763,813 gout patients of European descent, consisting of 9,819 African

Americans and 753,994 Europeans (28). Detailed information about

the datasets is available in the initial GWAS, conducted with the

informed consent of all participants. Definitions for SU and gout

include self-reports, hospital diagnoses, and International Classification

of Diseases, Tenth Edition (ICD-10) codes. Rigorous data curation

involved excluding SNPs with non-biallelic genotypes, lacking rsIDs,

and mismatching bases or alleles with the 10,000 genomes. Given our

study focus on SU and gout outcomes and the presence of urate data in

the blood metabolites dataset, we opted to exclude urate data from the

latter for a more focused analysis.
2.3 LDSC regression

LDSC regression analysis, a novel method for evaluating SNP

heritability, assesses GWAS summary data instead of individual-level

data (29). Common confounding biases and polygenic effects

significantly contribute to the inflation of statistical quantities. LDSC

corrects for polygenic effects in GWAS analysis, enhancing the

detection of the regression relationship (r2) between statistical

quantities and LD. It quantifies the entropy of each variable and

employs its intercept value to distinguish and correct the causes of

statistical inflation (30). Therefore, our initial LDSC analysis aimed to

explore potential genetic relationships between blood metabolites and

SU, as well as gout. We considered a potential genetic relationship

when rg-p<0.05, enabling us to not only assess genetic patterns between

the two but also evaluate potential genetic associations.
2.4 Selection of instrumental variables

Due to the limited samples of blood metabolites, we employed a

series of methods for a more refined screening of eligible

instrumental variables. Initially, we selected a threshold of

P<1×10-5, referencing 1000 genome projects, and set the linkage
Frontiers in Endocrinology 04
disequilibrium (LD) threshold r2<0.001 within a 500 bases pair KB

distance. This approach has been extensively utilized in prior MR

studies (22, 23, 31). Simultaneously, we computed the F-statistic for

each SNP, excluding those with F<10 as weak instrumental variables

to ensure adequate statistical power for all blood metabolites (27).
2.5 MR analysis

Firstly, due to observed bidirectional associations, we conducted

the MR-Steiger test to ensure that the results we observed are not

influenced by reverse causation. The initial analysis used the

standard inverse variance-weighted (IVW) method for

assessment, which is often more accurate when the selected

instrumental variables meet the three assumptions of MR analysis

(32). However, if some instrumental variables contradict the

assumptions of MR, the analysis results may be inaccurate.

Therefore, we introduced secondary methods for further analysis:

1. Employing Cochran’s Q test to ensure no heterogeneity among

individual IVW results. 2. Addressing potential horizontal

pleiotropy, we utilized the MR-PRESSO method to detect outliers

and assess possible horizontal pleiotropy. Additionally, we applied

the MR-Egger intercept test to estimate intercept-based pleiotropy

and detect genetic variation independent of exposure and outcome

(33). 3. Conducting additional analyses using two different

hypothesis methods (weighted median and weighted mode) to

enhance the robustness of the MR study (34). Although the

accuracy of weighted median and MR-Egger as secondary tests

may not match IVW, results are often reliable when these three

approaches align (35). Finally, we adopted the “leave-one-out”

method to evaluate if individual SNPs drive MR outcomes.
2.6 Reverse MR analysis

To investigate the potential causal relationship between SU, gout,

and previously identified correlated blood metabolites, we conducted a

reverseMR study. In this study, genetic variants associated with SU and

gout were employed as Instrumental variable, while confirmed blood

metabolites were designated as outcomes.
2.7 Metabolic pathway analysis

Adopting metaconconflict 5.0 (https://www.metaboanalyst.ca/)

(36), we conducted a pathway analysis of the finalized blood

metabolites based on KEGG and metabolic pathways. This user-

friendly bioinformatics website simplifies the process of

metabolomics analysis, providing valuable insights into the metabolic

pathways associated with the identified blood metabolites.
2.8 Statistical analysis

Statistical analyses were carried out using R 4.2.3 software.

Initially, the “LDSCr” package was employed for assessment,
frontiersin.org
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followed by Mendelian randomization analysis using the

“TwoSampleMR” MR package. To control potential “false

positives” false discovery rate (FDR) correction was applied, and

causality was considered significant at a PFDR < 0.05.
3 Results

After LDSC analysis, we identified potential correlations

between 102 blood metabolites and SU, as well as 32 blood

metabolites potential correlated with gout (Supplementary File,

Table S1).

The number of SNPs in IV varies from 2 to 180. All SNPs

showed F-value statistics exceeding 10, indicating the absence of

weak instrumental variables (Supplementary File, Table S2).
3.1 Preliminary analysis

Under the consistent directionality of the three methods, a

preliminary examination of 102 genetically related blood

metabolites to SU revealed 16 with potential impacts detected

through the IVW method (IVW, p < 0.05). These include 8 in

amino acid metabolism, 2 in lipid metabolism, 2 in nucleotide

metabolism, 1 in energy metabolism, and 4 in unknown

metabolism. Among known blood metabolites, 4 are linked to a

reduced SU risk: glutamine (b= -0.79; 95% CI -1.56, -0.02; P=

0.044), 3-methyl-2-oxovalerate (b= -0.24; 95% CI -0.42, -0.06; P=
Frontiers in Endocrinology 05
0.01), 1-heptadecanoylglycerophosphocholine (b= -0.24; 95% CI

-0.42, -0.06; P= 0.033), and tryptophan betaine (b= -0.05; 95% CI

-0.09, -0.01; P= 0.006). Eight blood metabolites are associated with

an increased SU, including leucine (b= 0.35; 95% CI 0.21, 0.49;

P=<0.001), 5-oxoproline (b= 0.18; 95% CI 0.002, 0.36; P= 0.046),

carnitine (b= 0.15; 95% CI 0.02, 0.29; P= 0.022), N-acetylornithine

(b= 1.08; 95% CI 1.03-1.13; P= 0.002), alanine (b= 0.2; 95% CI 0.04,

0.36; P= 0.015), N1-methyl-3-pyridone-4-carboxamide (b= 0.17;

95% CI 0.06, 0.28; P= 0.002), N2-dimethylguanosine (b= 0.12; 95%

CI 0.01, 0.23; P= 0.032), and succinyl carnitine (b= 0.22; 95% CI

0.09, 0.36; P= 0.001) (Supplementary File, Table S3). Additionally,

we conducted MR-Steiger directional testing on 16 blood

metabolites related to SU and 3 blood metabolites related to gout.

The results showed no directional abnormalities when blood

metabolites were used as exposure, and SU and gout were

considered as outcomes (Supplementary File, Table S4).

After FDR correction (FDR < 0.05), five blood metabolites

exhibited a significant correlation, with one being an unidentified

metabolite. Among the four known significantly correlated blood

metabolites, two were associated with amino acid metabolism, one

with energy metabolism, and one with nucleotide metabolism.

These blood metabolites are identified as risk factors for elevated

SU levels: leucine (P FDR = 0.00004), N-acetylornithine (P FDR =

0.0295), N1-methyl-3-pyridone-4-carboxamide (P FDR = 0.0295),

and succinyl carnitine (P FDR = 0.00004) (Figure 2). Of the 31 blood

metabolites associated with gout after LDSC screening, only 1-

oleoylglycerol (OR = 1.98; 95% CI 1.43-2.73, P = 0.00003; P FDR =

0.0007) showed a significant correlation with gout (Figure 3).
FIGURE 2

Known Blood metabolites Showing a Significant Relationship with SU After FDR. CI, confidence interval; Beta(95%CI), 95% confidence interval for
beta; PDR, P-value for error rate correction.
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3.2 Sensitivity analysis

Due to the susceptibility of the IVW method to weak instrument

bias, we conducted a sensitivity analysis on all potential correlations

(Supplementary File, Table S5). In the Cochran’s Q test results, succinyl

carnitine exhibited acceptable weak heterogeneity. After a pleiotropy

analysis, we found that theMR Egger intercept test’s P-value for glycine

was 0.032, indicating pleiotropy. Consulting the Phenoscanner V2

website (http://www.phenoscanner.medsci.cam.ac.uk/), we discovered

that SNP rs715 is directly related to urate, leading to its exclusion. Post-

exclusion, glycine’s IVW P-value changed to 0.363, suggesting no

association with SU. No abnormalities were detected in pleiotropy tests

of blood metabolites significantly linked to SU and gout. Removing any

SNP in the “leave-one-out” method did not affect stability.
3.3 Reverse MR analysis

The reverse MR analysis indicated a significant association

between SU and six kown blood metabolites, but their influence

on SU is marginal (Figure 4). One kown metabolite exhibits a

significant correlation with gout (Figure 5).
3.4 Metabolic pathway analysis

As illustrated in Table 1, four metabolic pathways exhibit

associations with metabolite binding and SU. The most prominent

among them is the Arginine biosynthesis pathway, followed by

Alanine, aspartate, and glutamate metabolism, Nitrogen metabolism,

and Valine, leucine, and isoleucine biosynthesis. Additionally, we

conducted a metabolite enrichment analysis, unveiling significant

enrichments in Glutathione Metabolism, Urea Cycle, Glutamate

Metabolism, and Phenylacetate Metabolism (Figure 6).
4 Discussion

In recent decades, metabolomics has played a crucial role in

researching various diseases, leading to significant progress in

understanding the pathogenesis and risk factors of hyperuricemia
Frontiers in Endocrinology 06
and gout. However, most studies have been confined to animal

models or small case-control studies, limiting their ability to

establish causal relationships.

In this study, we identified a total of 16 blood metabolites

associated with SU concentration, with three linked to gout. Among

the blood metabolites related to SU, four known blood metabolites

showed a significant correlation after FDR correction, and one

gout-related metabolite exhibited a significant association. These

findings were robust across various testing methods. Additionally,

we detected 4 metabolic pathways associated with SU

concentration. Simultaneously, in the reverse MR analysis, we

identified 7 blood metabolites significantly associated with SU

levels, and one associated with gout. To the best of our

knowledge, this marks the first systematic evaluation of the MR

study on human blood metabolites and SU levels. Our research

contributes to unraveling the role of human blood metabolites in

the early diagnosis and prevention of gout and hyperuricemia,

offering novel insights for future metabolomics studies. With the

growing emphasis on understanding the relationship between blood

metabolites and diseases in clinical settings, there has been

continuous exploration of blood metabolites associated with SU

concentration and gout. Hyperuricemia and gout are no longer

perceived as isolated pathologies; their underlying mechanisms may

be interconnected with various comorbidities. Numerous studies

have linked hyperuricemia and gout to conditions such as renal

disorders, diabetes, metabolic syndrome, and aging (12, 37).

Currently, blood stands out as the most crucial and commonly

used sample in metabolomics. The versatility of blood samples lies

in their ability to reveal a myriad of detectable blood metabolites.

Moreover, in large-scale studies, obtaining blood samples is often

more feasible than other sample types. This accessibility forms the

foundation for early screening of hyperuricemia and gout.

Metabolomics has unveiled alterations in the metabolic profiles

related to uric acid levels, including changes in amino acids (38),

energy blood metabolites (39), and lipids (40). Our research not

only validates the presence of these metabolic shifts in SU and gout

but also identifies key blood metabolites and pathways associated

with SU levels and gout pathogenesis.

Amino acids serve diverse functions within the human body, with

a particular emphasis on their pivotal role in protein synthesis (41).

Leucine, isoleucine, and valine collectively constitute the branched-
FIGURE 3

Known Blood metabolites Showing a Significant Relationship with gout After FDR Correctiontics for IVW. Correction. OR, odds ratio; OR (95%CI),
95% confidence interval for OR.
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chain amino acids (BCAAs). Previous studies have demonstrated that

leucine is significantly altered in the course of several metabolic

diseases (42). Additionally, in overweight and obese (OB) children,

leucine concentrations were significantly elevated (43), showing a

positive correlation with inflammatory markers (CRP, IL-6), SU,

visceral adiposity, type 2 diabetes (T2D), insulin resistance, and CVD

(38, 39). Simultaneously, levels of inflammation-related fibrinogen

and hs-CRP displayed an increasing trend with elevated leucine levels
Frontiers in Endocrinology 07
(44). Given the limited sample size in previous studies, we cannot

infer the precise mechanism underlying the correlation between

leucine and IL-6. While IL-6, a standard inflammation marker (45),

does not directly contribute to SU elevation, its levels increase upon

activation of MSU (46). Nevertheless, the role of leucine in predicting

SU and gout remains a topic of debate. A study discovered elevated

valine levels in patients with acute gout and hyperuricemia, while the

increases in leucine and phenylalanine were not statistically
FIGURE 4

Relationship between serum urate and known blood metabolites after correction for FDR.
FIGURE 5

Relationship between gout and known blood metabolites after correction for FDR.
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significant (47). However, the correlation between leucine and UA is

likely due to abnormalities in glucose metabolism leading to

disruptions in amino acid metabolism (48). Additionally, it may

also be related to the dietary habits of the patients themselves (49).

Hyperuricemia patients tend to consume more meat, eggs, and dairy

products, and have higher intakes of fructose-containing beverages

and alcohol compared to healthy individuals (50). These unhealthy

lifestyle habits can lead to the development of metabolic syndrome

and insulin resistance in the patients (51). In our study, we identified

a robust correlation between the biosynthesis and degradation

pathways of valine, leucine, and isoleucine and SU levels. In

general, our research findings are in partial agreement with

previous studies. Hence, conducting further in-depth research with

larger sample sizes is imperative to elucidate the intricate relationship

between leucine and SU.

The typical absence of N-acetylornithine expression in the human

body stems from the non-expression of specific enzymes responsible
Frontiers in Endocrinology 08
for its processing in mammals. In microorganisms, N-acetylornithine

primarily contributes to arginine synthesis (52), while in plants, its

principal role lies in ornithine synthesis (53). The current literature on

the correlation between N-acetylornithine and SU levels is limited, with

a handful of studies suggesting a potential link to impaired kidney

function. Uric acid, the final product of purine metabolism in the

human body, is usually excreted through urine. Disruptions in uric acid

metabolism occur as renal function declines, leading to abnormal SU

levels. A GWAS assessing concentrations of 308 non-targeted blood

metabolites in African Americans found an association between

elevated N-acetylornithine levels and kidney function, as indicated by

creatinine levels (54). Daily protein intake, particularly from plant

sources, correlates with the progression of Chronic Kidney Disease

(CKD) (55, 56). Metabolite sample testing in CKD patients post-kidney

transplantation revealed a significant decrease in concentrations of key

renal function indicators (creatinine, eGFR, cystatin C) with elevated

N-acetylornithine levels (57). Our MR study found a significant

bidirectional relationship between N-acetylornithine and SU, with

both being risk factors for the other, so we speculate that the

relationship between N-acetylornithine and SU may be mediated bi-

directionally through renal function, and when one of these factors

leads to impaired renal function, it affects the other. Given the close and

pronounced relationship between N-acetylornithine and SU levels, it

emerges as a promising biomarker. However, a more comprehensive

understanding of its mechanistic implications requires further

dedicated clinical investigations into the nuanced relationship

between N-acetylornithine and SU levels.

Succinyl carnitine, a form of acylcarnitine, plays a pivotal role in

mitochondria by facilitating the uptake of fatty acids, a crucial step in

the b-oxidation process (58). Within the tricarboxylic acid cycle,

succinyl coenzyme A undergoes conversion into succinyl carnitine,
TABLE 1 Metabolic pathways affecting serum urate.

Metabolic pathway metabolites
involved

P value Database

Arginine biosynthesis N-
Acetylornithine;
Glutamine

0.00072301 KEGG

Alanine, aspartate and
glutamate metabolism

L-Alanine;
L-Glutamine

0.0029499 KEGG

Nitrogen metabolism L-Glutamine 0.018927 KEGG

Valine, leucine and
isoleucine biosynthesis

L-Leucine 0.025172 KEGG
KEGG, Kyoto Encyclopedia of Genes and Genomes.
FIGURE 6

Metabolite KEGG enrichment analysis.
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actively participating in various metabolic pathways. Recent studies

have unveiled a correlation between succinyl carnitine levels and

systemic inflammatory response as well as heart failure (59, 60). Our

MR study unequivocally demonstrates a significant causal relationship

between succinyl carnitine and elevated SU levels. Despite shedding

light on their connection, the precise mechanism linking succinyl

carnitine to SU elevation remains elusive. Thus, a pressing need

exists for further experimental and clinical research to delve deeper

into understanding the intricate relationship between these two factors.

The human body utilizes niacin (nicotinic acid, vitamin B3) or

nicotinamide (NAM) along with dietary tryptophan as substrates to

synthesize nicotinamide adenine dinucleotide (NAD). N-methyl-2-

pyridone-5-carboxamide (2PY) and N1-methyl-4-pyridone-3-

carboxamide (4py) are degradation products of NAD, recognized

as uremic retention molecules eventually excreted through urine (61).

Studies indicate that the excessive accumulation of 4py may inhibit

the biological activity of PARP-1, adversely affecting uric acid

production (62). Current research on 4py primarily focuses on

kidney diseases, inflammatory responses, and diabetes. In a study

on children with chronic renal failure (CRF), a positive correlation

was found between 4py and creatinine concentration, while a

negative correlation was observed with creatinine clearance. This

suggests that the accumulation of 4py parallels renal dysfunction,

possibly due to the decline in renal function in CRF patients (63).

Research on systemic inflammatory response syndrome, measuring

the metabolic profile of hemodialysis patients and its association with

renal function, revealed a significant negative correlation between 4py

and renal function as renal function declined (64). The established

correlation between SUA concentration and renal function is

supported by a retrospective cohort study assessing the association

between SU levels and glomerular filtration rate (eGFR) in the

Chinese population. Elevated SU was also significantly correlated

with the risk of CKD (65). Another clinical study measuring the

content of uracil and purines in the urine of patients at different

stages of CKD found a positive correlation between GFR and the ratio

of uric acid, xanthine, and hypoxanthine in urine (66). Although

existing research cannot conclusively prove a direct impact of 4py on

SU levels, there is reason to believe that there may be a genetic causal

relationship between them. This connection may be mediated

through the impact of 4py on renal function.

Findings from our study indicate that an elevated genetic

susceptibility to increased levels of 1-oleoylglycerol is associated

with a higher risk of gout. Previous research has established a close

connection between disruption in lipid metabolism and gout risk

(67). Currently, there is limited research on 1-oleoylglycerol. In a

recent large-scale clinical study, the metabolic profiling of gut

microbiota-related blood metabolites and their correlation with

T2D was analyzed in 5,000 middle-aged Finnish men. After

correcting for various factors such as smoking, age, BMI, and

physical activity, it was found that 1-oleoylglycerol, controlled by

the gut microbiota, increased the incidence of T2D by 29%, showing

a significant association with the onset of T2D (68). Existing

research has already confirmed that changes in the gut microbiota

contribute to an increased risk of gout (69, 70). Given the gut

microbiota’s potential to increase the risk of gout, 1-oleoylglycerol

may induce gout through alterations in the gut microbiota.
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However, further exploration is required under specific

experimental conditions to substantiate this hypothesis.

Our study boasts several strengths. Firstly, we systematically

investigated 486 blood metabolites, providing the most

comprehensive analysis to date of the metabolic characteristics

associated with hyperuricemia and gout. Secondly, prior to

conducting the MR study, we performed LDSC analysis to ensure

a potential genetic correlation between the studied blood

metabolites and both SU levels and the occurrence of gout. This

precautionary step minimizes biases arising from polygenicity and

confounding factors, thereby enhancing the robustness of our

results. Lastly, adopting a bidirectional MR study approach,

which considers both causal directions, helps mitigate potential

issues related to reverse causation and residual confounding factors.

However, this study also has some limitations. Firstly, we

utilized publicly available GWAS data, and potential sample

overlap might introduce confounding bias. Secondly, our study’s

exposures and outcomes are derived from the European population,

warranting further investigation to determine whether similar

causal relationships exist in other populations. Thirdly, the

limited number of participants in our exposure dataset may result

in missing relationships between blood metabolites and SU levels

and gout. Additionally, some blood metabolites and pathways in

this study lack a comprehensive understanding of their mechanisms

and pathological relationships with SU and gout, limiting the

interpretation of our MR analysis results. While MR studies

contribute to identifying potential blood metabolites associated

with SU and gout, further clinical and experimental research is

essential to explore the correlations between them.
5 Conclusion

Two-sample MR studies unveiled the significant roles of five

serum blood metabolites associated with SU levels and gout. Nineteen

blood metabolites were identified with potential causal relationships

with SU levels and gout, elucidating four crucial metabolic pathways

in SU levels. The discoveries from this study aid in comprehending

the biological mechanisms of hyperuricemia and gout, paving the way

for future targeted therapeutic interventions.
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