#### Check for updates

#### OPEN ACCESS

EDITED BY Xu Li, Southern Medical University, China

#### REVIEWED BY Jianiun Liu.

Dalian Medical University, China Abhlasha Kandahalli Venkataranga Nayaka, National Cancer Institute at Frederick (NIH), United States

\*CORRESPONDENCE Ying Chen bichatlion@163.com Erzhen Chen rjchenerzhen@163.com

<sup>†</sup>These authors have contributed equally to this work

RECEIVED 28 January 2024 ACCEPTED 15 July 2024 PUBLISHED 14 August 2024

#### CITATION

Gong F, Liu W, Pei L, Wang X, Zheng X, Yang S, Zhao S, Xu D, Li R, Yang Z, Mao E, Chen E and Chen Y (2024) Dissecting the mediating role of inflammatory factors in the interaction between metabolites and sepsis: insights from bidirectional Mendelian randomization. *Front. Endocrinol.* 15:1377755. doi: 10.3389/fendo.2024.1377755

#### COPYRIGHT

© 2024 Gong, Liu, Pei, Wang, Zheng, Yang, Zhao, Xu, Li, Yang, Mao, Chen and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

# Dissecting the mediating role of inflammatory factors in the interaction between metabolites and sepsis: insights from bidirectional Mendelian randomization

Fangchen Gong<sup>1+</sup>, Wenbin Liu<sup>1+</sup>, Lei Pei<sup>1+</sup>, Xiaofeng Wang<sup>1</sup>, Xiangtao Zheng<sup>1</sup>, Song Yang<sup>1</sup>, Shanzhi Zhao<sup>1</sup>, Dan Xu<sup>1</sup>, Ranran Li<sup>2</sup>, Zhitao Yang<sup>1</sup>, Enqiang Mao<sup>1</sup>, Erzhen Chen<sup>1+</sup> and Ying Chen<sup>1+</sup>

<sup>1</sup>Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, <sup>2</sup>Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Sepsis, a life-threatening condition, involves complex interactions among metabolic alterations, inflammatory mediators, and host responses. This study utilized a bidirectional Mendelian randomization approach to investigate the causal relationships between 1400 metabolites and sepsis, and the mediating role of inflammatory factors. We identified 36 metabolites significantly associated with sepsis (p < 0.05), with AXIN1, FGF-19, FGF-23, IL-4, and OSM showing an inverse association, suggesting a protective role, while IL-2 exhibited a positive correlation, indicating a potential risk factor. Among these metabolites, Piperine and 9-Hydroxystearate demonstrated particularly interesting protective effects against sepsis. Piperine's protective effect was mediated through its interaction with AXIN1, contributing to a 16.296% reduction in sepsis risk. This suggests a potential pathway where Piperine influences sepsis outcomes by modulating AXIN1 levels. 9-Hydroxystearate also exhibited a protective role against sepsis, mediated through its positive association with FGF-19 and negative association with IL-2, contributing 9.436% and 12.565%, respectively, to its protective effect. Experimental validation confirmed significantly elevated IL-2 levels and reduced FGF-19, AXIN1, piperine, and 9-hydroxyoctadecanoic acid levels in sepsis patients compared to healthy controls. Piperine levels positively correlated with AXIN1, while 9-hydroxyoctadecanoic acid levels negatively correlated with IL-2 and positively correlated with FGF-19, supporting the Mendelian randomization findings. Our findings provide insights into the molecular mechanisms of sepsis, highlighting the unique roles and contributions of specific metabolites and their interactions with inflammatory mediators. This study enhances our understanding of sepsis pathophysiology and opens avenues

for targeted therapeutic interventions and biomarker development for sepsis management. However, further research is essential to validate these pathways across diverse populations and fully explore the roles of these metabolites in sepsis.

#### KEYWORDS

sepsis, Mendelian randomization, inflammatory factors, metabolites, Axin1, IL-2, FGF-19

### 1 Introduction

Sepsis, defined as a life-threatening condition arising from dysregulated host responses to infection, presents a formidable challenge in healthcare, frequently necessitating admission to intensive care units (1). The 2017 Global Burden of Diseases, Injuries, and Risk Factors Study highlights the substantial, yet often overlooked, global impact of sepsis. As a leading cause of hospital mortality worldwide, it accounts for millions of new cases annually (2). Despite medical advancements, the mortality rate associated with sepsis remains alarmingly high, emphasizing the critical need for enhanced diagnostic and therapeutic approaches. The clinical management of sepsis is complicated by its heterogeneous nature, rapid progression, and the absence of specific early detection markers.

The pathophysiology of sepsis is highly complex, involving a dysregulated host response to infection that leads to life-threatening organ dysfunction (3). The complex interplay between the host's immune system, inflammatory cascades, coagulation abnormalities, and microcirculatory dysfunction contributes to the diverse clinical manifestations of sepsis (4). These pathophysiological processes are closely intertwined with metabolic alterations and changes in inflammatory mediator levels, which play crucial roles in the development and progression of sepsis.

Metabolic alterations are a key feature of sepsis pathogenesis. The dysregulated host response to infection leads to significant changes in energy metabolism. Studies have identified significant changes in the levels of various metabolites in sepsis patients, such as increased lactate (5) and altered levels of amino acids and lipids (6). For instance, 3-hydroxybutyrate, a ketone body, has been shown to have anti-inflammatory and protective effects in sepsis. In a mouse model of lipopolysaccharide (LPS)-induced sepsis, oral administration of a ketone ester that increased 3-hydroxybutyrate levels significantly protected mice against systemic inflammation and organ dysfunction, including cardiac and renal dysfunction (7). Another example of a metabolite involved in sepsis pathogenesis is succinate, a tricarboxylic acid (TCA) cycle intermediate, which has been shown to accumulate in sepsis and contribute to the regulation of inflammatory responses (8). Succinate accumulation has been linked to the stabilization of hypoxia-inducible factor-1 $\alpha$  (HIF-1 $\alpha$ ) and the production of pro-inflammatory cytokines, such as IL-1 $\beta$  (9). These metabolic disturbances not only reflect the host's response to infection but also contribute to organ dysfunction and adverse outcomes in sepsis.

Inflammatory mediators play a crucial role in the development and progression of sepsis. Pro-inflammatory cytokines, such as IL-1 $\beta$ , IL-6, and TNF- $\alpha$ , are markedly elevated in sepsis and contribute to widespread inflammation, tissue damage, and organ failure (10, 11). For instance, IL-1 $\beta$ , produced by activated macrophages and monocytes, mediates sepsis-induced organ dysfunction, such as cardiomyopathy, and inhibition of the NLRP3/IL-1B axis has been shown to be protective in animal models (10). On the other hand, anti-inflammatory cytokines, like IL-4 and IL-10, attempt to counterbalance the excessive inflammatory response but may contribute to immunosuppression in sepsis (12, 13). IL-4 can downregulate pro-inflammatory cytokine production and promote alternative macrophage activation (12). IL-10, a potent anti-inflammatory cytokine, is secreted by macrophages during inflammation and counteracts the effects of pro-inflammatory mediators, such as TNF- $\alpha$ , leading to decreased oxidative stress (13).

The complex interplay between metabolic alterations and inflammatory mediators in sepsis remains to be fully elucidated. While some studies have identified associations between specific metabolites and inflammatory factors, such as the link between succinate and IL-1 $\beta$  production (9), the precise mechanisms and the collective impact of these interactions on sepsis outcomes are not well understood. A profound molecular understanding of sepsis is essential for improving its diagnosis, prognosis, and treatment. Elucidating the complex molecular pathways and identifying key biomarkers could transform the management of sepsis, leading to personalized therapeutic interventions (14). Investigating the interplay between metabolites and inflammatory factors in sepsis may provide valuable insights into its pathophysiology and help identify novel therapeutic targets.

Mendelian randomization (MR) studies, gaining traction alongside the evolution of genome-wide association studies, offer a novel approach to discern causal relationships (15). Increasingly, MR studies are shedding light on the exposure factors tied to the pathogenesis and prognosis of sepsis (16–18). MR stands out as a pivotal methodology, enabling the dissection of the intricate relationship between inflammatory mediators and metabolites in sepsis. This method holds promise in revolutionizing our understanding of sepsis and guiding the development of personalized treatment strategies. This study aims to elucidate the mediator role of inflammatory factors in the interaction between metabolites and sepsis, employing a bidirectional MR approach to provide potential insights into sepsis pathophysiology and therapeutic targets.

# 2 Materials and methods

### 2.1 Study design and data sources

This study made use of extensive GWAS summary datasets, with the informed consent of participants obtained during the original studies. Our reliance on summary-level statistics negated the need for additional ethical approval. We utilized a bidirectional two-sample MR approach to investigate the mutually causal relationship between metabolites and sepsis, with a particular emphasis on understanding the mediating role of inflammatory factors. Figure 1 illustrates the procedure using a flowchart. This observational study adhered to the Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization (STROBE-MR) guidelines, with the checklist provided in the Supplementary Table S1. The utilized data, publicly accessible and predominantly of European ancestry, included genetic associations for sepsis sourced from the IEU Open GWAS project, encompassing 1,573 cases and 454,775 controls (19). GWAS data for 1400 metabolites factors can also be accessed through the IEU Open GWAS project (https:// gwas.mrcieu.ac.uk/) with GWAS IDs (Supplementary Table S2) (20). The genetic associations of 91 inflammatory factors were derived from in the IEU Open GWAS project with GWAS IDs (Supplementary Table S3) (21).

# 2.2 Instrumental variable selection and data preparation

The analysis incorporated multiple exposure factors, identified via their respective GWAS IDs. We retrieved corresponding genetic instruments single nucleotide polymorphisms (SNPs) along with their associations for both the exposure and outcome. SNP data included beta coefficients, standard errors, allele details, frequencies, p-values, and sample sizes. Similarly, outcome data comprised the corresponding SNP associations. Rigorous criteria were employed to select instrumental variables (IVs) fulfilling three key assumptions. Given the limited number of available IVs, we adjusted our SNP selection threshold to  $p < 5 \times 10^{-5}$  to capture a broader range of potentially relevant genetic instruments. Linkage disequilibrium clustering was executed using a window of 10,000 kb and an  $r^2$  threshold of < 0.001, based on the 1000 Genomes Project's European samples. SNPs that were palindromic or ambiguous were excluded from the analysis. Data harmonization was meticulously conducted to ensure uniformity in the effect direction and allele coding across all SNPs. The instrumental strength of each SNP was rigorously assessed using R<sup>2</sup> and F-statistics. We excluded SNPs with an F-statistic lower than 10 to maintain the robustness of our instrumental variables (Supplementary Table S4).

# 2.3 MR estimation

MR estimates were then computed, extracting Odds Ratios (ORs) and p-values for each exposure factor to pinpoint statistically significant associations (p < 0.05). Our analysis integrated a suite of methods to estimate causal effects accurately. The Inverse Variance Weighted (IVW) method utilizes a metaanalytical approach, aggregating the Wald ratios from each SNP to determine the combined causal effects. This method operates under the assumption that all SNPs are valid instrumental variables, allowing for precise and accurate estimations. To complement and validate these results, MR-Egger and the Weighted Median approach were also utilized. Each method is tailored to specific assumptions about the validity of instrumental variables.

### 2.4 Sensitivity analyses

Sensitivity analyses were conducted to validate the robustness of our findings. MR Steiger filtering determined the causal direction for each SNP relative to the exposure and outcome. SNP homogeneity was assessed using Cochran's Q statistic and funnel plots, while horizontal pleiotropy was examined via MR-Egger intercept and MR-PRESSO methods, with outliers removed for re-evaluation. Persistent heterogeneity was addressed using a random effects model. Additionally, a leave-one-out analysis was performed to assess the impact of individual SNPs.

# 2.5 Mediation analysis of intermediate effect

A two-sample MR assessed mutual causality between metabolites and sepsis, followed by inflammatory factors and sepsis. After deriving MR estimates, statistically significant associations were identified (p < 0.05) using the instrumental variable method. The relationship between statistically significant metabolites and inflammatory factors was done. The total effect, representing bidirectional MR between inflammatory factors and sepsis, was initially designated. A two-step bidirectional MR design then facilitated mediation analysis to examine if metabolites mediate the pathway from inflammatory factors to sepsis. The total effect was broken down into mediating effects and indirect effects mediated through inflammatory factors. To determine the mediation percentage, divide the indirect effect by the total effect.

## 2.6 Patients enrolled

Patients diagnosed with sepsis in the emergency department of Shanghai Ruijin Hospital from October 31, 2021, to May 20, 2022



metabolites on sepsis (c) was decomposed into the direct impact (c') and the indirect impact mediated by inflammatory factors (a x b).

were enrolled in this study. Inclusion criteria were: (1) age 18–90 years, (2) meeting the diagnostic criteria for sepsis 3.0, and (3) hospital stay exceeding 24 hours. Exclusion criteria consisted of: (1) discharge or death within 24 hours of admission, (2) participation in other clinical trials, (3) requirement for emergency surgery post-admission, (4) presence of malignant tumor, (5) pregnancy or lactation.

# 2.7 Metabolomics analysis

Untargeted metabolomics analysis was performed on plasma samples to detect Piperine. The samples stored at -80°C were thawed on ice and vortexed for 10 s. 50  $\mu$ L of sample and 300  $\mu$ L of extraction solution (ACN: Methanol = 1:4, V/V) containing internal standards were added into a 2 mL microcentrifuge tube. The sample was vortexed for 3 min and then centrifuged at 12000 rpm for 10 min (4°C). 200  $\mu$ L of the supernatant was collected and placed in -20°C for 30 min, and then centrifuged at 12000 rpm for 3 min (4°C). A 180  $\mu$ L aliquot of supernatant was transferred for LC-MS analysis. The LC-MS system was operated under the following conditions: UPLC column, Waters ACQUITY UPLC HSS T3 C18 (1.8  $\mu$ m, 2.1 mm\*100 mm); column temperature, 40°C; flow rate, 0.4 mL/min; injection volume, 2  $\mu$ L; solvent system, water (0.1% formic acid): acetonitrile (0.1% formic acid). The column was eluted with 5% mobile phase B (0.1% formic acid in acetonitrile) at 0 minute followed by a linear gradient to 90% mobile phase B over 11 minutes, held for 1 minute, and then returned to 5% mobile phase B within 0.1 minute, held for 1.9 minutes.

Due to the absence of 9-Hydroxystearate in the untargeted metabolomics analysis, we opted for targeted metabolomics to quantify its upstream metabolite, 9-Hydroxyoctadecanic Acid, as a surrogate. A standard solution of 9-Hydroxyoctadecanic Acid was prepared and serially diluted to generate a calibration curve. For targeted metabolomics analysis, 100 µL of each plasma sample was mixed with 1 mL of methanol, vortexed, and centrifuged to collect the supernatant. The solid-phase extraction column was activated using 1 mL of methanol and 1 mL of 0.1% formic acid solution, followed by the addition of 4 mL of 0.1% formic acid solution to the supernatant. The sample was then loaded onto the column and washed sequentially with 1 mL of formic acid solution and 1 mL of 15% ethanol solution. This process was repeated once more. Chromatographic separation was performed on a BEH C18 column (2.1 mm × 100 mm  $\times$  1.7  $\mu m)$  with a column temperature of 40°C and an injection volume of 10 µL. The mobile phases consisted of water (A) and methanol (B), and a gradient elution program was employed. Mass spectrometry analysis was conducted using electrospray ionization (ESI) in negative mode, with a drying gas temperature of 350°C, a drying gas flow rate of 10 L/min, and a capillary voltage of 4000 V.

# 2.8 Enzyme-Linked Immunosorbent Assay (ELISA) for inflammatory factors

The levels of inflammatory factors AXIN1, FGF-19, and IL-2 in plasma samples were determined using commercial ELISA kits (Mlbio, ml564859V, ml038426V, ml058063V) following the manufacturer's instructions. Briefly, 96-well microplates were coated with capture antibodies specific for each target protein and incubated overnight at 4°C. After washing with PBS containing 0.05% Tween-20 (PBST), the plates were blocked with 1% BSA in PBS for 1 hour at room temperature. Standards and plasma samples (100  $\mu$ L) were added to the wells and incubated for 2 hours at room temperature. The plates were then washed with PBST, and biotinylated detection antibodies were added, followed by incubation for 1 hour at room temperature. After another washing step, streptavidin-horseradish peroxidase (HRP) conjugate was added, and the plates were incubated for 30 minutes at room temperature. The plates were washed again, and 3,3',5,5'-tetramethylbenzidine (TMB) substrate solution was added to each well. The reaction was stopped after 15 minutes by adding 2 M sulfuric acid, and the optical density was measured at 450 nm using a microplate reader. The concentrations of AXIN1, FGF-19, and IL-2 in the plasma samples were calculated based on the standard curves generated using recombinant proteins provided in the ELISA kits. All samples were analyzed in duplicate, and the mean values were used for statistical analysis.

### 2.9 Statistical analysis

Statistical analyses were performed using R software (Version 4.1.3). Normality of the data was assessed using the Shapiro-Wilk test. Comparisons of plasma metabolite and inflammatory factor levels between healthy controls and sepsis patients were conducted using the independent samples t-test for normally distributed data or the Mann-Whitney U test for non-normally distributed data. The linear relationships between plasma metabolites and inflammatory factors were assessed using Pearson's correlation coefficient for normally distributed data or Spearman's rank correlation coefficient for non-normally distributed data. Correlation matrices were generated using the "corrplot" package in R to visualize the relationships between variables, and the significance of the correlations was determined based on twotailed p-values. Data visualization was performed using the "ggplot2" package in R. A p-value < 0.05 was considered statistically significant for all analyses.

# **3** Results

### 3.1 Association of metabolites with sepsis

To investigate the influence of 1400 metabolites on sepsis, we primarily used the IVW method for analysis. The 36 significant metabolites correlated with sepsis are listed in Figure 2A. To ascertain the causal direction, reverse MR was performed. Sepsis, as an exposure, showed no effect on metabolites (Figure 2B). Cochran's Q-test revealed no significant heterogeneity (Supplementary Table S5). MR-Egger intercept test showed no pleiotropy (Supplementary Table S6).

# 3.2 Association of inflammatory factors with sepsis

To investigate the influence of 91 inflammatory factors on sepsis, we primarily used the IVW method for analysis. The IVW analysis revealed a notable inverse association between FGF-19 and sepsis (OR = 0.751, 95% CI (confidence interval) = 0.598-0.944). Similar negative associations were observed for AXIN1 (OR = 0.715, CI = 0.517-0.990), FGF-23 (OR = 0.783, CI = 0.624-0.981), IL-4 (OR = 0.772, CI = 0.608-0.980), and OSM (OR = 0.755, CI = 0.592-0.962), whereas IL-2 showed a positive correlation with sepsis (OR = 1.320, CI = 1.008-1.729) (Figure 3A). Results for other inflammatory factors that did not

| Α | LYDOULA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | metriod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nanp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pvai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                         | 011 (85 % 01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 2-hydroxyoctanoate levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | ·                                       | 1.2406 (1.0255 - 1.5008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Docosadienoate (22:2n6) levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | →                                       | 1.3271 (1.0488 - 1.6794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Pinerine levels on sensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>← •</b> → →                                                                              |                                         | 0.8122 (0.6699 - 0.9848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 3 (3 hydroxyphonyl)propionate levels on sensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                         | 1 2553 (1 0020 - 1 5711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 5-(5-Hydroxypheny)propionate levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Inverse variance weighted a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | - /                                     | 1.2555 (1.0023 - 1.5711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 4-nydroxycoumarin ieveis on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                         | 0.8115 (0.6707 - 0.9818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | N2,N5-diacetylornithine levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inverse variance weighted :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                         | 0.8614 (0.7511 - 0.9879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Methionine sulfone levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | • • • • •                               | 1.1395 (1.0099 - 1.2857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 9-hydroxystearate levels on sensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <                                                                                           |                                         | 0 7994 (0 6439 - 0 9923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 4 methylausiacal sulfata lovals on consis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                         | 1 2045 (1 0017 1 6727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | linverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | -                                       | 1.2343 (1.0017 = 1.0727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Arabonate/xylonate levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <                                                                                           |                                         | 0.8020 (0.6560 - 0.9804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 5-hydroxyindole sulfate levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>←</b> •                                                                                  |                                         | 0.8248 (0.6812 - 0.9986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Sphingomyelin (d18:2/24:2) levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | $\longmapsto$                           | 1.3228 (1.0469 - 1.6714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 5-dodecenov/carnitine (C12:1) levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | <b>→</b>                                | 1.2237 (1.0071 - 1.4870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | N acatul 2 aminoactaneata lavels on consis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                         | 0 8400 (0 7507 0 0623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inverse variance weighted a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                         | 0.8499 (0.7507 = 0.9022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 2-ketocaprylate levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | $\mapsto$                               | 1.2316 (1.0467 - 1.4493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Dibutyl sulfosuccinate levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | ·                                       | 1.1304 (1.0195 - 1.2533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | 2,4-di-tert-butylphenol levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | ·→                                      | 1.3294 (1.0682 - 1.6546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Gamma-glutamyltyrosine levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | $\mapsto$                               | 1 2301 (1 0336 - 1 4640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Succinate levels on consis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Inverse verience weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                         | 1 3628 (1 1040 1 0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Cuconnate revers on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | inverse variance weighted .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                         | 0.7570 (0.0051 0.0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Hypotaurine levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ••••                                                                                        |                                         | 0.7572 (0.6354 - 0.9023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Inosine levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | → →                                     | 1.2523 (1.0589 - 1.4810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Isoleucine levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | ••••                                    | 1.2531 (1.0079 - 1.5580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Cysteine levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | ,                                       | 1 3378 (1 0182 - 1 7576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | X 11797 lovels on copsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Invorce verience weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                         | 1 1444 (1 0000 1 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | A-11/07 levels off sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | · · · ·                                 | 1.1444 (1.0066 - 1.3011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | X–12462 levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>+•</b> • • • • • • • • • • • • • • • • • •                                               |                                         | 0.7372 (0.5550 - 0.9792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | X-12849 levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>← • • •</b> •                                                                            |                                         | 0.7821 (0.6436 - 0.9504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | X-16397 levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                           |                                         | 0.7125 (0.5719 - 0.8877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | X_15486 levels on sensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                    |                                         | 0.7964 (0.6405 0.0007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                         | 0.7904 (0.0405 - 0.9903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | X-18345 levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inverse variance weighted 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | → • • • • • • • • • • • • • • • • • • • | 1.1950 (1.0302 - 1.3863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | X-19438 levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>←</b> •──                                                                                |                                         | 0.7875 (0.6351 - 0.9766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | X–23665 levels on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | $\mapsto$                               | 1.4449 (1.1483 - 1.8180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | X-25957 levels on sensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | $\mapsto$                               | 1 3602 (1 0940 - 1 6912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Chalata ta taurashalata ratia an consis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                         | 1 2604 (1 0022 1 5822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Choiale to taurochoiale failo on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inverse variance weighted a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                         | 1.2004 (1.0033 - 1.3833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Hypotaurine to cysteine ratio on sepsis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inverse variance weighted a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>← •</b> →                                                                                |                                         | 0.7963 (0.6771 - 0.9365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Inosine to EDTA ratio on sensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | $\longmapsto$                           | 1.2062(1.0312 - 1.4109)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Glucese to N. palmitevil, sphingesine (d18:1 to 16:0) ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on consisteverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                         | 1 2765 (1 0209 1 5670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on sepsisInverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | +                                       | 1.2765 (1.0398 – 1.5670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| _ | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on sepsisInverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             | <b>⊢</b> ●                              | 1.2765 (1.0398 - 1.5670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| в | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23<br>nsnp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0196<br>pval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                                                                           |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| в | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on sepsisInverse variance weighted a<br>method<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23<br>nsnp<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0196<br><b>pval</b><br>0.8565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             | + +                                     | 1.2765 (1.0398 – 1.5670<br>OR (95% Cl)<br>0.9978 (0.9745 – 1.0217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| в | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Doccsadienoate (22:2n6) levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | method<br>method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23<br>nsnp<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0196<br><b>pval</b><br>0.8565<br>0.8703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% Cl)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| в | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sensis on Pinerina levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on sepsisInverse variance weighted i<br>method Inverse variance weighted i<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23<br>nsnp<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                         | 1.2765 (1.0398 - 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 - 1.0217<br>1.0020 (0.9780 - 1.0267<br>0.9995 (0.9763 - 1.0233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| в | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on Diperine levels<br>sepsis on 0:40 bridenumberu/turningate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on sepsisinverse variance weighted i<br>method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23<br>nsnp<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             | н<br>н<br>н                             | 1.2765 (1.0398 – 1.5670<br><b>OR (95% Cl)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0237<br>0.9995 (0.9763 – 1.0237)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| в | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on Piperine levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on sepsis/inverse variance weighted i<br>method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% Cl)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| в | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(-hydroxycumarin levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on sepsisinverse variance weighted i<br>method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             | ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►   | 1.2765 (1.0398 – 1.5670<br><b>OR (95% Cl)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| в | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyohenyl)propionate levels<br>sepsis on A-hydroxyoumarin levels<br>sepsis on A-NS-diacetylornithine levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on sepsis/inverse variance weighted i<br>method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0263<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9840 (0.9599 – 1.0088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| в | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br><b>Exposure</b><br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on N2,NS-diacetylornithine levels<br>sepsis on N2,NS-diacetylornithine levels<br>sepsis on N2,NS-diacetylornithine levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on sepsisinverse variance weighted i<br>method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043<br>0.2111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0263<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9940 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| в | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2:n6) levels<br>sepsis on A-(3-hydroxyohenyl)propionate levels<br>sepsis on A-hydroxyocumarin levels<br>sepsis on N2,N5-diacetylornithine levels<br>sepsis on Methionine sulfone levels<br>sepsis on Methionine sulfone levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n sepsisinverse variance weighted i<br>method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043<br>0.2111<br>0.1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н<br>н<br>н<br>н<br>н<br>н                                                                  |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9763 – 1.0237<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0138<br>0.9840 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9828 (0.9685 – 1.0378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| в | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 2-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on N2,NS-diacetylornithine levels<br>sepsis on M4thionine sultione levels<br>sepsis on 9-hydroxystearate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n sepsisinverse variance weighted i<br>method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043<br>0.2111<br>0.1970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ۲۲<br>۲۰<br>۲۰<br>۲۰<br>۲۰<br>۲۰<br>۲۰                                                      |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0263<br>1.0035 (0.9608 – 1.0266<br>0.9803 (0.9675 – 1.0136<br>0.9840 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| в | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 4-hydroxycoumarin levels<br>sepsis on 4-hydroxycoumarin levels<br>sepsis on 9-hydroxysteartate levels<br>sepsis on 9-hydroxysteartate levels<br>sepsis on 4-hydroxycoumariate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n sepsisinverse variance weighted i<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043<br>0.2111<br>0.1970<br>0.4022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | به<br>۱۹<br>۱۹<br>۱۹<br>۱۹<br>۱۹<br>۱۹<br>۱۹<br>۱۹                                          |                                         | 1.2765 (1.0398 - 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 - 1.0217<br>1.0020 (0.9780 - 1.0267<br>0.9995 (0.9763 - 1.0233<br>1.0035 (0.9808 - 1.0268<br>0.9903 (0.9675 - 1.0186<br>0.9840 (0.9599 - 1.0088<br>1.0149 (0.9916 - 1.0387<br>0.9863 (0.9658 - 1.0072<br>0.9869 (0.9657 - 1.0141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| В | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on A-hydroxycoumarin levels<br>sepsis on Methionine sulfone levels<br>sepsis on Methionine sulfone levels<br>sepsis on 4-methylguaiacol sulfate levels<br>sepsis on Arabonate/xylonate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n sepsis/inverse variance weighted i<br>method inverse variance weighted i<br>Inverse variance weighted inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043<br>0.2111<br>0.1970<br>0.4022<br>0.1491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0236<br>0.9903 (0.9675 – 1.0136<br>0.9840 (0.9509 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9866 (0.9657 – 1.0141<br>0.9847 (0.9642 – 1.0056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| В | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-hydroxyphenyl)propionate levels<br>sepsis on 4-hydroxyocumarin levels<br>sepsis on 4-hydroxyocumarin levels<br>sepsis on 9-hydroxytoterate levels<br>sepsis on 9-hydroxytoterate levels<br>sepsis on 9-hydroxytotate levels<br>sepsis on 5-hydroxytotate levels<br>sepsis on 5-hydroxytotate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n sepsisinverse variance weighted i<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043<br>0.2111<br>0.1970<br>0.4022<br>0.1491<br>0.9042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0263<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9440 (0.9599 – 1.0088<br>1.0149 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9864 (0.9657 – 1.0144<br>0.9847 (0.9642 – 1.0056<br>0.9985 (0.9741 – 1.0258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| в | Glucose to Npalmitoylsphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on Piperine levels<br>sepsis on 3-(3-hydroxybhenyl)propionate levels<br>sepsis on 3-(3-hydroxybhenyl)propionate levels<br>sepsis on N-hydroxycoumarin levels<br>sepsis on Methionine sulfone levels<br>sepsis on Methionine sulfone levels<br>sepsis on 4-nydroxystearate levels<br>sepsis on 4-nydroxystearate levels<br>sepsis on 5-hydroxyindole sulfate levels<br>sepsis on 5-hydroxyindole sulfate levels<br>sepsis on 5-hydroxyindole sulfate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n sepsis/inverse variance weighted i<br>method inverse variance weighted i<br>Inverse variance weighted inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043<br>0.2111<br>0.1970<br>0.4022<br>0.1991<br>0.9042<br>0.5184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0236<br>0.9995 (0.9763 – 1.0236<br>0.9840 (0.9599 – 1.0088<br>0.9840 (0.9599 – 1.0088<br>0.9868 (0.9658 – 1.0072<br>0.9868 (0.9657 – 1.0141<br>0.9847 (0.9642 – 1.0056<br>0.9848 (0.9642 – 1.0235<br>0.9848 (0.9642 – 1.0235<br>0.9848 (0.9746 – 1.0235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| в | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 5-hydroxyndole sulfate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n sepsisinverse variance weighted i<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043<br>0.2111<br>0.1970<br>0.4022<br>0.1491<br>0.9042<br>0.5184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0263<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9843 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0141<br>0.9847 (0.9642 – 1.0056<br>0.99843 (0.9741 – 1.0253<br>0.9984 (0.9736 – 1.0136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| в | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 4-hydroxyocumarin levels<br>sepsis on 4-hydroxyocumarin levels<br>sepsis on 4-hydroxytearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 4-methy/guaiacol sulfate levels<br>sepsis on 4-methy/guaiacol sulfate levels<br>sepsis on 5-hydroxyindle culfate levels<br>sepsis on 5-hydroxyindle culfate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n sepsisinverse variance weighted i<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043<br>0.2111<br>0.1970<br>0.4022<br>0.1491<br>0.9042<br>0.5184<br>0.7382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9804 (0.9599 – 1.0086<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0075<br>0.9864 (0.9657 – 1.0141<br>0.9847 (0.9642 – 1.0056<br>0.9984 (0.9756 – 1.0176<br>0.9934 (0.9757 – 1.0176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| В | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on Ca-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on A-(3-hydroxyphenyl)propionate levels<br>sepsis on M-hydroxycoumarin levels<br>sepsis on M-actionate levels<br>sepsis on M-actionate levels<br>sepsis on S-hydroxyitaerate levels<br>sepsis on S-hydroxyindole sulfate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n sepsis/inverse variance weighted i<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2111<br>0.1970<br>0.4022<br>0.1491<br>0.9042<br>0.5184<br>0.7382<br>0.7457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0263<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9840 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9642 – 1.0056<br>0.9985 (0.9741 – 1.0235<br>0.9984 (0.9736 – 1.0136<br>0.9964 (0.9757 – 1.0175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| В | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 4-hydroxyocumarin levels<br>sepsis on 4-hydroxyocumarin levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 9-hydroxyndel sulfate levels<br>sepsis on 5-hydroxyndel sulfate levels<br>sepsis on 5-hydroxyndel sulfate levels<br>sepsis on 5-hydroxyndel sulfate levels<br>sepsis on 5-hydroxyndel (C12:1) levels<br>sepsis on N-acetyl-2-aminooctanoate levels<br>sepsis on 2-ketocaprylate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n sepsisinverse variance weighted i<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.2043<br>0.2111<br>0.1970<br>0.4022<br>0.1491<br>0.9042<br>0.5184<br>0.7382<br>0.7457<br>0.9809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9404 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0075<br>0.9863 (0.9657 – 1.0141<br>0.9847 (0.9424 – 1.0056<br>0.9985 (0.9757 – 1.0176<br>0.9964 (0.9757 – 1.0176<br>0.9966 (0.9761 – 1.0175<br>0.9997 (0.9762 – 1.0228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| В | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on A-(3-hydroxyphenyl)propionate levels<br>sepsis on A-hydroxyctearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 4-methylguaiacol sulfate levels<br>sepsis on 5-hydroxyindole sulfate levels<br>sepsis on 5-dodecenoyloarnitine (C1:1-1) levels<br>sepsis on 2-ketocaprylate levels<br>sepsis on 2-ketocaprylate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n sepsis/inverse variance weighted i<br>nethod Inverse variance weighted                                                                                                                                           | <b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.2043<br>0.2043<br>0.2111<br>0.1970<br>0.4022<br>0.1491<br>0.9042<br>0.5184<br>0.7382<br>0.7457<br>0.9809<br>0.6835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0266<br>0.9803 (0.9675 – 1.0136<br>0.9840 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9896 (0.9657 – 1.0176<br>0.9985 (0.9761 – 1.0136<br>0.9964 (0.9757 – 1.0176<br>0.9966 (0.9757 – 1.0176<br>0.9996 (0.9757 – 1.0176<br>0.9996 (0.9774 – 1.0238<br>0.9955 (0.9741 – 1.0238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| В | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 4-hydroxyournarin levels<br>sepsis on 4-hydroxyournarin levels<br>sepsis on 9-hydroxynote levels<br>sepsis on 9-hydroxynote sulfate levels<br>sepsis on 9-hydroxynole sulfate levels<br>sepsis on 5-hydroxynole sulfate levels<br>sepsis on S-hydroxynole sulfate levels<br>sepsis on S-hydroxynole sulfate levels<br>sepsis on 5-hydroxynole sulfate levels<br>sepsis on 5-hydroxynole sulfate levels<br>sepsis on 5-dodecenoylcarnitine (C12:1) levels<br>sepsis on 2-ketocaprylate levels<br>sepsis on 2-ketocaprylate levels<br>sepsis on 2-dodecenoylcarnitine (C12:1) levels<br>sepsis on 2-dodecenoylcarnitine (C12:1) levels<br>sepsis on 2-dodecenoylcarnitine levels<br>sepsis on 2-dodecenoylcarnitine (C12:1) levels<br>sepsis on 2-dodecenoylcarnitine levels<br>sepsis on 2-dodecenoylcarnitine levels<br>sepsis on 2-dodecenoylcarnitine levels<br>sepsis on 2-dodecenoylcarnitine (C12:1) levels<br>sepsis on 2-dodecenoylcarnitine levels<br>sepsis on 2-dodecenoylcarnitine levels<br>sepsis on 2-dodecenoylcarnitine (C12:1) levels<br>sepsis                                       | n sepsisinverse variance weighted i<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043<br>0.2111<br>0.1970<br>0.4022<br>0.1491<br>0.9042<br>0.5184<br>0.7382<br>0.7457<br>0.9809<br>0.6835<br>0.7214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0263<br>1.0035 (0.9608 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9840 (0.9599 – 1.0088<br>1.0149 (0.9658 – 1.0072<br>0.9868 (0.9658 – 1.0072<br>0.9868 (0.9657 – 1.0144<br>0.9847 (0.9642 – 1.0056<br>0.9934 (0.9736 – 1.0136<br>0.9934 (0.9736 – 1.0136<br>0.9966 (0.9761 – 1.0175<br>0.9997 (0.9762 – 1.0238<br>0.9955 (0.9741 – 1.01238)<br>0.9955 (0.9741 – 1.01238)<br>0.9965 (0.9741 – 1.01248)<br>0.9969 (0.9761 – 1.0174)<br>0.9997 (0.9762 – 1.0238)<br>0.9955 (0.9741 – 1.01248)<br>0.9969 (0.9761 – 1.0174)<br>0.9999 (0.9762 – 1.0238)<br>0.9955 (0.9741 – 1.01248)<br>0.9969 (0.9761 – 1.0174)<br>0.9999 (0.9762 – 1.0238)<br>0.9955 (0.9741 – 1.0174)<br>0.9999 (0.9761 – 1.0176)<br>0.9999 (0.9761 – 1.0176)<br>0.9999 (0.976       |
| В | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on A-hydroxycoumarin levels<br>sepsis on A-hydroxycoumarin levels<br>sepsis on A-methylguaiacol sulfate levels<br>sepsis on A-methylguaiacol sulfate levels<br>sepsis on 5-hydroxyindole sulfate levels<br>sepsis on 5-hydroxyindole sulfate levels<br>sepsis on 5-dodecenopicanritine (C12:11) levels<br>sepsis on N-acetyl-2-aminooctanoate levels<br>sepsis on 2-ketocaprylate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | method meres variance weighted inverse varia                                                                                                                                             | <b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043<br>0.2043<br>0.2111<br>0.4022<br>0.1491<br>0.9042<br>0.5184<br>0.7457<br>0.9809<br>0.6835<br>0.7214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9840 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9866 (0.9675 – 1.0117<br>0.9847 (0.9757 – 1.0176<br>0.9964 (0.9751 – 1.0175<br>0.9966 (0.9751 – 1.0175<br>0.9955 (0.9741 – 1.0238<br>0.9955 (0.9741 – 1.0247<br>0.9955 (0.9741 – 1.0248<br>0.9955 (0.9741 – 1.0254<br>0.9955 (0.9741 – 1.0254)<br>0.9955 (0.9741 – 1.0254<br>0.9955 (0.9741 – 1.0254)<br>0.9955 (0.9741 –          |
| в | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-hydroxystearate levels<br>sepsis on 3-hydroxystearate levels<br>sepsis on 3-hydroxyotearate levels<br>sepsis on 5-hydroxyndole sulfate levels<br>sepsis on 5-hodecenoylcarnitine (c12:1) levels<br>sepsis on 2-ketocaprylate levels<br>sepsis on 2-ketocaprylate levels<br>sepsis on 2-ketocaprylate levels<br>sepsis on 2-ketocaprylate levels<br>sepsis on Gamma-glutamyltyrosine levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | method<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 223<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043<br>0.2111<br>0.1970<br>0.4022<br>0.1491<br>0.9042<br>0.7487<br>0.9809<br>0.6835<br>0.7214<br>0.3821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9843 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9864 (0.9765 – 1.0144<br>0.9847 (0.9642 – 1.0056<br>0.9984 (0.9736 – 1.0136<br>0.9966 (0.9761 – 1.0175<br>0.9997 (0.9762 – 1.0238<br>0.9955 (0.9741 – 1.0174<br>1.0039 (0.9828 – 1.0254<br>0.9903 (0.9689 – 1.0122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| В | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on Methionine sulfone levels<br>sepsis on Methionine sulfone levels<br>sepsis on Methionine sulfone levels<br>sepsis on A-nydroxystearate levels<br>sepsis on A-nydroxystearate levels<br>sepsis on A-nydroxystearate levels<br>sepsis on A-nydroxyindole sulfate levels<br>sepsis on A-abonate/xylonate levels<br>sepsis on S-hydroxyindole sulfate levels<br>sepsis on S-hydroxyindole sulfate levels<br>sepsis on S-hydroxyindole sulfate levels<br>sepsis on S-dodecenoylcarnitine (C12:1) levels<br>sepsis on 2-dodecenoylcarnitine (C12:1) levels<br>sepsis on 2-dodecenoylcarnitine levels<br>sepsis on 2-dodecenoylcarnitine (S12:1) levels<br>sepsis on Caroma-glutamyltyrosine levels<br>sepsis on Caroma-glutamyltyrosine levels<br>sepsis on Caroma-glutamyltyrosine levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | method merse variance weighted i Inverse variance weighted                                                                                                                                             | 223<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043<br>0.2111<br>0.9042<br>0.1491<br>0.9042<br>0.5184<br>0.7382<br>0.7457<br>0.9809<br>0.6835<br>0.7214<br>0.3821<br>0.9894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0236<br>0.9903 (0.9675 – 1.0136<br>0.9840 (0.9509 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9865 (0.9741 – 1.0235<br>0.9934 (0.9757 – 1.0176<br>0.9964 (0.9751 – 1.0176<br>0.9966 (0.9751 – 1.0176<br>0.9950 (0.9741 – 1.0238<br>0.9950 (0.9741 – 1.0238<br>0.9997 (0.9762 – 1.0238<br>0.9995 (0.9741 – 1.0174<br>1.0039 (0.9828 – 1.0254<br>0.9903 (0.9689 – 1.0254)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| В | Glucose to N-palmitoyi-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on A-hydroxycoumarin levels<br>sepsis on A-hydroxycoumarin levels<br>sepsis on M-thitonie levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on A-methylguaiacol suffate levels<br>sepsis on 5-hydroxyindole suffate levels<br>sepsis on 5-hydroxyindole suffate levels<br>sepsis on 5-hydroxyindole suffate levels<br>sepsis on 5-hydroxyindole suffate levels<br>sepsis on S-hingomyelin (d18:274:2) levels<br>sepsis on N-acetyl-2-aminocctanoate levels<br>sepsis on N-acetyl-2-aminocctanoate levels<br>sepsis on N-acetyl-2-aminocctanoate levels<br>sepsis on S-ketocaprylate levels<br>sepsis on Gamma-glutamyltyrosine levels<br>sepsis on Succinate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n sepsisinverse variance weighted i<br>neerse variance weighted i<br>Inverse variance weighted inverse variance we                                                                             | 223<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.2043<br>0.2043<br>0.2111<br>0.1970<br>0.4022<br>0.1491<br>0.9042<br>0.5184<br>0.7382<br>0.7457<br>0.9803<br>0.6835<br>0.7214<br>0.3821<br>0.3824<br>0.9840<br>0.9840<br>0.9840<br>0.9840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9843 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0172<br>0.9863 (0.9642 – 1.0056<br>0.9947 (0.9642 – 1.0056<br>0.9964 (0.9771 – 1.0176<br>0.9966 (0.9761 – 1.0177<br>0.9996 (0.9762 – 1.0286<br>0.9965 (0.9741 – 1.0235<br>0.9964 (0.9762 – 1.0286<br>0.9965 (0.9741 – 1.0174<br>1.0039 (0.9828 – 1.0228<br>0.9903 (0.9689 – 1.0122<br>1.0001 (0.9789 – 1.0218<br>1.0002 (0.9733 – 1.0218<br>1.0022 (0.9733 – 1.0218<br>1.0023 (0.9733 – 1.0218<br>1.0023 (0.9733 – 1.0218<br>1.0022 (0.9733 – 1.0218<br>1.0023 (0.9733 – 1.0218)<br>1.0023 (0.9733 – 1.0   |
| В | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on Methionine sulfone levels<br>sepsis on Methionine sulfone levels<br>sepsis on A-hydroxystearate levels<br>sepsis on A-hydroxystearate levels<br>sepsis on A-nydroxystearate levels<br>sepsis on A-abonate/xylonate levels<br>sepsis on S-hydroxyindole sulfate levels<br>sepsis on S-hydroxyindole sulfate levels<br>sepsis on S-bidgeconyloarnitine (C12:1) levels<br>sepsis on N-acetyl-2-aminocotanoate levels<br>sepsis on 2.4-di-tert-butylphenol levels<br>sepsis on Succinate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | method merse variance weighted i<br>method merse variance weighted i<br>Inverse variance weighted i<br>Invers | nsnp           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75           75 | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043<br>0.1970<br>0.4022<br>0.1491<br>0.9042<br>0.5184<br>0.7382<br>0.7457<br>0.9809<br>0.6835<br>0.7214<br>0.9894<br>0.9874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0236<br>0.9995 (0.9763 – 1.0236<br>0.9940 (0.9509 – 1.0088<br>0.9840 (0.9519 – 1.0088<br>0.9840 (0.9516 – 1.0377<br>0.9863 (0.9658 – 1.0072<br>0.9896 (0.9675 – 1.0114<br>0.9847 (0.9642 – 1.0056<br>0.9848 (0.9751 – 1.0175<br>0.9964 (0.9751 – 1.0175<br>0.9966 (0.9751 – 1.0175<br>0.9967 (0.9762 – 1.0238<br>0.9955 (0.9741 – 1.0174<br>1.0039 (0.9828 – 1.0258<br>0.9990 (0.9768 – 1.0128<br>0.9990 (0.9789 – 1.0218<br>0.9903 (0.9689 – 1.0212<br>0.9903 (0.9789 – 1.0218<br>0.0001 (0.9789 – 1.0218<br>1.0001 (0.9789 – 1.0218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| В | Glucose to N-palmitoyi-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on A-(3-hydroxyphenyl)propionate levels<br>sepsis on M-thitonine sevies<br>sepsis on M-thitonie levels<br>sepsis on A-methylguaiacol sulfate levels<br>sepsis on A-methylguaiacol sulfate levels<br>sepsis on 5-hydroxyndole sulfate levels<br>sepsis on N-acetyl-2-aminocctanoate levels<br>sepsis on N-acetyl-2-aminocctanoate levels<br>sepsis on N-acetyl-2-aminocctanoate levels<br>sepsis on S-ketocaprylate levels<br>sepsis on Gamma-glutamyltyrosine levels<br>sepsis on Succinate levels<br>sepsis on Succinate levels<br>sepsis on Saucinate levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | method<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.2143<br>0.2141<br>0.4022<br>0.1491<br>0.9042<br>0.7457<br>0.7457<br>0.9809<br>0.6835<br>0.7214<br>0.9869<br>0.9870<br>0.9870<br>0.9870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0267<br>0.9803 (0.9675 – 1.0136<br>0.9840 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0172<br>0.9863 (0.9657 – 1.0114<br>0.9847 (0.9464 – 1.0056<br>0.9985 (0.9741 – 1.0126<br>0.9966 (0.9761 – 1.0176<br>0.9966 (0.9761 – 1.0177<br>0.9996 (0.9762 – 1.0288<br>0.9955 (0.9741 – 1.0174<br>1.0039 (0.9828 – 1.0228<br>0.9031 (0.9789 – 1.01218<br>1.0002 (0.9793 – 1.0218<br>1.0002 (0.9793 – 1.0218<br>1.0013 (0.9789 – 1.0438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| В | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxybnenyl)propionate levels<br>sepsis on 3-(3-hydroxychenyl)propionate levels<br>sepsis on A-hydroxycoumarin levels<br>sepsis on Methionine sulfone levels<br>sepsis on Methionine sulfone levels<br>sepsis on A-nydroxystearate levels<br>sepsis on A-nydroxystearate levels<br>sepsis on A-nydroxyindole sulfate levels<br>sepsis on A-abonate/xylonate levels<br>sepsis on S-hydroxyindole sulfate levels<br>sepsis on S-hydroxyindole sulfate levels<br>sepsis on S-dodecenoylcarnitine (C12:1) levels<br>sepsis on N-acetyl-2-aminoctanoate levels<br>sepsis on Dibutyl sulfosuccinate levels<br>sepsis on Dibutyl sulfosuccinate levels<br>sepsis on Succinate levels<br>sepsis on Isoleucine levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | method merse variance weighted i Inverse variance weighted                                                                                                                                             | 233 nsnp 75 75 75 75 75 75 75 75 75 75 75 75 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0196<br><b>pval</b><br>0.85655<br>0.8703<br>0.9682<br>0.7673<br>0.2043<br>0.2111<br>0.1970<br>0.4022<br>0.1491<br>0.9042<br>0.7457<br>0.9809<br>0.63825<br>0.7214<br>0.9809<br>0.63821<br>0.9894<br>0.9894<br>0.9894<br>0.9894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0277<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9840 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9864 (0.9662 – 1.0141<br>0.9896 (0.9662 – 1.0141<br>0.9984 (0.9757 – 1.0176<br>0.9964 (0.9757 – 1.0176<br>0.9964 (0.9757 – 1.0176<br>0.9965 (0.9741 – 1.0177<br>0.9955 (0.9741 – 1.0174<br>1.0039 (0.9828 – 1.0254<br>0.9903 (0.9689 – 1.0122<br>0.9903 (0.9789 – 1.0218<br>1.0001 (0.9789 – 1.0218<br>1.0015 (0.9788 – 1.0246<br>0.9992 (0.9778 – 1.0216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| В | Glucose to N-palmitovi-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on Ca-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on A-(3-hydroxyphenyl)propionate levels<br>sepsis on M-atchicactylornithine levels<br>sepsis on M-atchicactylornithine levels<br>sepsis on M-atchicactylornithine levels<br>sepsis on M-atchicactylornithine levels<br>sepsis on S-hydroxystearate levels<br>sepsis on S-andorate levels<br>sepsis on S-andorate levels<br>sepsis on S-andorate levels<br>sepsis on N-acetyl-2-aminooctanoate levels<br>sepsis on N-acetyl-2-aminooctanoate levels<br>sepsis on N-acetyl-2-aminooctanoate levels<br>sepsis on S-ketocaprylate levels<br>sepsis on S2,4-di-tert-butylphenol levels<br>sepsis on S2,4-di-tert-butylphenol levels<br>sepsis on S4,4-di-tert-butylphenol levels<br>sepsis on S4,4-di-tert-butylphenol levels<br>sepsis on S4,4-di-tert-butylphenol levels<br>sepsis on S4,5-di-tert-butylphenol levels<br>sepsis on S4,5                                  | method<br>meysisinverse variance weighted<br>inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0196<br><b>pval</b><br>0.85655<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2433<br>0.2111<br>0.9042<br>0.1970<br>0.4022<br>0.1491<br>0.9042<br>0.7482<br>0.7482<br>0.7482<br>0.7482<br>0.7482<br>0.7482<br>0.7493<br>0.9809<br>0.6835<br>0.7214<br>0.3821<br>0.9809<br>0.9894<br>0.9870<br>0.2785<br>0.9829<br>0.2785<br>0.9429<br>0.1511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0267<br>0.9995 (0.9763 – 1.0263<br>1.0035 (0.9808 – 1.0267<br>0.9840 (0.9599 – 1.0186<br>0.9840 (0.9599 – 1.0186<br>0.9863 (0.9658 – 1.0172<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0172<br>0.9985 (0.9741 – 1.0235<br>0.9947 (0.9757 – 1.0176<br>0.9966 (0.9757 – 1.0176<br>0.9966 (0.9757 – 1.0176<br>0.9966 (0.9757 – 1.0176<br>0.9966 (0.9761 – 1.0238<br>0.9955 (0.9741 – 1.0123<br>0.9955 (0.9742 – 1.0238<br>0.9955 (0.9742 – 1.0238<br>0.9955 (0.9782 – 1.0228<br>1.0039 (0.9828 – 1.0228<br>1.0002 (0.9793 – 1.0218<br>1.0002 (0.9793 – 1.0218<br>0.0984 (0.9788 – 1.0438<br>0.9942 (0.9776 – 1.0175<br>0.9992 (0.9776 – 1.0176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| В | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-hydroxyptearate levels<br>sepsis on 3-hydroxystearate levels<br>sepsis on 3-hydroxystearate levels<br>sepsis on 5-hydroxyndel sulfate levels<br>sepsis on 2-ketocaprylate levels<br>sepsis on 12-ketocaprylate levels<br>sepsis on 2-ketocaprylate levels<br>sepsis on Succinate levels<br>sepsis on Losiene levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | method<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2043<br>0.4128<br>0.4022<br>0.4022<br>0.4022<br>0.4022<br>0.7457<br>0.9803<br>0.7214<br>0.9835<br>0.9843<br>0.9844<br>0.9874<br>0.9847<br>0.2785<br>0.4285<br>0.9429<br>0.4314<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044<br>0.3044 | ۲۰۰۰<br>۱۹۹۹<br>۱۹۹۹<br>۱۹۹۹<br>۱۹۹۹<br>۱۹۹۹<br>۱۹۹۹<br>۱۹۹۹                                |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9843 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9864 (0.9675 – 1.0143<br>0.9847 (0.9642 – 1.0056<br>0.9994 (0.9736 – 1.0136<br>0.9966 (0.9761 – 1.0175<br>0.9997 (0.9761 – 1.0175<br>0.9997 (0.9761 – 1.0175<br>0.9997 (0.9762 – 1.0288<br>0.9955 (0.9741 – 1.0254<br>0.039 (0.9689 – 1.0121<br>1.0002 (0.9739 – 1.0218<br>1.0153 (0.9878 – 1.0413<br>0.9944 (0.9636 – 1.01218<br>0.9992 (0.9776 – 1.0213<br>0.9944 (0.9636 – 1.0057<br>0.9992 (0.9776 – 1.0213<br>0.9944 (0.9636 – 1.0057<br>0.9092 (0.9776 – 1.0213<br>0.9044 (0.9636 – 1.0057<br>0.9092 (0.9776 – 1.0213)<br>0.9044 (0.9636 – 1.0057<br>0.9092 (0.9776 – 1.0021)<br>0.9092 (0.9776 – 1.0          |
| В | Glucose to Npalmitoyi-sphingosime (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on C-3(hydroxyphenyl)propionate levels<br>sepsis on C-3(hydroxyphenyl)propionate levels<br>sepsis on A-lydroxyocumarin levels<br>sepsis on A-hydroxyotearate levels<br>sepsis on Methionine sulfone levels<br>sepsis on A-mathylgualiacol sulfate levels<br>sepsis on S-hydroxyInder levels<br>sepsis on S-hydroxyIndel evels<br>sepsis on ShydroxyIndel evels<br>sepsis on ShydroxyIndel evels<br>sepsis on ShydroxyIndel evels<br>sepsis on Sdodecenoyloranitine (C12:11) levels<br>sepsis on N-acetyl-2-aminocctanoate levels<br>sepsis on S-eddecenoyloranitine (C12:11) levels<br>sepsis on S-eddecenoyloranitine (C12:11) levels<br>sepsis on S-eddecenoyloranitine (S12:11) levels<br>sepsis on S2:4-d1-tert-butylphenol levels<br>sepsis on S2:4-d1-tert-butylphenol levels<br>sepsis on Hypotaurine levels<br>sepsis on Hypotaurine levels<br>sepsis on Cysteine levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | method<br>inverse variance weighted<br>inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.243<br>0.2111<br>0.9042<br>0.1970<br>0.4022<br>0.1492<br>0.1970<br>0.4022<br>0.1942<br>0.7457<br>0.9492<br>0.8635<br>0.7214<br>0.9809<br>0.6835<br>0.7214<br>0.9809<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9889<br>0.9890<br>0.2785<br>0.9429<br>0.9429<br>0.9890<br>0.2785<br>0.9429<br>0.9429<br>0.9890<br>0.2855<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9890<br>0.9890<br>0.2855<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9890<br>0.2855<br>0.9429<br>0.9429<br>0.9459<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9890<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429<br>0.9429  |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9608 – 1.0267<br>0.9840 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9896 (0.9657 – 1.0176<br>0.9896 (0.9675 – 1.0176<br>0.9966 (0.9757 – 1.0176<br>0.9966 (0.9757 – 1.0176<br>0.9966 (0.9757 – 1.0176<br>0.9966 (0.9761 – 1.0128<br>0.9955 (0.9741 – 1.0128<br>0.9955 (0.9741 – 1.0124<br>1.0039 (0.9828 – 1.0228<br>0.9955 (0.9741 – 1.0124<br>1.0039 (0.9789 – 1.0218<br>1.0002 (0.9793 – 1.01218<br>1.0012 (0.9793 – 1.0218<br>0.9944 (0.9378 – 1.0436<br>0.9992 (0.9776 – 1.0213<br>0.9944 (0.9378 – 1.0428<br>0.9945 (0.9774 – 1.0124<br>1.0019 (0.9378 – 1.0428<br>0.9944 (0.9363 – 1.0325<br>0.9944 (0.9363 – 1.0325)<br>0.9944 (0.9363 – 1.0325)<br>0.9944 (0.9363 – 1.0325)<br>0.9944 (0.936 – 1.0325)<br>0.9945 (0.936 – 1.0355)<br>0.9945 (0.936 – 1.0355)<br>0.99      |
| В | Glucose to N-palmitoyi-sphingosine (d18:1 to 16:0) ratio<br><b>Exposure</b><br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-hydroxystearate levels<br>sepsis on 3-hydroxystearate levels<br>sepsis on 3-hydroxystearate levels<br>sepsis on 5-hydroxystearate levels<br>sepsis on 5-hydroxyndole sulfate levels<br>sepsis on 2-ketocaprylate levels<br>sepsis on 0.Euryl sulfosuccinate levels<br>sepsis on Gamma-glutamyltyrosine levels<br>sepsis on Gamma-glutamyltyrosine levels<br>sepsis on Succinate levels<br>sepsis on Isoleucine levels<br>sepsis on Succinate levels<br>sepsis on Succin | method<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.24111<br>0.1970<br>0.4022<br>0.1491<br>0.9042<br>0.5184<br>0.7487<br>0.9049<br>0.6385<br>0.7214<br>0.9890<br>0.6382<br>0.7214<br>0.9890<br>0.6325<br>0.7214<br>0.9890<br>0.6325<br>0.7214<br>0.9890<br>0.6325<br>0.7214<br>0.9890<br>0.6321<br>0.9890<br>0.6321<br>0.9890<br>0.6321<br>0.9890<br>0.6321<br>0.9890<br>0.6321<br>0.9890<br>0.3241<br>0.9890<br>0.3241<br>0.3241<br>0.3241<br>0.3242<br>0.3340<br>0.3340<br>0.3340<br>0.3340<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.3400<br>0.340 | ۲۰۰۰<br>۲۰۰۰<br>۲۰۰۰<br>۲۰۰۰<br>۲۰۰۰<br>۲۰۰۰<br>۲۰۰۰<br>۲۰۰                                 |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9843 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9657 – 1.0144<br>0.9847 (0.9642 – 1.0056<br>0.9985 (0.9741 – 1.0235<br>0.9994 (0.9736 – 1.0136<br>0.9966 (0.9761 – 1.0175<br>0.9997 (0.9762 – 1.0238<br>0.9965 (0.9741 – 1.0123<br>0.0390 (0.9828 – 1.0245<br>0.9903 (0.9689 – 1.0122<br>1.0010 (0.9789 – 1.0218<br>1.0029 (0.9776 – 1.0213<br>0.9844 (0.9636 – 1.0213<br>0.9844 (0.9636 – 1.0242<br>1.0109 (0.9902 – 1.0342<br>0.9844 (0.9636 – 1.0342<br>0.9844 (0.9636 – 1.0342<br>0.9844 (0.9636 – 1.0342<br>0.9944 |
| В | Glucose to Npalmitovi-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on A-(3-hydroxyphenyl)propionate levels<br>sepsis on A-hydroxyctearate levels<br>sepsis on A-hydroxystearate levels<br>sepsis on A-mathylgualiacol sulfate levels<br>sepsis on A-mathylgualiacol sulfate levels<br>sepsis on S-hydroxyindole sulfate levels<br>sepsis on S-hydroxyindole sulfate levels<br>sepsis on S-hydroxyindole sulfate levels<br>sepsis on S-edodecenoryloranitine (C12:11) levels<br>sepsis on S-tetorel levels<br>sepsis on S-tetorel levels<br>sepsis on S-typotaurine levels<br>sepsis on S-1778 levels<br>sepsis on X-11787 levels<br>sepsis on X-12849 levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | method<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.4128<br>0.2413<br>0.2111<br>0.9042<br>0.1970<br>0.4022<br>0.1470<br>0.4022<br>0.1471<br>0.9042<br>0.7457<br>0.9609<br>0.6835<br>0.7214<br>0.9809<br>0.6835<br>0.7214<br>0.9809<br>0.9829<br>0.3821<br>0.9894<br>0.98785<br>0.92785<br>0.9429<br>0.3700<br>0.3700<br>0.7754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9840 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9866 (0.9675 – 1.0114<br>0.9847 (0.9642 – 1.0056<br>0.9985 (0.9741 – 1.0235<br>0.9966 (0.9751 – 1.0175<br>0.9966 (0.9751 – 1.0175<br>0.9966 (0.9761 – 1.0123<br>0.9955 (0.9741 – 1.0236<br>0.9956 (0.9741 – 1.0236<br>0.9968 (0.9757 – 1.0176<br>0.9966 (0.9761 – 1.0123<br>0.9956 (0.9741 – 1.0124<br>1.0039 (0.9828 – 1.0254<br>0.9905 (0.9793 – 1.0215<br>1.0153 (0.9783 – 1.0426<br>0.9992 (0.9776 – 1.0213<br>0.9984 (0.9636 – 1.0327<br>0.9992 (0.9776 – 1.0327<br>1.0109 (0.9902 – 1.0327<br>1.0106 (0.9876 – 1.0342<br>0.9957 (0.9736 – 1.0342)<br>0.9957 (0.9736 – 1.01342)<br>0.9957 (0.9756 – 1.01342)<br>0.9957 (0.9              |
| В | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br><b>Exposure</b><br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 5-hydroxyndate levels<br>sepsis on 1-acetyl-2-aminocctanoate levels<br>sepsis on N-acetyl-2-aminocctanoate levels<br>sepsis on S-chetocaprylate levels<br>sepsis on Succinate levels<br>sepsis on Succinate levels<br>sepsis on Gamma-glutamyltyrosine levels<br>sepsis on Succinate levels<br>sepsis on Cysteine levels<br>sepsis on Cysteine levels<br>sepsis on X-1787 levels<br>sepsis on X-12842 levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | method<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2041<br>0.2111<br>0.1970<br>0.4022<br>0.1491<br>0.9422<br>0.5184<br>0.7482<br>0.7487<br>0.9609<br>0.7457<br>0.9809<br>0.6352<br>0.9429<br>0.7214<br>0.3821<br>0.9870<br>0.9870<br>0.9870<br>0.3049<br>0.3049<br>0.3058<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568<br>0.3568 |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9840 (0.9657 – 1.0136<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9657 – 1.0141<br>0.9847 (0.9642 – 1.0056<br>0.9996 (0.9761 – 1.0177<br>0.9996 (0.9762 – 1.0238<br>0.9965 (0.9774 – 1.0176<br>0.9997 (0.9762 – 1.0238<br>0.9963 (0.9689 – 1.0122<br>1.0039 (0.9828 – 1.0248<br>0.9903 (0.9689 – 1.0122<br>1.0010 (0.9789 – 1.0218<br>1.0153 (0.9678 – 1.0436<br>0.9984 (0.9376 – 1.0136<br>0.9844 (0.9366 – 1.0377<br>1.0199 (0.9976 – 1.0348<br>0.9984 (0.9376 – 1.0348<br>0.9987 (0.9763 – 1.0348<br>0.9987 (0.976 – 1.0138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| В | Glucose to Npalmitoylsphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 4-hydroxycourmarin levels<br>sepsis on 4-hydroxycourmarin levels<br>sepsis on 4-hydroxystearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 5-hydroxytole sulfate levels<br>sepsis on 5-dodecenoylcarnitine (C12:11) levels<br>sepsis on 5-dodecenoylcarnitine (C12:11) levels<br>sepsis on 2-ketocarprilate levels<br>sepsis on 2-ketocarprilate levels<br>sepsis on 2-ketocarprilate levels<br>sepsis on 2-ketocarprilate levels<br>sepsis on Succinate levels<br>sepsis on Succinate levels<br>sepsis on Succinate levels<br>sepsis on Cysteine levels<br>sepsis on X-11787 levels<br>sepsis on X-12426 levels<br>sepsis on X-12429 levels<br>sepsis on X-12429 levels<br>sepsis on X-15496 levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | method<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.2043<br>0.4128<br>0.24111<br>0.1970<br>0.4022<br>0.7482<br>0.7482<br>0.7422<br>0.7482<br>0.7492<br>0.7382<br>0.7424<br>0.9894<br>0.9894<br>0.9884<br>0.9884<br>0.98870<br>0.29870<br>0.29870<br>0.29829<br>0.1511<br>0.3040<br>0.3700<br>0.3700<br>0.3700<br>0.3700<br>0.3704<br>0.8585<br>0.3754<br>0.8585<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3754<br>0.3755<br>0.3754<br>0.3755<br>0.3754<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.3755<br>0.37555<br>0.37555<br>0.37555<br>0.3755<br>0.3755<br>0.3755<br>0.3755   |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9840 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9865 (0.9741 – 1.0235<br>0.9846 (0.9757 – 1.0176<br>0.9964 (0.9757 – 1.0176<br>0.9966 (0.9751 – 1.0175<br>0.9967 (0.9762 – 1.0236<br>0.9930 (0.9828 – 1.0226<br>0.9903 (0.9789 – 1.0125<br>0.9903 (0.9789 – 1.0125<br>0.9903 (0.9789 – 1.0215<br>0.9903 (0.9789 – 1.0215<br>0.9903 (0.9789 – 1.0216<br>1.0001 (0.9793 – 1.0215<br>1.0153 (0.9788 – 1.0436<br>0.9902 (0.9776 – 1.0137<br>0.9924 (0.9636 – 1.0327<br>1.0106 (0.9876 – 1.0342<br>0.9957 (0.976 – 1.0135<br>0.9984 (0.9636 – 1.0157<br>1.0106 (0.9876 – 1.0142<br>0.9957 (0.976 – 1.0135)<br>0.9980 (0.9767 – 1.0135)<br>0.9980 (0.9767 – 1.0135)<br>0.9980 (0.9767 – 1.0135)<br>0.9980 (0.9767 – 1.0145)<br>0.9984 (0.9738 – 1.0145)<br>0.9984 (0          |
| В | Glucose to N-palmitoyi-sphingosine (d18:1 to 16:0) ratio<br><b>Exposure</b><br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on A-hydroxycoumarin levels<br>sepsis on A-hydroxycoumarin levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 4-methylguaiacol suffate levels<br>sepsis on 5-hydroxyindole suffate levels<br>sepsis on 1-acetyl-2-aminocctanoate levels<br>sepsis on N-acetyl-2-aminocctanoate levels<br>sepsis on N-acetyl-2-aminocctanoate levels<br>sepsis on Succinate levels<br>sepsis on Succinate levels<br>sepsis on Succinate levels<br>sepsis on Cysteine levels<br>sepsis on X-14787 levels<br>sepsis on X-11787 levels<br>sepsis on X-12849 levels<br>sepsis on X-12849 levels<br>sepsis on X-16397 levels<br>sepsis on X-15486 levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23 nsnp 75 75 75 75 75 75 75 75 75 75 75 75 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.7673<br>0.4128<br>0.2411<br>0.1970<br>0.4022<br>0.1491<br>0.39042<br>0.5184<br>0.3429<br>0.7457<br>0.9809<br>0.7457<br>0.9809<br>0.7214<br>0.3821<br>0.9870<br>0.9870<br>0.9870<br>0.9870<br>0.3049<br>0.3049<br>0.3049<br>0.3058<br>0.63568<br>0.63564<br>0.63568<br>0.63564<br>0.63568<br>0.63564<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.635688<br>0.63568<br>0.63568<br>0.65568<br>0.65568<br>0.65568<br>0.                                                   |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0267<br>0.9803 (0.9675 – 1.0136<br>0.9840 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0172<br>0.9863 (0.9642 – 1.0056<br>0.9985 (0.9741 – 1.0136<br>0.9964 (0.9761 – 1.0176<br>0.9966 (0.9761 – 1.0177<br>0.9996 (0.9762 – 1.0288<br>0.9955 (0.9774 – 1.0123<br>0.9963 (0.9828 – 1.0228<br>0.9955 (0.9774 – 1.0123<br>0.9963 (0.9878 – 1.0218<br>0.9903 (0.9828 – 1.0218<br>1.0012 (0.9776 – 1.0132<br>0.9844 (0.9363 – 1.0342<br>0.9924 (0.9766 – 1.0342<br>0.9944 (0.9366 – 1.0342<br>0.9957 (0.9768 – 1.0163<br>0.9980 (0.9767 – 1.0183<br>0.9980 (0.9767 – 1.0183<br>0.9980 (0.9767 – 1.0163<br>0.9980 |
| В | Glucose to Npalmitoyi-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 4-hydroxyotearate levels<br>sepsis on A-loydroxystearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 5-hydroxytole sulfate levels<br>sepsis on 0-acetyl-2-aminoctanoate levels<br>sepsis on 5-udecenopticaritine (C12:11) levels<br>sepsis on 0-acetyl-2-aminoctanoate levels<br>sepsis on 0-a                                    | method<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.2012<br>0.4128<br>0.2111<br>0.1970<br>0.4022<br>0.1491<br>0.9042<br>0.7382<br>0.7457<br>0.9809<br>0.2785<br>0.7214<br>0.9870<br>0.28570<br>0.9894<br>0.9870<br>0.2785<br>0.9429<br>0.1511<br>0.3704<br>0.3704<br>0.37054<br>0.37054<br>0.3570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5570<br>0.5 |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0236<br>0.9995 (0.9763 – 1.0236<br>0.9903 (0.9675 – 1.0136<br>0.9840 (0.9509 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9866 (0.9675 – 1.0117<br>0.9865 (0.9741 – 1.0235<br>0.9934 (0.9757 – 1.0176<br>0.9966 (0.9751 – 1.0176<br>0.9966 (0.9751 – 1.0176<br>0.9967 (0.9762 – 1.0236<br>0.9903 (0.9828 – 1.0254<br>0.9903 (0.9783 – 1.0121<br>0.9904 (0.9783 – 1.0121<br>0.9904 (0.9783 – 1.0215<br>0.9904 (0.9783 – 1.0215<br>1.0001 (0.9789 – 1.0241<br>1.0013 (0.9789 – 1.0242<br>0.9992 (0.9776 – 1.0213<br>0.9944 (0.9636 – 1.0357<br>1.0106 (0.9976 – 1.0142<br>0.9957 (0.9766 – 1.0142<br>0.9957 (0.9766 – 1.0142<br>0.9959 (0.9776 – 1.0156<br>0.9990 (0.9778 – 1.0163<br>0.9984 (0.9738 – 1.0163<br>0.9980 (0.9738 – 1.0163<br>0.9980 (0.9738 – 1.0163<br>0.9984 (0.9738 – 1.0163<br>0.9992 (0.972 – 1.0273)<br>0.9984 (0.9738 – 1.0163<br>0.9992 (0.972 – 1.0273)<br>0.9992 (0.972 – 1.0273)<br>0.9992 (0.972 – 1.0275)<br>0.9992 (      |
| В | Glucose to N-palmitovi-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 5-hydroxyindole sulfate levels<br>sepsis on 0-katocaprylate levels<br>sepsis on N-acetyl-2-aminooctanoate levels<br>sepsis on 0-ketocaprylate levels<br>sepsis on 2,4-di-tert-butylphenol levels<br>sepsis on S-hydroxytene levels<br>sepsis on Hyootaurine levels<br>sepsis on Hyootaurine levels<br>sepsis on N-acetyl-2-aminooctanoate levels<br>sepsis on N-acetyl-2-aminooctanoate levels<br>sepsis on N-ketocaprylate levels<br>sepsis on S-ketocaprylate levels<br>sepsis on N-acetyl-2-aminooctanoate levels<br>sepsis on N-1787 levels<br>sepsis on X-12489 levels<br>sepsis on X-14845 levels<br>sepsis on X-154845 levels<br>sepsis on X-19438 levels                                                                                                                                                                                                                                                                                                                                                                                                                                   | method<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 233<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.2643<br>0.2643<br>0.2641<br>0.22111<br>0.1491<br>0.4022<br>0.5184<br>0.7382<br>0.5184<br>0.7382<br>0.7382<br>0.7382<br>0.7457<br>0.9809<br>0.6835<br>0.9429<br>0.9870<br>0.2785<br>0.9429<br>0.3700<br>0.1511<br>0.3049<br>0.3700<br>0.5168<br>0.3568<br>0.3568<br>0.63568<br>0.63568<br>0.63568<br>0.63568<br>0.63570<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035<br>0.2035     |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br><b>OR (95% CI)</b><br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0267<br>0.9995 (0.9763 – 1.0263<br>1.0035 (0.9808 – 1.0267<br>0.9803 (0.9675 – 1.0136<br>0.9840 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9985 (0.9741 – 1.0235<br>0.9947 (0.9757 – 1.0174<br>0.9966 (0.9757 – 1.0176<br>0.9966 (0.9751 – 1.0175<br>0.9965 (0.9774 – 1.0238<br>0.9955 (0.9741 – 1.0238<br>0.9965 (0.9778 – 1.0174<br>1.0039 (0.9828 – 1.0228<br>1.0002 (0.9793 – 1.0218<br>1.0015 (0.9786 – 1.0342<br>0.9944 (0.9736 – 1.0342<br>0.9946 (0.9767 – 1.0148<br>0.9946 (0.9767 – 1.0148<br>0.9944 (0.9736 – 1.0342<br>0.9944 (0.9736 – 1.0132<br>0.9946 (0.9776 – 1.0138<br>0.9940 (0.9736 – 1.0132<br>0.9948 (0.9736 – 1.0132<br>0.9948 (0.9736 – 1.0132<br>0.9948 (0.9736 – 1.0132<br>0.9948 (0.9738 – 1.0132<br>0.9948 (0.9738 – 1.0132<br>0.9948 (0.9738 – 1.0132<br>0.9949 (0.9772 – 1.0127<br>0.10152 (0.9918 – 1.0328<br>0.9949 (0.972 – 1.0127<br>0.10152 (0.9918 – 1.0132<br>0.9949 (0.9738 – 1.0143<br>0.9949 (0.9738 – 1.0143<br>0.9949 (0.9738 – 1.0143<br>0.9949 (0.9738 – 1.0143<br>0.9940 (0.9738 – 1.0143<br>0.994 |
| В | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on A-lydroxyotearate levels<br>sepsis on Methionine sulfone levels<br>sepsis on Methionine sulfone levels<br>sepsis on A-mydroxystearate levels<br>sepsis on A-anydroxystearate levels<br>sepsis on A-anydroxystearate levels<br>sepsis on A-anydroxystearate levels<br>sepsis on A-anydroxystearate levels<br>sepsis on S-hydroxyindole sulfate levels<br>sepsis on S-bydroxyindole sulfate levels<br>sepsis on S-bidgeconylate levels<br>sepsis on S-addecenoylcarnitine (C12:1) levels<br>sepsis on 2-adoty-2-aminooctanoate levels<br>sepsis on Dibutyl sulfosuccinate levels<br>sepsis on Dibutyl sulfosuccinate levels<br>sepsis on Succinate levels<br>sepsis on S-tradic-envyltophenol levels<br>sepsis on Cysteine levels<br>sepsis on X-12462 levels<br>sepsis on X-12462 levels<br>sepsis on X-12462 levels<br>sepsis on X-12464 levels<br>sepsis on X-12464 levels<br>sepsis on X-15486 levels<br>sepsis on X-15486 levels<br>sepsis on X-15486 levels<br>sepsis on X-15484 levels<br>sepsis on X-15486 levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | method<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9622<br>0.7673<br>0.4128<br>0.2043<br>0.2111<br>0.1970<br>0.4022<br>0.1491<br>0.9042<br>0.7382<br>0.7452<br>0.7382<br>0.7454<br>0.9804<br>0.9804<br>0.9809<br>0.2785<br>0.9429<br>0.1511<br>0.3040<br>0.3700<br>0.3700<br>0.37054<br>0.8356<br>0.8354<br>0.8354<br>0.8556<br>0.2570<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.2055<br>0.205 |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0236<br>0.9995 (0.9763 – 1.0236<br>0.9940 (0.9509 – 1.0088<br>0.9840 (0.9509 – 1.0088<br>0.9840 (0.9519 – 1.0018<br>0.9846 (0.9675 – 1.0117<br>0.9865 (0.9741 – 1.0235<br>0.9934 (0.9757 – 1.0176<br>0.9964 (0.9757 – 1.0176<br>0.9964 (0.9751 – 1.0176<br>0.9964 (0.9751 – 1.0176<br>0.9965 (0.9741 – 1.0174<br>0.0390 (0.9828 – 1.0238<br>0.9930 (0.9763 – 1.0123<br>0.9903 (0.9789 – 1.0238<br>0.9903 (0.9789 – 1.0238<br>0.9903 (0.9789 – 1.0213<br>0.9904 (0.9738 – 1.0123<br>0.9903 (0.9789 – 1.0214<br>1.0010 (0.9789 – 1.0214<br>1.0015 (0.9783 – 1.0124<br>1.0153 (0.9878 – 1.0132<br>0.9992 (0.9776 – 1.0132<br>0.9992 (0.9776 – 1.0133<br>0.9984 (0.938 – 1.0133<br>0.9980 (0.9767 – 1.0133<br>0.9980 (0.9763 – 1.0133<br>0.9980 (0.9738 – 1.0163<br>0.9992 (0.9722 – 1.0270<br>1.0152 (0.9918 – 1.0327<br>0.9992 (0.9722 – 1.0372<br>0.9952 (0.9782 – 1.0227<br>0.9952 (0.9782 – 1.0227<br>0.9948 (0.9783 – 1.0163<br>0.9992 (0.9722 – 1.0370<br>0.9992 (0.9722 – 1.0370<br>0.9952 (0.9782 – 1.0270)<br>0.9952 (0.9782 – 1.0327<br>0.9995 (0.9782 – 1.0327)<br>0.9995 (0.9782 – 1.0372)<br>0.9995 (0.9782 – 1.0          |
| В | Glucose to N-palmitovi-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on C-3(-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 4-hydroxycoumarin levels<br>sepsis on 4-hydroxycoumarin levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 4-methylguaiacol sulfate levels<br>sepsis on 5-hydroxyindole sulfate levels<br>sepsis on 5-hydroxyindole sulfate levels<br>sepsis on 5-hydroxyindole sulfate levels<br>sepsis on N-acotty-2-aminooctanoate levels<br>sepsis on N-acotty-2-aminooctanoate levels<br>sepsis on N-acotty-2-aminooctanoate levels<br>sepsis on 0-ketocaprylate levels<br>sepsis on 2,4-di-tert-butylphenol levels<br>sepsis on Succinate levels<br>sepsis on S-12462 levels<br>sepsis on N-12462 levels<br>sepsis on X-12462 levels<br>sepsis on X-12469 levels<br>sepsis on X-12469 levels<br>sepsis on X-12469 levels<br>sepsis on X-16397 levels<br>sepsis on X-16397 levels<br>sepsis on X-16394 levels<br>sepsis on X-16394 levels<br>sepsis on X-16494 levels      | method<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.2632<br>0.4128<br>0.2043<br>0.4128<br>0.2041<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021<br>0.4021 |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0267<br>0.9995 (0.9763 – 1.0267<br>0.9995 (0.9675 – 1.0136<br>0.9840 (0.9599 – 1.0086<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9658 – 1.0072<br>0.9863 (0.9654 – 1.0175<br>0.9985 (0.9741 – 1.0235<br>0.9985 (0.9771 – 1.0176<br>0.9966 (0.9757 – 1.0176<br>0.9966 (0.9757 – 1.0176<br>0.9966 (0.9757 – 1.0176<br>0.9966 (0.9761 – 1.0123<br>0.9935 (0.9741 – 1.0238<br>0.9955 (0.9741 – 1.0124<br>1.0039 (0.9628 – 1.0228<br>0.9955 (0.9782 – 1.0218<br>1.0010 (0.9793 – 1.0218<br>1.0012 (0.9793 – 1.0218<br>0.9984 (0.9738 – 1.0438<br>0.9984 (0.9738 – 1.0136<br>0.9980 (0.9767 – 1.0198<br>0.9948 (0.9738 – 1.0138<br>0.9980 (0.9767 – 1.0198<br>0.9948 (0.9738 – 1.0138<br>0.9980 (0.9776 – 1.0138<br>0.9980 (0.9772 – 1.01278<br>0.9980 (0.9772 – 1.01278<br>0.9980 (0.9722 – 1.0272<br>1.0152 (0.9918 – 1.0328<br>0.9992 (0.9722 – 1.0272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| В | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on A-lydroxystearate levels<br>sepsis on A-hydroxystearate levels<br>sepsis on A-hydroxystearate levels<br>sepsis on A-hydroxystearate levels<br>sepsis on A-abotnate/xylonate levels<br>sepsis on A-abotnate/xylonate levels<br>sepsis on S-hydroxyloeraritine (C12:1) levels<br>sepsis on S-hydroxyloararitine (C12:1) levels<br>sepsis on D-adoetconyloararitine (C12:1) levels<br>sepsis on 2-dedoeconyloararitine (C12:1) levels<br>sepsis on 2-dedoeconyloararitine (C12:1) levels<br>sepsis on S-adoetconyloararitine (S12:1) levels<br>sepsis on 2-dedoeconyloararitine (S12:1) levels<br>sepsis on S-adoetconyloararitine (S12:1) levels<br>sepsis on S-adoetconyloararitine (S12:1) levels<br>sepsis on S-adoetconyloararitine (S12:1) levels<br>sepsis on Sucinate levels<br>sepsis on Sucinate levels<br>sepsis on Sucinate levels<br>sepsis on Sucinate levels<br>sepsis on S-12462 levels<br>sepsis on S-12462 levels<br>sepsis on X-12462 levels<br>sepsis on X-12462 levels<br>sepsis on X-15486 levels<br>sepsis on X-15486 levels<br>sepsis on X-15486 levels<br>sepsis on X-15486 levels<br>sepsis on X-15485 levels<br>sepsis on X-23655 levels<br>sepsis on X-22657 levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | method<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23<br>nsnp<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.2043<br>0.2043<br>0.2111<br>0.1970<br>0.4022<br>0.1491<br>0.9042<br>0.7382<br>0.7452<br>0.7382<br>0.7454<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9895<br>0.9429<br>0.5756<br>0.9894<br>0.9570<br>0.20357<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9061<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.9057<br>0.905 |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0277<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0236<br>0.9995 (0.9763 – 1.0236<br>0.9940 (0.9599 – 1.0086<br>0.9940 (0.9599 – 1.0086<br>0.9840 (0.9599 – 1.0086<br>0.9847 (0.9642 – 1.0056<br>0.9868 (0.9667 – 1.0141<br>0.9847 (0.9642 – 1.0056<br>0.9868 (0.9757 – 1.0176<br>0.9966 (0.9757 – 1.0176<br>0.9966 (0.9751 – 1.0176<br>0.9966 (0.9751 – 1.0176<br>0.9967 (0.9762 – 1.0236<br>0.9993 (0.9789 – 1.0236<br>0.9993 (0.9789 – 1.0248<br>0.9903 (0.9828 – 1.0248<br>0.9903 (0.9789 – 1.0216<br>1.0010 (0.9789 – 1.0216<br>1.0010 (0.9789 – 1.0216<br>1.0153 (0.9878 – 1.0436<br>0.9992 (0.9776 – 1.0136<br>0.9984 (0.9376 – 1.0136<br>0.9982 (0.9776 – 1.0136<br>0.9992 (0.9776 – 1.0136<br>0.9980 (0.9776 – 1.0136<br>0.9980 (0.9776 – 1.0136<br>0.9980 (0.9776 – 1.0136<br>0.9980 (0.9738 – 1.0136<br>0.9980 (0.9738 – 1.0136<br>0.9980 (0.9738 – 1.0136<br>0.9980 (0.9738 – 1.0136<br>0.9980 (0.9728 – 1.0276<br>1.0152 (0.918 – 1.0392<br>0.9994 (0.9738 – 1.0246<br>0.9995 (0.9728 – 1.0276<br>1.0152 (0.9788 – 1.0246)<br>0.9995 (0.9728 – 1.0276<br>1.0152 (0.918 – 1.0346)<br>0.9995 (0.9728 – 1.0276<br>1.0153 (0.9789 – 1.0246)<br>0.9995 (0.9728 – 1.02          |
| в | Glucose to N-palmitoyi-sphingosime (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 4-hydroxyocumarin levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 7-abonate /xy/lonate levels<br>sepsis on 7-abonate /xy/lonate levels<br>sepsis on N-acetyl-2-aminooctanoate levels<br>sepsis on S-hydroxylthelevels<br>sepsis on Sudifosuccinate levels<br>sepsis on N-acetyl-2-aminooctanoate levels<br>sepsis on Sud-11787 levels<br>sepsis on Cysteine levels<br>sepsis on X-11787 levels<br>sepsis on X-12849 levels<br>sepsis on X-12849 levels<br>sepsis on X-18345 levels<br>sepsis on X-18345 levels<br>sepsis on X-18345 levels<br>sepsis on X-18345 levels<br>sepsis on X-23665 levels<br>sepsis on Cholate to taurocholate ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | method<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.2043<br>0.4128<br>0.2041<br>0.2111<br>0.1970<br>0.4022<br>0.7457<br>0.7382<br>0.7457<br>0.9809<br>0.7382<br>0.7457<br>0.9809<br>0.7382<br>0.9429<br>0.37214<br>0.9894<br>0.3870<br>0.29859<br>0.27459<br>0.3749<br>0.3740<br>0.29859<br>0.3700<br>0.2755<br>0.9429<br>0.3700<br>0.2755<br>0.9429<br>0.3700<br>0.2035<br>0.9570<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0.9159<br>0. |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9608 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9840 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9896 (0.9657 – 1.0176<br>0.9985 (0.9741 – 1.0235<br>0.9934 (0.9736 – 1.0136<br>0.9946 (0.9757 – 1.0176<br>0.9966 (0.9761 – 1.0175<br>0.9966 (0.9774 – 1.0128<br>0.9955 (0.9741 – 1.01248<br>0.9955 (0.9741 – 1.01248<br>0.9955 (0.9741 – 1.01248<br>0.9955 (0.9774 – 1.01248<br>0.9955 (0.9774 – 1.01248<br>0.9992 (0.9768 – 1.0238<br>0.9992 (0.9776 – 1.0218<br>0.9992 (0.9776 – 1.0218<br>0.9944 (0.9738 – 1.01248<br>0.9992 (0.9776 – 1.0132<br>0.9944 (0.9738 – 1.0132<br>0.9947 (0.9787 – 1.0175<br>0.9947 (0.9736 – 1.0132<br>0.9947 (0.9738 – 1.0132<br>0.9955 (0.9738 – 1.0132<br>0.9995 (0.9778 – 1.01248<br>0.9995 (0.9778 – 1.01248<br>0.9995 (0.9728 – 1.01248<br>0.9995 (0.9728 – 1.01248<br>0.9995 (0.9728 – 1.02148<br>0.9995 (0.9738 – 1.01418<br>0.9996 (0.9738 – 1.01418)<br>0.9996 (0.9738 – 1.01418)<br>0            |
| В | Glucose to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 5-hydroxystearate levels<br>sepsis on 5-hydroxyindole sulfate levels<br>sepsis on 0-acetyl-2-aminoctanoate levels<br>sepsis on 0-acetyl-2-aminoctanoate levels<br>sepsis on 12-decencylotarnitine (C12:1) levels<br>sepsis on 0-acetyl-2-aminoctanoate levels<br>sepsis on S-indecencylotaritine (C12:1) levels<br>sepsis on 12-deto-encylotaritine (C12:1) levels<br>sepsis on 12-deto-encylotaritine (S12:1)<br>sepsis on Sucinate levels<br>sepsis on Sucinate levels<br>sepsis on Sucinate levels<br>sepsis on Sucinate levels<br>sepsis on Sociante levels<br>sepsis on Sociante levels<br>sepsis on X-12462 levels<br>sepsis on X-12462 levels<br>sepsis on X-12462 levels<br>sepsis on X-12462 levels<br>sepsis on X-15486 levels<br>sepsis on X-15486 levels<br>sepsis on X-18451 sevels<br>sepsis on X-18451 sevels<br>sepsis on X-18451 levels<br>sepsis on X-19458 levels<br>sepsis on X-25657 levels<br>sepsis on X-25657 levels<br>sepsis on Hypotaurine to cysteine ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | method meres variance weighted inverse varia                                                                                                                                             | 23<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.2643<br>0.2043<br>0.4124<br>0.1901<br>0.4022<br>0.1491<br>0.9042<br>0.7382<br>0.7452<br>0.7382<br>0.7452<br>0.9809<br>0.6335<br>0.72421<br>0.9894<br>0.9870<br>0.9894<br>0.9874<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9894<br>0.9895<br>0.7405<br>0.9601<br>0.9159<br>0.7740<br>0.9159<br>0.7740<br>0.4124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0277<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0267<br>0.9980 (0.9959 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9657 – 1.0141<br>0.9864 (0.9677 – 1.0176<br>0.9964 (0.9757 – 1.0176<br>0.9964 (0.9757 – 1.0176<br>0.9964 (0.9757 – 1.0176<br>0.9966 (0.9761 – 1.0137<br>0.9955 (0.9741 – 1.0177<br>0.9997 (0.9762 – 1.0238<br>0.9903 (0.9789 – 1.0248<br>0.9903 (0.9789 – 1.0248<br>1.0001 (0.9789 – 1.0248<br>1.0001 (0.9789 – 1.0248<br>1.0016 (0.9783 – 1.0136<br>0.9992 (0.9776 – 1.0127<br>1.0160 (0.9876 – 1.0134<br>0.9992 (0.9776 – 1.0126<br>0.9986 (0.9776 – 1.0188<br>0.9992 (0.9776 – 1.0148<br>0.9992 (0.9776 – 1.0188<br>0.9992 (0.9776 – 1.0188<br>0.9994 (0.9738 – 1.0186<br>0.9994 (0.9738 – 1.0126<br>0.9994 (0.9738 – 1.0126<br>0.9994 (0.9738 – 1.0126<br>0.9994 (0.9738 – 1.0246<br>0.9994 (0.9738 – 1.0246<br>0.9994 (0.9738 – 1.0246<br>0.9995 (0.9782 – 1.0276<br>1.0150 (0.9789 – 1.0246<br>0.9995 (0.9782 – 1.0246<br>1.0153 (0.9789 – 1.0246<br>0.9995 (0.9782 – 1.0246<br>0.9995 (0.9788 – 1.0246<br>0.9995 (0.9788 – 1.0246<br>0.9996 (0.9788 – 1.0246<br>0.9966 (      |
| В | Glucose to N-palmitoyi-sphingosine (d18:1 to 16:0) ratio<br>Exposure<br>sepsis on 2-hydroxyoctanoate levels<br>sepsis on Docosadienoate (22:2n6) levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 3-(3-hydroxyphenyl)propionate levels<br>sepsis on 4-hydroxycourmarin levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 9-hydroxystearate levels<br>sepsis on 5-hydroxyindel sulfate levels<br>sepsis on 5-hydroxyindel sulfate levels<br>sepsis on 5-hydroxyindole sulfate levels<br>sepsis on 5-hydroxyindole sulfate levels<br>sepsis on 5-dodecenoryioranitine (C12:11) levels<br>sepsis on 5-edodecenoryioranitine (C12:11) levels<br>sepsis on 5-edodecenoryioranitine (C12:11) levels<br>sepsis on 2-edodecaryioranitine (C12:11) levels<br>sepsis on 5-dodecenoryioranitine (C12:11) levels<br>sepsis on 5-dodecenoryioranitine (C12:11) levels<br>sepsis on 0-adodecenoryioranitine (C12:11) levels<br>sepsis on 0-1:1787 levels<br>sepsis on 0-1:1787 levels<br>sepsis on 0-1:1848 levels<br>sepsis on 0-1:1848 levels<br>sepsis on 0-1:1848 levels<br>sepsis on 0-2:3665 levels<br>sepsis on 0-2:3665 levels<br>sepsis on 0-2:3655 levels<br>sepsis on 0-1:170 ratio                                                                                                                                                                                    | method<br>method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23<br><b>nsnp</b><br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0196<br><b>pval</b><br>0.8565<br>0.8703<br>0.9682<br>0.2043<br>0.4128<br>0.2041<br>0.9042<br>0.7457<br>0.3021<br>0.7382<br>0.7457<br>0.9804<br>0.9824<br>0.9824<br>0.9854<br>0.9854<br>0.9854<br>0.9854<br>0.3700<br>0.2785<br>0.7055<br>0.9429<br>0.7054<br>0.36354<br>0.3700<br>0.2785<br>0.9500<br>0.2785<br>0.9500<br>0.2740<br>0.3700<br>0.2785<br>0.9500<br>0.2740<br>0.3700<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2754<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.9500<br>0.2755<br>0.2755<br>0.9500<br>0.2755<br>0.2755<br>0.2755<br>0.2755<br>0.2755<br>0.2755<br>0.2755<br>0.2755<br>0.2755<br>0.2755<br>0.2755<br>0.2755<br>0.2755<br>0.2755<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.2555<br>0.255 |                                                                                             |                                         | 1.2765 (1.0398 – 1.5670<br>OR (95% CI)<br>0.9978 (0.9745 – 1.0217<br>1.0020 (0.9780 – 1.0267<br>0.9995 (0.9763 – 1.0233<br>1.0035 (0.9808 – 1.0266<br>0.9903 (0.9675 – 1.0136<br>0.9840 (0.9599 – 1.0088<br>1.0149 (0.9916 – 1.0387<br>0.9863 (0.9658 – 1.0072<br>0.9866 (0.9657 – 1.0175<br>0.9865 (0.9741 – 1.0235<br>0.9984 (0.9757 – 1.0176<br>0.9966 (0.9757 – 1.0176<br>0.9966 (0.9757 – 1.0176<br>0.9966 (0.9771 – 1.0175<br>0.9996 (0.9741 – 1.0235<br>0.9933 (0.9788 – 1.0228<br>0.9933 (0.9738 – 1.0236<br>0.9955 (0.9741 – 1.0175<br>0.9967 (0.9762 – 1.0126<br>0.9955 (0.9741 – 1.0175<br>0.9957 (0.9793 – 1.0216<br>1.0010 (0.9793 – 1.0216<br>1.0010 (0.9793 – 1.0216<br>0.9992 (0.9776 – 1.0136<br>0.9992 (0.9776 – 1.0136<br>0.9992 (0.9776 – 1.0136<br>0.9944 (0.9388 – 1.0436<br>0.9957 (0.9762 – 1.0136<br>0.9954 (0.9778 – 1.0163<br>0.9954 (0.972 – 1.0127<br>1.0152 (0.9918 – 1.0326<br>0.9992 (0.9722 – 1.0227<br>0.1052 (0.9728 – 1.0212<br>1.0013 (0.9788 – 1.0163<br>0.9996 (0.9738 – 1.0122<br>1.0013 (0.9788 – 1.0122<br>1.0013 (0.9788 – 1.0136)<br>0.9966 (0.9738 – 1.0136<br>0.9996 (0.9738 – 1.0136)<br>0.9996 (0.9738 – 1.0136<br>0.9996 (0.9738 – 1.0136)<br>0.9996 (0.9738 – 1.          |

FIGURE 2

Forest plot of metabolite-sepsis causal associations. (A) This plot displays the significant causal links of various metabolites with sepsis risk. (B) This plot demonstrates the significant causal influences of sepsis on different metabolites.

reach statistical significance are presented in Supplementary Table S7. To ascertain the causal direction, reverse MR was performed. Sepsis, as an exposure, showed no effect on inflammatory factors (Figure 3B). Cochran's Q-test, revealed no significant heterogeneity (Supplementary Table S5). MR-Egger intercept test showed no pleiotropy (Supplementary Table S6).

# 3.3 Association of sepsis-relevant metabolites with inflammatory factors

We next investigated the influence of 36 metabolites on FGF-19, FGF-23, IL-4, IL-2, OSM, and AXIN1. IVW analysis revealed significant correlations between these inflammatory factors and

| Exposure                                                                                                | method                                                                                                                                                  | nsnp                                            | pval                                                          |                                                                                                    | OR (95% CI)                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| AXIN1 on sepsis                                                                                         | Inverse variance weighted                                                                                                                               | 12                                              | 0.0431                                                        | •                                                                                                  | 0.7154 (0.5172 – 0.9897                                                                                                                            |
| FGF-19 on sepsis                                                                                        | Inverse variance weighted                                                                                                                               | 30                                              | 0.0142                                                        | <b>←</b> ∎−−−−−1                                                                                   | 0.7512 (0.5977 – 0.9443                                                                                                                            |
| FGF-23 on sepsis                                                                                        | Inverse variance weighted                                                                                                                               | 28                                              | 0.0335                                                        |                                                                                                    | 0.7827 (0.6244 – 0.9811                                                                                                                            |
| IL–2 on sepsis                                                                                          | Inverse variance weighted                                                                                                                               | 19                                              | 0.0437                                                        | ·                                                                                                  | <ul> <li>1.3201 (1.0078 – 1.7291</li> </ul>                                                                                                        |
| IL-4 on sepsis                                                                                          | Inverse variance weighted                                                                                                                               | 21                                              | 0.0333                                                        | <                                                                                                  | 0.7717 (0.6080 – 0.9797                                                                                                                            |
| OSM on sepsis                                                                                           | Inverse variance weighted                                                                                                                               | 22                                              | 0.0229                                                        |                                                                                                    | 0.7545 (0.5920 – 0.9617                                                                                                                            |
| В                                                                                                       |                                                                                                                                                         |                                                 |                                                               | I                                                                                                  |                                                                                                                                                    |
|                                                                                                         |                                                                                                                                                         |                                                 |                                                               |                                                                                                    |                                                                                                                                                    |
| Exposure                                                                                                | method                                                                                                                                                  | nsnp                                            | pval                                                          |                                                                                                    | OR (95% CI)                                                                                                                                        |
| Exposure<br>sepsis on AXIN1                                                                             | method<br>Inverse variance weighted                                                                                                                     | nsnp<br>78                                      | <b>pval</b><br>0.7817                                         | 1 <del>4</del> 1                                                                                   | <b>OR (95% CI)</b><br>1.0026 (0.9847 – 1.0208                                                                                                      |
| Exposure<br>sepsis on AXIN1<br>sepsis on FGF–19                                                         | method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                        | <b>nsnp</b><br>78<br>78                         | <b>pval</b><br>0.7817<br>0.2668                               | +∔+<br>;<br>;}=1                                                                                   | <b>OR (95% CI)</b><br>1.0026 (0.9847 – 1.0208<br>1.0093 (0.9929 – 1.0259                                                                           |
| Exposure<br>sepsis on AXIN1<br>sepsis on FGF–19<br>sepsis on FGF–23                                     | method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                                                           | <b>nsnp</b><br>78<br>78<br>78                   | <b>pval</b><br>0.7817<br>0.2668<br>0.6467                     | +÷+<br>1;−1<br>+÷+                                                                                 | <b>OR (95% CI)</b><br>1.0026 (0.9847 – 1.0208<br>1.0093 (0.9929 – 1.0259<br>1.0037 (0.9879 – 1.0198                                                |
| Exposure<br>sepsis on AXIN1<br>sepsis on FGF–19<br>sepsis on FGF–23<br>sepsis on IL–2                   | method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                              | <b>nsnp</b><br>78<br>78<br>78<br>78<br>78       | <b>pval</b><br>0.7817<br>0.2668<br>0.6467<br>0.8082           | 8∰4<br>1<br>1∰4<br>1<br>1∰1<br>1<br>1<br>1<br>1<br>1<br>1                                          | OR (95% CI)<br>1.0026 (0.9847 – 1.0208<br>1.0093 (0.9929 – 1.0259<br>1.0037 (0.9879 – 1.0198<br>0.9975 (0.9778 – 1.0177                            |
| Exposure<br>sepsis on AXIN1<br>sepsis on FGF-19<br>sepsis on FGF-23<br>sepsis on IL-2<br>sepsis on IL-4 | method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted | <b>nsnp</b><br>78<br>78<br>78<br>78<br>78<br>78 | <b>pval</b><br>0.7817<br>0.2668<br>0.6467<br>0.8082<br>0.8933 | 8∰4<br>4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | OR (95% CI)<br>1.0026 (0.9847 – 1.0208<br>1.0093 (0.9929 – 1.0259<br>1.0037 (0.9879 – 1.0198<br>0.9975 (0.9778 – 1.0177<br>0.9987 (0.9805 – 1.0173 |

FIGURE 3

Forest plot of inflammatory factor-sepsis causal associations. (A) This plot depicts the significant causal connections between a range of inflammatory factors and sepsis risk. (B) This plot shows the significant causal impacts of sepsis on various inflammatory factors.

various metabolites (Figure 4A). To ascertain the causal direction, reverse MR was performed, AXIN1 as exposure, was causally associated with Sphingomyelin (d18:2/24:2) levels, with other inflammatory factors, as exposure, showed no effect on metabolites (Figure 4B). Cochran's Q-test, revealed no significant heterogeneity in the causal relationship (Supplementary Table S4). MR-Egger intercept test showed no pleiotropy (Supplementary Table S5).

# 3.4 Percentage of the link between metabolites and sepsis accounted for by inflammatory factors

Our analysis identified that Docosadienoate (22:2n6) and Sphingomyelin (d18:2/24:2) were positively correlated with sepsis. Conversely, Piperine, 9-hydroxystearate, 5-hydroxyindole sulfate, and X-19438 showed negative correlations with sepsis (Figure 5A).

| Exposure                                                                                                                                                                                                                                                                                                                                                                  | method                                                                                                                                                                                                            | nsnp                                                        | pval                                                                                        |   |             | OR (95% CI)                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|---|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Docosadienoate (22:2n6) levels on FGF-23                                                                                                                                                                                                                                                                                                                                  | Inverse variance weighted                                                                                                                                                                                         | 21                                                          | 0.0389                                                                                      |   |             | 1.0776 (1.0038 - 1.1569)                                                                                                                                                                                                                    |
| Docosadienoate (22:2n6) levels on OSM                                                                                                                                                                                                                                                                                                                                     | Inverse variance weighted                                                                                                                                                                                         | 21                                                          | 0.0144                                                                                      |   |             | 1.0950 (1.0182 - 1.1775)                                                                                                                                                                                                                    |
| Piperine levels on AXIN1                                                                                                                                                                                                                                                                                                                                                  | Inverse variance weighted                                                                                                                                                                                         | 27                                                          | 0.0041                                                                                      |   |             | 1.1065 (1.0327 - 1.1857)                                                                                                                                                                                                                    |
| 9-hydroxystearate levels on IL-2                                                                                                                                                                                                                                                                                                                                          | Inverse variance weighted                                                                                                                                                                                         | 25                                                          | 0.0077                                                                                      |   |             | 0.9063 (0.8431 - 0.9743)                                                                                                                                                                                                                    |
| 9-hydroxystearate levels on FGF-19                                                                                                                                                                                                                                                                                                                                        | Inverse variance weighted                                                                                                                                                                                         | 25                                                          | 0.0258                                                                                      |   |             | 1.0767 (1.0090 - 1.1489)                                                                                                                                                                                                                    |
| 5-hydroxyindole sulfate levels on IL-4                                                                                                                                                                                                                                                                                                                                    | Inverse variance weighted                                                                                                                                                                                         | 19                                                          | 0.0094                                                                                      |   |             | 0.9101 (0.8476 - 0.9771)                                                                                                                                                                                                                    |
| Sphingomyelin (d18:2/24:2) levels on AXIN1                                                                                                                                                                                                                                                                                                                                | Inverse variance weighted                                                                                                                                                                                         | 23                                                          | 0.0219                                                                                      |   |             | 0.8787 (0.7866 - 0.9815)                                                                                                                                                                                                                    |
| Sphingomyelin (d18:2/24:2) levels on IL-2                                                                                                                                                                                                                                                                                                                                 | Inverse variance weighted                                                                                                                                                                                         | 23                                                          | 0.0354                                                                                      |   | ÷           | 0.8971 (0.8108 - 0.9926)                                                                                                                                                                                                                    |
| X–19438 levels on AXIN1                                                                                                                                                                                                                                                                                                                                                   | Inverse variance weighted                                                                                                                                                                                         | 24                                                          | 0.0120                                                                                      |   |             | 1.0923 (1.0196 - 1.1702)                                                                                                                                                                                                                    |
| 3                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                   |                                                             | _                                                                                           |   | 1           | _                                                                                                                                                                                                                                           |
| 3                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                   |                                                             | _                                                                                           |   | 1           | _                                                                                                                                                                                                                                           |
| B<br>Exposure                                                                                                                                                                                                                                                                                                                                                             | method                                                                                                                                                                                                            | nsnp                                                        | pval                                                                                        |   | 1           | OR (95% CI)                                                                                                                                                                                                                                 |
| 3<br>Exposure<br>FGF-23 on Docosadienoate (22:2n6) levels                                                                                                                                                                                                                                                                                                                 | method<br>Inverse variance weighted                                                                                                                                                                               | nsnp<br>24                                                  | <b>pval</b><br>0.6462                                                                       |   | 1           | OR (95% CI)<br>0.9766 (0.8828 – 1.0804)                                                                                                                                                                                                     |
| <b>3</b><br>Exposure<br>FGF–23 on Docosadienoate (22:2n6) levels<br>OSM on Docosadienoate (22:2n6) levels                                                                                                                                                                                                                                                                 | method<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                                                  | <b>nsnp</b><br>24<br>20                                     | <b>pval</b><br>0.6462<br>0.7136                                                             |   | 1<br>1      | OR (95% CI)<br>0.9766 (0.8828 – 1.0804)<br>1.0255 (0.8965 – 1.1730)                                                                                                                                                                         |
| 3<br>Exposure<br>FGF–23 on Docosadienoate (22:2n6) levels<br>OSM on Docosadienoate (22:2n6) levels<br>AXIN1 on Piperine levels                                                                                                                                                                                                                                            | method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                     | <b>nsnp</b><br>24<br>20<br>11                               | <b>pval</b><br>0.6462<br>0.7136<br>0.6122                                                   |   | 1<br>1<br>• | OR (95% Cl)<br>0.9766 (0.8828 – 1.0804)<br>1.0255 (0.8965 – 1.1730)<br>1.0387 (0.8969 – 1.2029)                                                                                                                                             |
| B<br>Exposure<br>FGF-23 on Docosadienoate (22:2n6) levels<br>OSM on Docosadienoate (22:2n6) levels<br>AXIN1 on Piperine levels<br>IL-2 on 9-hydroxystearate levels                                                                                                                                                                                                        | method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                                                                                                                     | <b>nsnp</b><br>24<br>20<br>11<br>20                         | <b>pval</b><br>0.6462<br>0.7136<br>0.6122<br>0.4995                                         |   |             | OR (95% CI)<br>0.9766 (0.8828 – 1.0804)<br>1.0255 (0.8965 – 1.1730)<br>1.0387 (0.8969 – 1.2029)<br>0.9643 (0.8676 – 1.0717)                                                                                                                 |
| B<br>FGF-23 on Docosadienoate (22:2n6) levels<br>OSM on Docosadienoate (22:2n6) levels<br>AXIN1 on Piperine levels<br>IL-2 on 9-hydroxystearate levels<br>FGF-19 on 9-hydroxystearate levels                                                                                                                                                                              | method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                                                                                        | <b>nsnp</b><br>24<br>20<br>11<br>20<br>33                   | <b>pval</b><br>0.6462<br>0.7136<br>0.6122<br>0.4995<br>0.5177                               | 1 |             | OR (95% CI)<br>0.9766 (0.8828 - 1.0804)<br>1.0255 (0.8965 - 1.1730)<br>1.0387 (0.8969 - 1.2029)<br>0.9643 (0.8676 - 1.0717)<br>1.0308 (0.9403 - 1.1299)                                                                                     |
| B         FGF-23 on Docosadienoate (22:2n6) levels         OSM on Docosadienoate (22:2n6) levels         AXIN1 on Piperine levels         IL-2 on 9-hydroxystearate levels         FGF-19 on 9-hydroxystearate levels         IL-4 on 5-hydroxyindole sulfate levels                                                                                                      | method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                                                           | nsnp<br>24<br>20<br>11<br>20<br>33<br>20                    | <b>pval</b><br>0.6462<br>0.7136<br>0.6122<br>0.4995<br>0.5177<br>0.7412                     |   |             | OR (95% CI)<br>0.9766 (0.8828 - 1.0804)<br>1.0255 (0.8965 - 1.1730)<br>1.0387 (0.8969 - 1.2029)<br>0.9643 (0.8676 - 1.0717)<br>1.0308 (0.9403 - 1.1299)<br>1.0219 (0.8986 - 1.1622)                                                         |
| B<br>Exposure<br>FGF–23 on Docosadienoate (22:2n6) levels<br>OSM on Docosadienoate (22:2n6) levels<br>AXIN1 on Piperine levels<br>IL–2 on 9–hydroxystearate levels<br>FGF–19 on 9–hydroxystearate levels<br>IL–4 on 5–hydroxyindole sulfate levels<br>AXIN1 on Sphingomyelin (d18:2/24:2) levels                                                                          | method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted                              | <b>nsnp</b><br>24<br>20<br>11<br>20<br>33<br>20<br>11       | <b>pval</b><br>0.6462<br>0.7136<br>0.6122<br>0.4995<br>0.5177<br>0.7412<br>0.0044           |   |             | OR (95% Cl)<br>0.9766 (0.8828 – 1.0804)<br>1.0255 (0.8965 – 1.1730)<br>1.0387 (0.8969 – 1.2029)<br>0.9643 (0.8676 – 1.0717)<br>1.0308 (0.9403 – 1.1299)<br>1.0219 (0.8986 – 1.1622)<br>0.7878 (0.6683 – 0.9285)                             |
| B         FGF-23 on Docosadienoate (22:2n6) levels         OSM on Docosadienoate (22:2n6) levels         AXIN1 on Piperine levels         IL-2 on 9-hydroxystearate levels         FGF-19 on 9-hydroxystearate levels         IL-4 on 5-hydroxyindole sulfate levels         AXIN1 on Sphingomyelin (d18:2/24:2) levels         IL-2 on Sphingomyelin (d18:2/24:2) levels | method<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted<br>Inverse variance weighted | <b>nsnp</b><br>24<br>20<br>11<br>20<br>33<br>20<br>11<br>20 | <b>pval</b><br>0.6462<br>0.7136<br>0.6122<br>0.4995<br>0.5177<br>0.7412<br>0.0044<br>0.6818 |   |             | OR (95% Cl)<br>0.9766 (0.8828 - 1.0804)<br>1.0255 (0.8965 - 1.1730)<br>1.0387 (0.8969 - 1.2029)<br>0.9643 (0.8676 - 1.0717)<br>1.0308 (0.9403 - 1.1299)<br>1.0219 (0.8986 - 1.1622)<br>0.7878 (0.6683 - 0.9285)<br>0.9797 (0.8882 - 1.0806) |

FIGURE 4

Forest plot of metabolite-inflammatory factor causal relationships. (A) This plot presents the significant causal interactions of key metabolites with inflammatory factors. (B) This plot reveals the significant causal influences of prominent inflammatory factors on metabolites.



causal effects of particular metabolites on inflammatory factors. (D) This diagram provides a visual summary of the mediation and how specific inflammatory factors influence the relationship between metabolites and sepsis.

Inflammatory factors such as AXIN-1, FGF-19, FGF-23, IL-4, and OSM were negatively causally associated with sepsis, while IL-2 was positively associated (Figure 5B). We observed that metabolites were causally associated with inflammatory factors (Figure 5C). Leave-one-out analysis indicated no significant bias introduced by any single SNP (Supplementary Figure S1). Assessing inflammatory factors as mediators between metabolites and sepsis, we found that while Docosadienoate (22:2n6) was correlated with sepsis, it was also associated with FGF-23 and OSM. However, since FGF-23 and OSM were negatively associated with sepsis, they are unlikely to mediate the increased sepsis risk associated with Docosadienoate (22:2n6). The association of Piperine with increased AXIN1 correlated with a reduced sepsis risk, contributing 16.296% to Piperine's protective

effect. Similarly, 9-hydroxystearate's association with increased FGF-19 and decreased IL-2 correlated with a reduced sepsis risk, contributing 9.436% and 12.565% respectively to the protective effect of 9-hydroxystearate. The negative association of 5hydroxyindole sulfate with sepsis, and its association with increased IL-4 (which is negatively associated with sepsis), suggests that IL-4 is not a mediator for 5-hydroxyindole sulfate's protective effect against sepsis. Sphingomyelin (d18:2/24:2) was positively associated with sepsis and negatively associated with IL-2, but since IL-2 was positively associated with sepsis, it is unlikely to be a mediator. The association of X-19438 with increased AXIN1 correlated with a reduced sepsis risk, contributing 12.380% to the protective effect of X-19438 (Figure 5D).

## 3.5 Experimental validation of the associations between metabolites, inflammatory factors, and sepsis

To validate the findings from the bidirectional Mendelian randomization analysis, we compared the levels of key metabolites (piperine and 9-hydroxyoctadecanoic acid) and inflammatory factors (IL-2, FGF-19, and AXIN1) in plasma samples from sepsis patients on the first day of hospital admission and healthy controls. The results showed that sepsis patients exhibited significantly elevated levels of the inflammatory factor IL-2 and significantly reduced levels of FGF-19 and AXIN1 compared to healthy controls (Figures 6A-C). Furthermore, sepsis patients had significantly lower levels of piperine and 9hydroxyoctadecanoic acid compared to healthy controls (Figures 6D, E).

Linear correlation analysis revealed significant associations between the levels of metabolites and inflammatory factors in the combined population of sepsis patients and healthy controls. Specifically, piperine levels were positively correlated with AXIN1 (rho=0.566, p=6.86\*10<sup>-3</sup>) (Figure 6F). Additionally, 9hydroxyoctadecanoic acid levels were negatively correlated with IL- 2 (rho=-0.735, p= 9.64\*10<sup>-5</sup>) (Figure 6G). Meanwhile, 9hydroxyoctadecanoic acid was positively correlated with FGF-19 (rho=0.711, p=9.64\*10<sup>-5</sup>) (Figure 6H).

These experimental findings support the results of the bidirectional Mendelian randomization analysis, providing further evidence for the potential causal relationships between the metabolites piperine and 9-hydroxyoctadecanoic acid, the inflammatory factors IL-2, FGF-19, and AXIN1, and the risk of sepsis. The observed associations suggest that these metabolites and inflammatory factors may play important roles in the pathophysiology of sepsis and could serve as potential therapeutic targets or biomarkers for sepsis management.

# 4 Discussion

Our study delves into the complex interplay between inflammatory mediators, metabolic changes, and their collective impact on sepsis pathogenesis. The roles of inflammatory factors and metabolites are pivotal in sepsis, yet their distinct pathways necessitate a thorough examination of both individual and combined effects. Inflammatory mediators, such as cytokines,



#### FIGURE 6

Experimental validation of associations between metabolites, inflammatory factors, and sepsis. (A-C) Plasma levels of inflammatory factors IL-2 (A), FGF-19 (B), and AXIN1 (C) in healthy controls and sepsis patients. (D, E) Plasma levels of metabolites 9-hydroxyoctadecanoic acid (D) and piperine (E) in healthy controls and sepsis patients. Data are presented as mean  $\pm$  SD. \*\*\*p < 0.001, \*\*\*\*p < 0.001. (F–H) Correlation analysis between metabolites and inflammatory factors in healthy controls (blue dots) and sepsis patients (red dots). (F) Correlation between piperine and AXIN1 expression (Spearman's rho = 0.566, p = 6.86e-03). (G) Correlation between 9-hydroxyoctadecanoic acid and IL-2 levels (Spearman's rho = -0.735, p = 9.64e-05). (H) Correlation between 9-hydroxyoctadecanoic acid and FGF-19 levels (Spearman's rho = 0.711, p = 2.07e-04).

proteases, and lipid mediators, play a crucial role in exacerbating tissue damage and enhancing host susceptibility to infection (22). They trigger various signaling pathways that can lead to tissue damage and potentially multi-organ failure. Concurrently, sepsisinduced metabolic alterations, involving shifts in macronutrient metabolism, critically alter the patient's metabolic state (23). These alterations affect energy production and utilization, thereby influencing survival and recovery outcomes. Metabolic alterations can significantly impact inflammatory responses. For example, melatonin and its metabolites exhibit potent antioxidant and antiinflammatory properties that can mitigate inflammation-induced mitochondrial dysfunction and oxidative stress (24). Conversely, inflammatory factors are known to modulate metabolic pathways, as evidenced by changes in the expression and activity of drugmetabolizing enzymes (25). However, the intricate process through which metabolites influences sepsis via inflammatory factors alteration remains poorly understood.

In our MR analysis, we discovered that piperine influences sepsis progression by affecting AXIN1. Our findings suggest that elevated levels of piperine are associated with a reduced risk of sepsis. Previous studies have highlighted piperine's potential for neuroprotection in sepsis-associated encephalopathy, as demonstrated in animal models subjected to Cecal Ligation and Puncture (26). Additionally, several studies have reported that piperine inhibits inflammatory factors in various diseases. For instance, it can inhibit pyroptosis and the release of interleukin- $1\beta$  in response to ATP stimulation and bacterial infection (27), and it also reduces Lithocholic Acid-induced Interleukin-8 production in human colorectal cancer cells by inhibiting Src/EGFR and reactive oxygen species (28). However, to date, no studies have reported on the impact of piperine on AXIN-1. Our study indicates that the association of piperine with reduced sepsis risk is partly due to AXIN-1, accounting for approximately 16.296% of this protective effect. AXIN-1, a component of the  $\beta$ -catenin degradation complex, regulates the Wnt signaling pathway, which recent studies have linked to sepsis (29). Wnt signaling inhibitors, such as Wnt-C59 and LGK974, have been shown to modulate inflammatory responses in sepsis, thereby improving prognosis (30, 31). APC proteins, known for their role in negatively regulating the Wnt pathway by facilitating β-catenin degradation, are crucial in this context. Mutations in APC result in the stabilization of  $\beta$ -catenin and activation of the Wnt pathway. Axin1, similar to APC, promotes  $\beta$ -catenin degradation. The detailed mechanism by which piperine reduces sepsis risk via AXIN1 warrants further investigation.

9-Hydroxystearate, a salt form of 9-hydroxyoctadecanoic acid, is an endogenous cellular lipid. Several studies have demonstrated its inhibitory effect on cancers, such as colon cancer (32) and Osteosarcoma (33). Recent research has also shown that 9-Hydroxystearic acid can influence the inflammatory process. Research has shown that it possesses anti-inflammatory effects, notably suppressing cytokines like IL-1 $\beta$  and IL-6 triggered by LPS in RAW 264.7 cells (34). However, the relationship between 9-Hydroxystearic acid and FGF-19, as well as IL-2, is currently underreported. In our study, we found that the association of 9hydroxystearate levels with increased FGF-19 correlated with a

reduced sepsis risk, contributing 9.436% to the protective effect of 9-hydroxystearate. Similarly, its association with decreased IL-2 levels correlated with a reduced sepsis risk, contributing 12.565% to its protective effect. FGF-19, primarily synthesized in the ileum following Farnesoid X Receptor activation, plays a role in reducing hepatic bile acid production (35). FGF-19 has been shown to exhibit anti-inflammatory effects, with studies indicating lower levels of FGF-19 in Inflammatory Bowel Disease (IBD), resulting from intestinal inflammation, compromised barrier function, and impaired bile acid absorption (36). IL-2 acts as a proinflammatory cytokine, contributing to the pathogenesis of sepsis by participating in the systemic inflammatory response. IL-2 induces IL-17 production by lung granular  $\gamma\delta$  T cells, leading to increased IL-17 synthesis and neutrophil recruitment (37). The detailed mechanism by which 9-Hydroxystearate reduces sepsis risk via FGF-19 and IL-2 requires further investigation. In our study, X-19438 was found to inhibit the occurrence of sepsis through a positive correlation with AXIN1. However, the exact nature and physiological role of the metabolite X-19438 remain to be clearly defined. Future research is needed to elucidate the physiological functions of X-19438.

In our study, although some metabolites demonstrated causal associations with inflammatory factors, the direction of causality and the consistency of these inflammatory factors with sepsis were not aligned, indicating that these inflammatory factors did not serve as mediators. Docosadienoate (22:2n6), a polyunsaturated fatty acid from the Omega-6 family, exhibited a positive causal association with sepsis in our analysis. Previous research has shown that Omega-6 polyunsaturated fatty acids can have pro-inflammatory effects, in contrast to the anti-inflammatory actions of oleic acid and Omega-3 polyunsaturated fatty acids (38). The opposing causal associations of Docosadienoate (22:2n6) with FGF-23 and OSM suggest that it does not act as a mediator. The increased sepsis risk associated with Docosadienoate (22:2n6) may rely on other factors, necessitating further investigation. 5-Hydroxyindole sulfate, produced through the same metabolic pathway as serotonin, is a downstream product of serotonin metabolism. Serotonin is converted into 5-Hydroxyindoleacetic acid, which is then further transformed into 5-Hydroxyindole sulfate. Sulfation, a common phase II metabolic process, typically increases the water solubility of compounds, thereby facilitating excretion. The positive correlation of 5-Hydroxyindole sulfate with the risk of sepsis may be attributed to the properties of 5-Hydroxyindoleacetic acid. Studies have indicated that 5-Hydroxyindoleacetic acid levels are significantly higher in the plasma of patients with septic shock compared to those with sepsis alone. As a metabolite of a neurotransmitter, it can increase vascular permeability, leading to shock (39). In our study, the opposing causal relationship of 5-Hydroxyindole sulfate with IL-4 suggests that it does not act as a mediator, and its role in reducing sepsis risk may depend on other factors. Sphingomyelin, a crucial component of vascular endothelium, is implicated in the early pathogenesis of sepsis. The attack on endothelial cells by inflammatory factors leads to the release of endothelium-associated sphingomyelins, which explains why elevated plasma levels are a risk factor for sepsis. While direct studies on Sphingomyelin (d18:2/ 24:1) are limited, research indicates elevated levels of this metabolite

in the cerebrospinal fluid of Parkinson's patients, potentially reflecting pathological damage due to blood-brain barrier leakage (40). In our study, no inflammatory mediators were identified as intermediaries for Sphingomyelin (d18:2/24:2) in promoting sepsis, suggesting the involvement of other intermediary factors.

The experimental validation of the bidirectional Mendelian randomization findings provides crucial insights into the complex interplay between metabolites, inflammatory factors, and sepsis. By demonstrating significant alterations in the levels of key metabolites (piperine and 9-hydroxyoctadecanoic acid) and inflammatory factors (IL-2, FGF-19, and AXIN1) in sepsis patients compared to healthy controls, this study highlights the potential role of these molecules in the pathophysiology of sepsis. The significant correlations observed between piperine and AXIN1, as well as 9hydroxyoctadecanoic acid and IL-2 and FGF-19, further support the intricate relationships between metabolites and inflammatory factors in the context of sepsis. These findings suggest that the protective effects of piperine and 9-hydroxyoctadecanoic acid against sepsis may be mediated through their influence on the levels of AXIN, IL-2 and FGF-19, respectively.

In our study, we identified several inflammatory factors, including FGF-19, AXIN1, FGF-23, IL-4, OSM, and IL-2, that showed statistically significant associations with sepsis risk using the IVW method in MR analyses. However, it is notable that some wellestablished inflammatory mediators in sepsis, such as TNF-α, IL-1β and IL-17, did not show significant associations with sepsis risk in our analyses. The lack of significant associations between these inflammatory mediators and sepsis risk in our study could be attributed to several factors. First, our study may have been underpowered to detect causal associations for these specific inflammatory mediators, particularly if the effect sizes of these associations were small. Second, the inflammatory response in sepsis is a complex process involving the interaction of multiple inflammatory mediators and signaling pathways, and the effects of individual inflammatory mediators may be masked by other factors or may exhibit non-linear relationships with sepsis risk, which are not well captured by MR analyses that primarily assess linear relationships. Furthermore, the role of these inflammatory mediators in sepsis may be context-dependent or may vary across different stages of the disease. For example, TNF- $\alpha$  and IL-1 $\beta$  are typically associated with the early, hyperinflammatory phase of sepsis (41), while IL-17 may be more involved in the later, immunosuppressive phase (42). Therefore, the impact of these inflammatory mediators on sepsis risk may not be adequately captured by the genetic variants used as instrumental variables in our MR analyses.

Our study, exploring the interplay between metabolites, inflammatory factors, and sepsis, has several limitations. The MR approach, while effective for establishing causal relationships, depends on the validity of IVs. Despite stringent selection, potential residual confounding due to linkage disequilibrium or pleiotropy, especially regarding the metabolites and inflammatory factors studied, may affect our findings' accuracy. Another limitation is related to the selection of SNPs based on the p-value threshold. In our analysis, we adjusted the SNP selection threshold to  $p < 5 \times 10^{-5}$  to obtain a broader range of genetic instruments, as the more stringent genome-wide significance threshold of  $p < 5 \times 10^{-8}$  would

have resulted in a limited number of SNPs for some exposures (e.g., only one SNP for 9-Hydroxystearate and X-19438, and one SNP for AXIN-1). While relaxing the p-value threshold allowed us to include more SNPs and increase the statistical power of our analysis, it may also have introduced potential weak instrument bias (43). Weak instruments can bias the causal estimate toward the observational association, leading to an increased risk of false-positive findings (44). Additionally, our analysis primarily uses data from European ancestry individuals, limiting the generalizability of our results to other ethnic groups with different metabolic and inflammatory responses. Furthermore, focusing on specific metabolites and inflammatory factors does not encompass the entire spectrum of molecules involved in sepsis pathophysiology. Our findings, therefore, represent a segment of the complex sepsis landscape. Also, reliance on public GWAS databases might introduce biases affecting data quality and reporting, impacting result reliability. Finally, translating our findings into clinical practice requires clinical validation through experimental studies and trials. A comprehensive understanding of the underlying molecular mechanisms and their clinical application is crucial for developing effective sepsis treatments.

# 5 Conclusion

Our study has identified significant interactions between specific metabolites and inflammatory factors in the context of sepsis. Piperine, in particular, demonstrated a protective effect against sepsis, mediated through its interaction with AXIN1, contributing to a 16.296% reduction in sepsis risk. This finding suggests a potential pathway where Piperine influences sepsis outcomes by modulating AXIN1 levels. Additionally, 9-Hydroxystearate exhibited a dual protective role against sepsis, positively associated with FGF-19 and negatively with IL-2, contributing 9.436% and 12.565% respectively to its protective effect. These results highlight the complex role of 9-Hydroxystearate in sepsis pathophysiology. The third metabolite, X-19438, while identified as significant, necessitates further research to elucidate its specific role and interactions with inflammatory factors in sepsis. Our findings provide valuable insights into the molecular mechanisms of sepsis and underscore the potential of targeted metabolic interventions in its management.

# Data availability statement

Publicly available datasets were analyzed in this study. This data can be found here: https://gwas.mrcieu.ac.uk/.

# **Ethics statement**

The research protocol for this retrospective study adhered to the principles outlined in the Declaration of Helsinki. This study was approved by the Ethics Committee of Ruijin Hospital (No.20210101) (Supplementary Table S8). The participants provided their written informed consent to participate in this study.

# Author contributions

FG: Data curation, Methodology, Writing – original draft. WL: Data curation, Methodology, Writing – original draft, Validation. LP: Data curation, Methodology, Writing – original draft. XW: Investigation, Writing – review & editing. XZ: Investigation, Writing – review & editing. SY: Investigation, Writing – review & editing. SZ: Investigation, Writing – review & editing. DX: Investigation, Writing – review & editing. RL: Investigation, Writing – review & editing. ZY: Writing – review & editing, Supervision. EM: Supervision, Writing – review & editing. EC: Writing – review & editing, Conceptualization, Funding acquisition. YC: Conceptualization, Writing – review & editing, Project administration.

# Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by the Shanghai Shenkang Hospital Development Center Clinical Science and Technology Innovation Project (grant numbers SHDC 22021304, SHDC 22022201 and SHDC 22023218), Shanghai Sailing Program No.21YF1440600, the National Natural Science Foundation of China (grant number 82270087 and 82300100) and Shanghai Municipal Health Commission (202340068). We extend our sincere thanks to these organizations for their financial support and faith in our research.

# Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

# Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

# Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2024.1377755/ full#supplementary-material

**SUPPLEMENTARY FIGURE 1** Leave-one-out stability analysis.

**SUPPLEMENTARY TABLE 1** STROBE-MR.

**SUPPLEMENTARY TABLE 2** Comprehensive list of 1400 metabolites.

**SUPPLEMENTARY TABLE 3** Comprehensive list of 91 inflammatory factors.

SUPPLEMENTARY TABLE 4 Instrumental variables for exposure post-data harmonization.

**SUPPLEMENTARY TABLE 5** Assessment of heterogeneity among SNPs.

**SUPPLEMENTARY TABLE 6** Evaluation of pleiotropy among SNPs.

**SUPPLEMENTARY TABLE 7** Mendelian randomization analysis results for inflammatory factors not significantly associated with sepsis risk.

**SUPPLEMENTARY TABLE 8** Ethics approval document.

# References

1. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. *Crit Care Med.* (2021) 49:e1063–e143. doi: 10.1007/s00134-021-06506-y

2. Gu X, Zhou F, Wang Y, Fan G, Cao B. Respiratory viral sepsis: epidemiology, pathophysiology, diagnosis and treatment. *Eur Respir Rev.* (2020) 29(157):200038. doi: 10.1183/16000617.0038-2020

3. Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). *JAMA*. (2016) 315:775–87. doi: 10.1001/jama.2016.0289

4. Christaki E, Giamarellos-Bourboulis EJ. The beginning of personalized medicine in sepsis: small steps to a bright future. *Clin Genet.* (2014) 86:56–61. doi: 10.1111/ cge.12368

5. Nedel WL, Portela LV. Lactate levels in sepsis: don't forget the mitochondria. Intensive Care Med. (2024) 50(7):1202-3. doi: 10.1007/s00134-024-07475-8

6. Langley RJ, Tsalik EL, van Velkinburgh JC, Glickman SW, Rice BJ, Wang C, et al. An integrated clinico-metabolomic model improves prediction of death in sepsis. *Sci Transl Med.* (2013) 5:195ra95. doi: 10.1126/scitranslmed.3005893

7. Soni S, Martens MD, Takahara S, Silver HL, Maayah ZH, Ussher JR, et al. Exogenous ketone ester administration attenuates systemic inflammation and reduces

organ damage in a lipopolysaccharide model of sepsis. *Biochim Biophys Acta Mol Basis Dis.* (2022) 1868:166507. doi: 10.1016/j.bbadis.2022.166507

8. Liu H, Zhang H, Zhang X, Chen Q, Xia L. Role of succinic acid in the regulation of sepsis. *Int Immunopharmacol.* (2022) 110:109065. doi: 10.1016/j.intimp.2022.109065

9. Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. *Cell.* (2016) 167:457–70.e13. doi: 10.1016/j.cell.2016.08.064

10. Busch K, Kny M, Huang N, Klassert TE, Stock M, Hahn A, et al. Inhibition of the NLRP3/IL-1beta axis protects against sepsis-induced cardiomyopathy. *J Cachexia Sarcopenia Muscle*. (2021) 12:1653–68. doi: 10.1002/jcsm.12763

11. Ling H, Chen M, Dai J, Zhong H, Chen R, Shi F. Evaluation of qSOFA combined with inflammatory mediators for diagnosing sepsis and predicting mortality among emergency department. *Clin Chim Acta.* (2023) 544:117352. doi: 10.1016/j.cca.2023.117352

12. Schrijver DP, Roring RJ, Deckers J, de Dreu A, Toner YC, Prevot G, et al. Resolving sepsis-induced immunoparalysis via trained immunity by targeting interleukin-4 to myeloid cells. *Nat BioMed Eng.* (2023) 7:1097–112. doi: 10.1038/ s41551-023-01050-0

13. Sawoo R, Dey R, Ghosh R, Bishayi B. Exogenous IL-10 posttreatment along with TLR4 and TNFR1 blockade improves tissue antioxidant status by modulating sepsisinduced macrophage polarization. *J Appl Toxicol.* (2023) 43:1549–72. doi: 10.1002/ jat.4496 14. Lodge S, Litton E, Gray N, Ryan M, Millet O, Fear M, et al. Stratification of sepsis patients on admission into the intensive care unit according to differential plasma metabolic phenotypes. *J Proteome Res.* (2024) 23:1328-40. doi: 10.1021/acs.jproteome.3c00803

15. Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: A review. *Res Synth Methods.* (2019) 10:486–96. doi: 10.1002/jrsm.1346

16. Allman PH, Aban IB, Tiwari HK, Cutter GR. An introduction to Mendelian randomization with applications in neurology. *Mult Scler Relat Disord*. (2018) 24:72–8. doi: 10.1016/j.msard.2018.06.017

17. Flatby HM, Ravi A, Damas JK, Solligard E, Rogne T. Circulating levels of micronutrients and risk of infections: a Mendelian randomization study. *BMC Med.* (2023) 21:84. doi: 10.1186/s12916-023-02780-3

18. Ponsford MJ, Gkatzionis A, Walker VM, Grant AJ, Wootton RE, Moore LSP, et al. Cardiometabolic traits, sepsis, and severe COVID-19: A mendelian randomization investigation. *Circulation*. (2020) 142:1791–3. doi: 10.1161/CIRCULATIONAHA. 120.050753

19. Jiang L, Zheng Z, Fang H, Yang J. A generalized linear mixed model association tool for biobank-scale data. *Nat Genet.* (2021) 53:1616–21. doi: 10.1038/s41588-021-00954-4

20. Chen Y, Lu T, Pettersson-Kymmer U, Stewart ID, Butler-Laporte G, Nakanishi T, et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. *Nat Genet.* (2023) 55:44–53. doi: 10.1038/s41588-022-01270-1

21. Zhao JH, Stacey D, Eriksson N, Macdonald-Dunlop E, Hedman AK, Kalnapenkis A, et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. *Nat Immunol.* (2023) 24:1540–51. doi: 10.1038/s41590-023-01588-w

22. Aziz M, Jacob A, Yang WL, Matsuda A, Wang P. Current trends in inflammatory and immunomodulatory mediators in sepsis. *J Leukoc Biol.* (2013) 93:329-42. doi: 10.1189/jlb.0912437

23. Wasyluk W, Zwolak A. Metabolic alterations in sepsis. J Clin Med. (2021) 10 (11):2412. doi: 10.3390/jcm10112412

24. Galley HF, Lowes DA, Allen L, Cameron G, Aucott LS, Webster NR. Melatonin as a potential therapy for sepsis: a phase I dose escalation study and an ex vivo whole blood model under conditions of sepsis. *J Pineal Res.* (2014) 56:427–38. doi: 10.1111/jpi.12134

25. Lv C, Huang L. Xenobiotic receptors in mediating the effect of sepsis on drug metabolism. Acta Pharm Sin B. (2020) 10:33-41. doi: 10.1016/j.apsb.2019.12.003

26. Ferreira FM, Gomes SV, Carvalho LCF, de Alcantara AC, da Cruz Castro ML, Perucci LO, et al. Potential of piperine for neuroprotection in sepsis-associated encephalopathy. *Life Sci.* (2024) 337:122353. doi: 10.1016/j.lfs.2023.122353

27. Liang YD, Bai WJ, Li CG, Xu LH, Wei HX, Pan H, et al. Piperine suppresses pyroptosis and interleukin-1beta release upon ATP triggering and bacterial infection. *Front Pharmacol.* (2016) 7:390. doi: 10.3389/fphar.2016.00390

28. Li S, Nguyen TT, Ung TT, Sah DK, Park SY, Lakshmanan VK, et al. Piperine attenuates lithocholic acid-stimulated interleukin-8 by suppressing src/EGFR and reactive oxygen species in human colorectal cancer cells. *Antioxid (Basel)*. (2022) 11(3), 530. doi: 10.3390/antiox11030530

29. Goto T, Matsuzawa J, Iemura S, Natsume T, Shibuya H. WDR26 is a new partner of Axin1 in the canonical Wnt signaling pathway. *FEBS Lett.* (2016) 590:1291–303. doi: 10.1002/1873-3468.12180

30. Jang J, Song J, Sim I, Kwon YV, Yoon Y. Wnt-Signaling Inhibitor Wnt-C59 Suppresses the Cytokine Upregulation in Multiple Organs of Lipopolysaccharide-Induced Endotoxemic Mice via Reducing the Interaction between beta-Catenin and NF-kappaB. *Int J Mol Sci.* (2021) 22(12):6249. doi: 10.3390/ijms22126249

31. Jang J, Song J, Lee H, Sim I, Kwon YV, Jho EH, et al. LGK974 suppresses lipopolysaccharide-induced endotoxemia in mice by modulating the crosstalk between the Wnt/beta-catenin and NF-kappaB pathways. *Exp Mol Med.* (2021) 53:407–21. doi: 10.1038/s12276-021-00577-z

32. Calonghi N, Boga C, Telese D, Bordoni S, Sartor G, Torsello C, et al. Synthesis of 9-hydroxystearic acid derivatives and their antiproliferative activity on HT 29 cancer cells. *Molecules*. (2019) 24(20):3714. doi: 10.3390/molecules24203714

33. Micheletti G, Calonghi N, Farruggia G, Strocchi E, Palmacci V, Telese D, et al. Synthesis of novel structural hybrids between aza-heterocycles and azelaic acid moiety with a specific activity on osteosarcoma cells. *Molecules*. (2020) 25(2):404. doi: 10.3390/molecules25020404

34. Dongoran RA, Lin TJ, Byekyet A, Tang SC, Yang JH, Liu CH. Determination of major endogenous FAHFAs in healthy human circulation: the correlations with several circulating cardiovascular-related biomarkers and anti-inflammatory effects on RAW 264.7 cells. *Biomolecules*. (2020) 10(12):1689. doi: 10.3390/biom10121689

 Gadaleta RM, Moschetta A. Metabolic Messengers: fibroblast growth factor 15/ 19. Nat Metab. (2019) 1:588–94. doi: 10.1038/s42255-019-0074-3

36. Bourgonje AR, Bolte LA, Vranckx LLC, Spekhorst LM, Gacesa R, Hu S, et al. Long-term dietary patterns are reflected in the plasma inflammatory proteome of patients with inflammatory bowel disease. *Nutrients*. (2022) 14(12):2522. doi: 10.3390/ nu14122522

37. Menoret A, Buturla JA, Xu MM, Svedova J, Kumar S, Rathinam VAK, et al. T cell-directed IL-17 production by lung granular gammadelta T cells is coordinated by a novel IL-2 and IL-1beta circuit. *Mucosal Immunol.* (2018) 11:1398–407. doi: 10.1038/ s41385-018-0037-0

38. Yan D, Ye S, He Y, Wang S, Xiao Y, Xiang X, et al. Fatty acids and lipid mediators in inflammatory bowel disease: from mechanism to treatment. *Front Immunol.* (2023) 14:1286667. doi: 10.3389/fimmu.2023.1286667

39. Tanaka T, Mori M, Sekino M, Higashijima U, Takaki M, Yamashita Y, et al. Impact of plasma 5-hydroxyindoleacetic acid, a serotonin metabolite, on clinical outcome in septic shock, and its effect on vascular permeability. *Sci Rep.* (2021) 11:14146. doi: 10.1038/s41598-021-93649-z

40. Qiu J, Wei L, Su Y, Tang Y, Peng G, Wu Y, et al. Lipid metabolism disorder in cerebrospinal fluid related to Parkinson's disease. *Brain Sci.* (2023) 13(8):1166. doi: 10.3390/brainsci13081166

41. Chaudhry H, Zhou J, Zhong Y, Ali MM, McGuire F, Nagarkatti PS, et al. Role of cytokines as a double-edged sword in sepsis. *In Vivo*. (2013) 27:669–84.

42. Venet F, Monneret G. Advances in the understanding and treatment of sepsisinduced immunosuppression. *Nat Rev Nephrol.* (2018) 14:121–37. doi: 10.1038/ nrneph.2017.165

43. Burgess S, Thompson SG, Collaboration CCG. Avoiding bias from weak instruments in Mendelian randomization studies. *Int J Epidemiol.* (2011) 40:755–64. doi: 10.1093/ije/dyr036

44. Davies NM, von Hinke Kessler Scholder S, Farbmacher H, Burgess S, Windmeijer F, Smith GD. The many weak instruments problem and Mendelian randomization. *Stat Med.* (2015) 34:454–68. doi: 10.1002/sim.6358