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Background: Identification of patients at risk for type 2 diabetes mellitus (T2DM)

can not only prevent complications and reduce suffering but also ease the health

care burden. While routine physical examination can provide useful information

for diagnosis, manual exploration of routine physical examination records is not

feasible due to the high prevalence of T2DM.

Objectives: We aim to build interpretable machine learning models for T2DM

diagnosis and uncover important diagnostic indicators from physical

examination, including age- and sex-related indicators.

Methods: In this study, we present three weighted diversity density (WDD)-based

algorithms for T2DM screening that use physical examination indicators, the

algorithms are highly transparent and interpretable, two of which are missing

value tolerant algorithms.

Patients: Regarding the dataset, we collected 43 physical examination indicator

data from 11,071 cases of T2DM patients and 126,622 healthy controls at the

Affiliated Hospital of Southwest Medical University. After data processing, we

used a data matrix containing 16004 EHRs and 43 clinical indicators

for modelling.

Results: The indicators were ranked according to their model weights, and the

top 25% of indicators were found to be directly or indirectly related to T2DM. We

further investigated the clinical characteristics of different age and sex groups,

and found that the algorithms can detect relevant indicators specific to these

groups. The algorithms performed well in T2DM screening, with the highest area

under the receiver operating characteristic curve (AUC) reaching 0.9185.
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Conclusion: This work utilized the interpretable WDD-based algorithms to

construct T2DM diagnostic models based on physical examination indicators.

By modeling data grouped by age and sex, we identified several predictive

markers related to age and sex, uncovering characteristic differences among

various groups of T2DM patients.
KEYWORDS

diabetes, diabetes diagnosis, diabetic prediction, diagnostic indicator, health
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1 Introduction

Type 2 diabetes mellitus (T2DM) is the most common type of

diabetes mellitus (DM), whose pathogenesis is that the cells in the

body are not sensitive to insulin, meaning they do not respond to

insulin (1). A longer disease duration of diabetes often leads to a

variety of complications, such as retinopathy (2), cardiovascular

disease, stroke (3, 4), and diabetic foot (5). It is estimated that about

half of T2DM patients do not know they have diabetes (44.7%) (6).

Therefore, screening for T2DM is essential to prevent or delay

complications, avoid premature death, and improve quality of life.

Manual review of a large amount of clinical data is time-

consuming and laborious, and missed diagnosis will be inevitable

(6, 7). Thus, leveraging machine learning for T2DM screening has

emerged as a notable approach in auxiliary diagnostics, enhancing

both the accuracy and efficiency of diagnoses. Currently, machine

learning models such as the random forest (RF) (8–10), support

vector machine (SVM) (8, 11), logistic regression (LR) (11–13), and

eXtreme gradient boosting (XGBoost) (9, 14) have been developed

for constructing accurate system of T2DM prediction. Some studies

have also employed machine learning techniques to identify

indicators associated with T2DM, such as the white blood cell

(WBC) (15), urinary and dietary metal exposure (16) and serum

calcium (17). These works demonstrate the effectiveness of

machine learning in predicting T2DM and identifying relevant

indicator information.

For the construction of T2DM diagnostic models, the existing

problems are as follows: (I) The effective extraction of T2DM

diagnostic indicators through machine learning often relies on

their interpretability (10, 12, 18–23). However, some of the

current work lacks evaluation of important indicators, and some

rely on third-party tools such as Shapley Additive exPlanations

(SHAP) and Local Interpretable Model-agnostic Explanations

(LIME) (8, 9, 11), which may bring potential deviation in clinical

understanding (24). (II) The clinical indicators and datasets are

critical to whether a model can be used in practice. At present, the

frequently used diabetes dataset public like PIMA Indian dataset

contains only 8 clinical indicators (25), and unconventional

indicators using in some works are often difficult to obtain in

community hospitals. Therefore, it is valuable to use physical
02
examination indicators for T2DM prediction. (III) The problem

of missing values in EHRs is unavoidable during data analysis.

Currently, methods based on data imputation often require

exhaustive searching (26). How to handle these missing values

reasonably and efficiently is a matter that needs consideration.

To this end, we introduced three weighted diversity density

(WDD)-based algorithms with a focus on intrinsic interpretability,

which two of the algorithms could ‘tolerate’missing value by adding

penalty terms. By applying these algorithms to physical

examination data for T2DM, we identified several clinical

indicators related to T2DM diagnosis, including age-related

markers like glomerular filtration rate (GFR) and triglycerides

(TG). Additionally, by analyzing the model’s internal parameters,

we can gain a better understanding of the clinical indicators the

model relies on for predictions, without the need for third-party

interpretability tools.
2 Materials and methods

2.1 Dataset summary

All electronic health record (EHR) data came from the Affiliated

Hospital of Southwest Medical University. A total of 16,004 EHRs

and 43 usable physical examination indicators were screened out, of

which half explicitly contained information about a confirmed

T2DM diagnosis (Figures 1, 2; Table 1). In order to capture

characteristics of early-stage T2DM, the EHRs of T2DM patients

were limited to their first record in the hospital system. The physical

examination indicators could be divided into three categories:

routine urine indicators (9 indicators), blood cell analysis

indicators (24 indicators), and biochemical indicators (10

indicators) (Figures 1, 2), the name and the abbreviation of the

indicators were shown in Supplementary Table S1.

For these datasets divided according to the physical

examination items, to facilitate their description here, we chose

some standardized abbreviations: Whole physical examination

indicators dataset (PEI dataset), Blood cell analysis dataset (BCA

dataset), Urinalysis dataset (Uri dataset), Biochemical dataset

(BioChem dataset).
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2.2 Data preprocessing

On the collected data, three steps were performed

before modelling:
Frontiers in Endocrinology 03
(1) First, we retained only the physical examination indicators

for exploring the association of these indicators with T2DM

diagnosis. In total, 181 features, of which 52 are physical

examination features, remained afterwards.
FIGURE 2

Flowchart of inclusion and exclusion criteria for the study populations of patients with type 2 diabetes mellitus (T2DM) and the physical examination
population. We only use the first electronic health records for each patient in the hospital system.
A

B

C

FIGURE 1

Overview of the study design. (A) The workflow of this work. (B) The first two steps in A, 11071 T2DM electronic health records (EHRs) and 126622
physical examination EHRs were collected. After preprocessing, 16004 EHRs were selected to build models for T2DM prediction. (C) The last two
steps in A and the basic principle of the weighted diversity density method.
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(2) The features were normalized by X0
ij =

(Xij−mj)
sj

, where mj and

sj are the average and standard deviation of the i th record,

respectively. To avoid the influence from outliers, a

featurewise box-plot analysis was performed to remove

the features located outside of ½Q1 − 1:5IQR,Q3 + 1:5IQR�
when calculating mj and sj. These outliers were replaced by

null values. Any feature with a standard deviation of 0 (that

is, the feature value is the same in all samples) was deleted,

leaving 43 dimensions of physical examination features.

(3) When using the WDD-KNN algorithm for modelling, we

used the K-nearest neighbour (KNN) imputer to impute the

missing values of the data (n_neighbours = 15) and then

normalized the processed data again in step (2).
The missing rate of each feature is shown in Supplementary

Table S3. When using the MVT-WDD-DI and MVT-WDD-BF

algorithms for modelling, we kept the missing value of each

dimension feature of positive and negative samples consistent to

eliminate bias. (Details in the Supplementary Note 4: Biased

distribution misleading model using features).
2.3 Preliminary of weighted diversity
density algorithm

The WDD algorithm, initially proposed by Maron for multi-

instance learning problems (27), utilizes radial basis distance

metrics to measure classification probabilities. We developed

three new algorithms based on WDD in this work. Its non-linear

nature and transparent framework make it particularly suitable for

the medical field, where high interpretability in models is essential.

Building upon the WDD framework, we have made enhancements

to adapt it for medical classification problems, ensuring it can

effectively handle missing values. Additionally, another reason for

selecting the WDD method is its capability to provide a risk score

for each sample, similar to the diagnostic approach of a clinical

physician. This is achieved through its internal distance function,

rather than merely outputting a categorical label. By decomposing

the distance function at the feature level, we are further able to

extract the feature-based criteria on which the model relies. This

significantly enhances the transparency of the model. Unlike

traditional models that offer limited insight into their decision-

making process, WDD allows for a deeper understanding of how

and why certain diagnostic conclusions are reached. This alignment

with clinical practices not only aids in the interpretability of the
TABLE 1 Characteristics of the study population.

Normal people T2DM patients

TC, mmol/L 4.96 (0.932) 4.63 (1.393)

AST, U/L 24.58 (12.877) 25.20 (37.516)

GFR, mL/min 94.01 (14.660) 87.98 (29.298)

Crea, umol/L 68.48 (20.157) 86.93 (80.094)

HDL-C, mmol/L 1.40 (0.368) 1.14 (0.369)

TG, mmol/L 1.61 (1.313) 2.28 (2.377)

LDL-C, mmol/L 3.09 (0.900) 2.71 (1.014)

ALT, U/L 24.78 (19.111) 26.82 (32.369)

GGT, U/L 30.62 (40.086) 49.49 (110.088)

AST/ALT 1.19 (0.547) 1.18 (0.969)

MUCUS,/uL 12.88 (18.193) 2.75 (12.213)

BACT,/uL 21.38 (366.085) 1998.54 (7639.814)

EC,/uL 6.81 (25.506) 5.28 (14.011)

BLD 0.31 (0.628) 0.27 (0.603)

U-SG 1.02 (0.006) 1.02 (0.008)

U-pH 5.88 (0.729) 5.73 (0.719)

Crystal,/uL 6.09 (37.158) 23.45 (178.737)

RBC-Urine,/uL 7.29 (165.853) 20.96 (267.325)

WBC-Urine,/uL 14.43 (140.372) 61.44 (640.552)

NEU, 10E9/L 3.64 (1.290) 5.50 (3.591)

NEU-R, % 59.31 (8.511) 68.59 (11.639)

PCT, % 0.22 (0.051) 0.24 (0.086)

PDW, % 16.15 (1.010) 15.48 (2.733)

PLT, 10E9/L 210.83 (56.276) 206.96 (80.247)

MPV, fL 10.74 (1.412) 11.44 (1.400)

HGB, g/L 142.27 (15.014) 126.97 (21.740)

EOS, 10E9/L 0.16 (0.161) 0.13 (0.172)

EOS-R, % 2.62 (2.317) 1.99 (2.336)

BASO, 10E9/L 0.03 (0.018) 0.02 (0.020)

BASO-R, % 0.53 (0.283) 0.24 (0.258)

LYM, 10E9/L 1.88 (0.617) 1.57 (0.665)

LYM-R, % 31.65 (7.991) 23.10 (10.179)

HCT 0.44 (0.041) 0.39 (0.063)

RDW-SD, fL 43.18 (2.994) 42.91 (4.282)

RDW-CV, % 13.15 (0.975) 13.34 (1.305)

RBC, 10E12/L 4.66 (0.489) 4.33 (0.732)

MCHC, g/L 325.53 (8.441) 328.30 (14.113)

MCH, pg 30.62 (2.417) 29.40 (2.533)

MCV, fL 94.00 (6.445) 89.55 (6.784)

(Continued)
TABLE 1 Continued

Normal people T2DM patients

MONO, 10E9/L 0.35 (0.122) 0.45 (0.257)

MONO-R, % 5.88 (1.491) 6.12 (2.300)

P-LCR 31.37 (9.845) 36.20 (10.018)

WBC, 10E9/L 6.08 (2.075) 7.68 (3.860)
Data are mean (standard deviation).
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model but also fosters greater trust and reliability in its application

in medical settings. The ability to dissect the model’s reasoning at a

feature level offers invaluable insights into the diagnostic criteria,

bridging the gap between machine learning outputs and clinical

decision-making.

The major principle of the WDD algorithm (Figure 1C) is to

find an optimal point x = x1, x2,…, xf
� �

in the data space that

maximizes the probability density that positive samples (b+i =

b+i1, b
+
i2,…, b+if

n o
) are near this point and minimizes the probability

density that negative samples (b−i = b−i1, b
−
i2,…, b−if

n o
) are near it,

where i is the index of the sample, f is the number of features. The

modified WDD algorithm can be represented as:

argmax
x

(
Y

i Pr (x = t     b+i )
Y

i Pr (x = t  
��� ���   b−i ))  (1)

t is the target point, Pr (x = t   j   b+i ) is the probability density

that positive samples are near this point, and Pr (x = t   j   b−i ) is the
probability density of negative samples. The implicit functions

could be given as:

Pr (x = t   j   b+i ) = exp ( − Dist(b+i , x)) (2)

Pr (x = t   j   b−i ) = 1 − exp ( − Dist(b−i , x)) (3)

where distance function (Dist) for both positive and negative

samples is defined as the sum of weighted squares:

Dist(bi, x) =okDistk (4)

Distk = sk(bik − xk)
2 (5)

where k is the index of the feature.

The formulas yield a function to measure an optimal point

based on both positive and negative samples, and the position of the

point can be optimized during a deep learning process.

In this work, based on the idea of Maron’s work, we modified

the distance function to achieve our predictive goals. One of the

algorithms first imputes the data with missing values by k-nearest

neighbour (KNN) and then uses WDD for prediction. The other

two algorithms, named MVT-WDD-DI and MVT-WDD-BF, do

not need to impute data but use penalty mechanisms for missing

value tolerance.
2.4 Our proposed modified WDD algorithm

As mentioned above, we modified the WDD algorithm

proposed in Maron’s work to improve the algorithms’ ability to

handle data containing missing values. The modifications are

introduced in the following subsections:

2.4.1 WDD-KNN
The WDD-KNN algorithm uses data imputation by k-nearest

neighbor (KNN) as input and then uses the modified WDD

algorithm for modelling. Since all the missing values are imputed

by KNN, we only modified Equations (2) and (3) by adding a

hyperparameter g to make the calculation more flexible:
Frontiers in Endocrinology 05
Pr (x = t   j   b+i ) = exp ( − gDist(b+i , x)) (6)

Pr (x = t   j   b−i ) = 1 − exp ( − gDist(b−i , x)) (7)

Using WDD-KNN, we can classify a dataset containing missing

values, but it still needs a step for missing value filling. This step

limits the process of prediction. When given a new sample that

contains a missing value, we need a dataset for imputing the missing

value more than the trained model parameters. Therefore, we

developed two missing value tolerant (MVT) algorithms for our

predictive goals.

2.4.2 MVT-WDD-DI
We developed MVT-WDD-DI by adding penalty term for

Equations (6) and (7) using division (DI) to handle missing

values and finally obtain Equations (8) and (9):

Pr (x = t   j   b+i ) = exp −g
Dist b+i , xð Þ
(f − fmiss)

d

 ! !
(8)

Pr (x = t   j   b−i ) = 1 − exp −g
Dist(b−i , x)

(f − fmiss)
d

 ! !
(9)

where f is the number of features and fmiss is the number of

missing values. Since the modification will influence the calculation

of Equations (6) and (7), we added a rule to Equation (5): if  bik is 

missing,  bik − xk = 0. We also added a hyperparameter d for

adjusting the value of the penalty term. The concept behind this

modification is to diminish the influence of samples containing

missing values. Specifically, when a sample has numerous missing

values, indicating lower data quality, we increase the penalty term to

reduce its distance metric value. This approach, during the

optimization process, results in the target point relying less on

these data segments. The penalty term can reduce the diversity

density according to the number of missing features and will not

influence a sample containing all the features.

2.4.3 MVT-WDD-BF
In addition to using division to penalize missing values, we also

tried to design another method by ignoring the missing feature (BF)

of a sample. To make the idea work, we modified Equations (2)

through (5) of the original WDD algorithm. First, Equations (4) and

(5) were modified to

Dist0(bi, x, g , l) =okDist
0
k
l   (10)

Dist0k = exp ( − g sk bik − xkj j) (11)

In Equation (11), if  bik is missing,   exp ( − g sk bik − xkj j) = 0.

This modification allows the algorithm to ‘ignore’ a missing

feature when calculating. However, a reduced number of features

will increase the diversity density based on the analysis of

monotonicity. We modified Equations (2) and (3) to solve this

problem:

Pr (x = t   j   b+i ) =  1 − exp ( − Pr (x = t   j   b+i )) (12)
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Pr (x = t   j   b−i ) = exp ( − Pr (x = t   j   b−i )) (13)

In Equations (12) and (13), we changed the monotonicity by

removing the minuend Equations ‘1’ in the production term and

added Euler’s number as the base for scaling an excessively large

negative number to the range (0, 1) after a practical test.
2.5 Model setup

Since the goal of WDD is to find a point to maximize the

diversity density, we used a deep learning framework for

implementation. We used the Adam optimizer to solve the

optimal problem, and the loss function of the three algorithms is

shown in Equation (14):

loss =   − log(
Y

i Pr (x = t     b+i )
Y

i Pr (x = t  
��� ���   b−i )) (14)
2.6 Model inference

After training, we obtained the optimal position xtarget from the

dataset, which optimized Equation (1). Thus, all the samples could

be classified by calculating the maximum diversity density from its

instances:

DDi = exp ( − Dist(bi, x)) (15)

Using Equation (15) calculated diversity density, a sample could

be assigned a label by setting a threshold. In this work, we used the

method of analysing the ROC curve from the training set. First, we

calculated all the diversity density values of the samples in the

training dataset. Then, we calculated the false positive rate (FPR)

and true positive rate (TPR), also called recall, under several

different cut-off points and selected the best cut-off as the

threshold when TPR-FPR reached its maximum The details are

given in Equations (16) - (18):

threshold  = argmax
cutoff

(TPR − FPR)      (16)

TPR =  
TP 

(TP  +  FN)
  (17)

FPR =  
FP 

(TN   +  FP)
(18)

Similar to many other works, we employed the area under the

receiver operating characteristic curve (AUC), accuracy (ACC),

precision, recall, and F1 score as the metrics, calculated as

Equations (19) - (22):

ACC =  
TP + TN  

(TP + TN   +  FP + FN)
(19)

Precision =  
TP 

(TP  +  FP)
(20)
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Recall =  
TP 

(TP  +  FN)
(21)

F1 score =  2 ∗
Precision ∗Recall
Precision + Recall

(22)

where TP, TN, FP and FN represent the number of

true positives, true negatives, false positives and false

negatives, respectively.

Additional details about the method, such as parameter tuning

and training process, are provided in Supplemental information.
2.7 Basic workflow

In this study, we optimized the WDD model using gradient

descent to identify an optimal point that is close to the distribution

center of data from T2DM patients and far from the distribution

center of data from normal individuals (Figure 1C). The Dist

function is engineered to directly reflect the T2DM risk score,

enabling the model to predict an input sample as T2DM if its risk

score exceeds the risk threshold which is learned by the model.

Through the analysis of learnable parameters within the Dist

function, we have identified key features. Utilizing this

characteristic, we have been able to uncover significant features

across different age and gender groups, enhancing our

understanding of T2DM risk factors.
3 Result

In the results section, we first introduce the performance scores

of the model, confirming the consistency of its performance by

repeating the modeling process 1000 times. More importantly, our

discussion centers on the model’s transparency and interpretability,

aimed at extracting effective clinical information internally. This

includes the identification of key diagnostic indicators and the

interpretation of the associations between model parameters and

prediction result. These sections together demonstrate the model’s

transparency and potential clinical utility, contributing useful

perspectives for T2DM prediction and diagnosis.
3.1 Performance of the prediction model

To the above four datasets, we applied three weighted diversity

density (WDD)-based algorithms to construct diagnostic prediction

models. WDD-KNN refers to an algorithm using k-nearest

neighbor (KNN) for imputing missing values. The two MVT-

WDD algorithms denote missing value tolerant (MVT)

algorithms with penalty terms, where ‘DI’ and ‘BF’ represent two

different methods of penalization. A total of 12 models were

obtained. The models were evaluated by 10-fold cross-validation

and independent test with 1000 repetitions (Figure 2, cross-

validation set: independent test set = 8:2, the independent test
frontiersin.org
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dataset was consistent for each repetition, details in Supplementary

Note 1). The results are shown in Table 2, the best AUC achieved

0.9185 ( ± 0.0035) on the whole PEI dataset, which proves the

accuracy of the model.

From the Table 2, we could see that the three algorithms had their

own advantages on different sub-datasets. However, it was notable

that the WDD-KNN algorithm had a KNN imputation step that

the other 2 missing value adaptation algorithms did not have.

Generally, imputation is limited by the template dataset.

Large template datasets are often owned by a few large institutions

and are difficult to share for reasons such as ethical review. To their

advantage, the 2 missing value adaptation algorithms can skip this step

when preprocessing dataset, and the built model does not need a

template dataset for prediction, which will be beneficial in

practical situations.

After ensuring the reliability of our modeling results

through model scores, we delved deeper into the model’s internal

attributes and parameters in the following sections. This deeper

analysis allowed us to extract valuable information pertinent to

T2DM prediction, further validating the utility and interpretability of

our algorithms.
Frontiers in Endocrinology 07
3.2 Model scores provide auxiliary
information other than blood glucose

The first aspect of our model’s transparency is reflected in how

the distance function illustrates the model and feature contributions

to predict T2DM. In physical examinations, clinicians often use

blood glucose, sometimes with urine glucose as a reference, to

initially assess whether a person may have T2DM. For WDD, every

sample was given a risk score (Dist for each algorithm, see Method

details) by the models and classified according to a risk threshold.

We compared the risk stratification through blood glucose and the

risk scores (Dist) from our models (Figures 3A–C).

With the PEI dataset (Figures 3A–F), we saw that in the models

WDD-KNN, MVT-WDD-DI, and MVT-WDD-BF gave scores of

confirmed T2DM patients that clustered in the ranges of 0.5-0.75,

0.4-0.82, and 0.4-3, respectively, while the physical examination

population was clustered in the score ranges of 0.3-0.53, 0.1-0.5, and

0-1, respectively. All three models performed well in distinguishing

the two populations, with WDD-KNN working best. However, it

was difficult to completely distinguish the two groups if they were

separated only by the level of blood glucose (Figures 3A–C), and
TABLE 2 Performance of algorithms on each dataset: Mean (Standard) of 1000 repetitions.

10-fold cross-validation

PEI dataset

AUC ACC Precision Recall F1 score

WDD-KNN 0.9185 (0.0034) 0.8439 (0.0042) 0.8761 (0.0049) 0.8014 (0.0073) 0.8368 (0.0047)

MVT-WDD-DI 0.9130 (0.0088) 0.8404 (0.0103) 0.8726 (0.0106) 0.7973 (0.0130) 0.8329 (0.0111)

MVT-WDD-BF 0.8882 (0.0096) 0.8138 (0.0093) 0.8291 (0.0096) 0.7910 (0.0135) 0.8091 (0.0103)

BCA dataset

AUC ACC Precision Recall F1 score

WDD-KNN 0.8770 (0.0018) 0.7992 (0.0021) 0.8386 (0.0039) 0.7418 (0.0058) 0.7868 (0.0028)

MVT-WDD-DI 0.8530 (0.0045) 0.7763 (0.0044) 0.8097 (0.0062) 0.7233 (0.0093) 0.7635 (0.0054)

MVT-WDD-BF 0.8910 (0.0094) 0.8156 (0.0089) 0.8379 (0.0081) 0.7829 (0.0152) 0.8087 (0.0109)

Uri dataset

AUC ACC Precision Recall F1 score

WDD-KNN 0.8442 (0.0069) 0.7768 (0.0096) 0.7621 (0.0133) 0.8133 (0.0240) 0.7837 (0.0109)

MVT-WDD-DI 0.8985 (0.0074) 0.8580 (0.0096) 0.8463 (0.0109) 0.8763 (0.0126) 0.8604 (0.0101)

MVT-WDD-BF 0.6414 (0.0175) 0.6321 (0.0129) 0.6993 (0.0203) 0.4795 (0.0355) 0.5580 (0.0265)

BioChem dataset

AUC ACC Precision Recall F1 score

WDD-KNN 0.7360 (0.0016) 0.6766 (0.0021) 0.6900 (0.0040) 0.6432 (0.0092) 0.6651 (0.0039)

MVT-WDD-DI 0.7395 (0.0128) 0.6801 (0.0089) 0.7075 (0.0084) 0.6137 (0.0237) 0.6540 (0.0185)

MVT-WDD-BF 0.6127 (0.0212) 0.5987 (0.0136) 0.6172 (0.0258) 0.4924 (0.0430) 0.5389 (0.0376)

(Continued)
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many people with T2DM still had the same blood glucose levels as

normal people. Also, we analysed the risk scores on the three sub-

datasets in Supplementary Note 6.

To provide more information on the importance of the EHR

features to every patient, we also calculated the Distk score (see

Method details) for each feature between the patients and normal

people (Figures 3G–I; Supplementary Figure S3). As we can see, the

selected important features mostly had different scores by each

model. For example, in the model built on the PEI dataset using the

MVT-WDD-DI algorithm, the Distk scores of selected important

features (Figures 3H, 4) such as Bact, BLD, Baso, Baso-R, and MCV

were much higher than those of other features. T2DM patients and

normal people could be well distinguished by the Distk score of

these important features. The result indicates that our model assigns

higher significance to features with more pronounced differences,

identifying them as important and thus selecting them as effective

indicators for T2DM screening.

The results show that our model effectively differentiated T2DM

patients from healthy individuals in the PEI dataset, as shown in the

scatter density heat map. Visualized model scores underscored

performance differences, revealing potential for early T2DM

detection. Notably, normal blood glucose levels don’t rule out

T2DM, highlighting our model’s diagnostic value. Additionally,
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by analyzing the model’s distance function, we gained a deeper

understanding of the mechanism behind the model’s selection of

important features, enhancing our comprehension of the model.
3.3 The important indicators for T2DM
diagnosis selected from different models

After understanding the scoring mechanism of the model and

the mechanism for selecting important features, in this section and

Supplementary Notes 3 and 7, we identified crucial diagnostic

indicators for T2DM and analyzed the significance of the selected

indicators for T2DM combining clinical knowledge.

The feature’s significance is determined by its weight within the

models, identifying the indicators most associated with T2DM.

Important features were defined as those ranking in the top 25% by

weight across the 12 models. We visually represented this

distribution of relative feature weights with a histogram and the

specific details of these crucial features are detailed in Figure 4. We

employed the Mann-Whitney U test to evaluate the level of feature

differences between the T2DM and normal groups, finding that the

selected important features exhibited significant differences (P

value< 0.0001) (Supplementary Table S6). In addition, we
TABLE 2 Continued

10-fold cross-validation

Independent test

PEI dataset

AUC ACC Precision Recall F1 score

WDD-KNN 0.9276 (0.0089) 0.8554 (0.0112) 0.8888 (0.0142) 0.8128 (0.0198) 0.8489 (0.0125)

MVT-WDD-DI 0.9194 (0.0254) 0.8475 (0.0310) 0.8826 (0.0299) 0.8014 (0.0411) 0.8398 (0.0340)

MVT-WDD-BF 0.9071 (0.0214) 0.8296 (0.0235) 0.8429 (0.0280) 0.8110 (0.0298) 0.8263 (0.0243)

BCA dataset

AUC ACC Precision Recall F1 score

WDD-KNN 0.8870 (0.0057) 0.8106 (0.0072) 0.8469 (0.0098) 0.7551 (0.0200) 0.7982 (0.0099)

MVT-WDD-DI 0.8625 (0.0151) 0.7851 (0.0152) 0.8198 (0.0192) 0.7273 (0.0294) 0.7704 (0.0184)

MVT-WDD-BF 0.8988 (0.0326) 0.8226 (0.0301) 0.8467 (0.0309) 0.7850 (0.0482) 0.8140 (0.0362)

Uri dataset

AUC ACC Precision Recall F1 score

WDD-KNN 0.8224 (0.0207) 0.7569 (0.0252) 0.7621 (0.0426) 0.7406 (0.0893) 0.7463 (0.0359)

MVT-WDD-DI 0.8893 (0.0230) 0.8499 (0.0291) 0.8355 (0.0348) 0.8635 (0.0356) 0.8488 (0.0303)

MVT-WDD-BF 0.6304 (0.0581) 0.6306 (0.0396) 0.6863 (0.0649) 0.4670 (0.1243) 0.5433 (0.0891)

BioChem dataset

AUC ACC Precision Recall F1 score

WDD-KNN 0.7482 (0.0045) 0.6885 (0.0065) 0.6975 (0.0141) 0.6588 (0.0256) 0.6771 (0.0098)

MVT-WDD-DI 0.7464 (0.0456) 0.6862 (0.0300) 0.7098 (0.0255) 0.6186 (0.0841) 0.6573 (0.0684)

MVT-WDD-BF 0.6290 (0.0653) 0.6104 (0.0442) 0.6245 (0.0738) 0.5192 (0.1228) 0.5594 (0.1050)
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compared the important features selected by using the internal

weights of WDD with least absolute shrinkage and selection

operator (LASSO) regression and SHAP framework. The

important features showed certain consistency (Supplementary

Note 9, Supplementary Information Figures S14, S15).

When the three algorithms were applied each dataset, the

selected important features intersected. For example, on the PEI
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dataset, the indicators judged as important features by all three

models were BASO, BASO-R, and HCT, and the features given high

weights by two of the three models were HDL-C, MUCUS, BACT,

BLD, LYM-R, MCH, and MCV. In this dataset, the AUCs of all

three models were higher than 0.88, so these indicators were

selected as having great significance for T2DM prediction

(Figure 4). On the BCA dataset, the important features selected
A B

D E F

G

I

H

C

FIGURE 3

Model interpretability reflected by model scores. (A-C) Scatter-density heat maps of model score versus blood glucose of 3 models trained by whole
PEI dataset. (D-F) Histograms of model score distribution of 3 models using whole PEI dataset. (G-I) The raincloud plots of distance scores (Distk) of
the three models using the whole PEI dataset.
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by the three algorithms are the same, which further proves the

potential diagnostic value of these indicators. Moreover, we

analysed the same and different important features extracted by

the three algorithms, details are shown in Supplementary Note 7.

We conducted a literature review to integrate our clinical

expertise with published research findings and investigate the

clinical correlations between these important features and T2DM.

Our analysis revealed that most of these important features are

shown to have direct or indirect associations with T2DM. For

example, urinary tract infections are known to be correlated with

diabetes (28) and some indicators associated with urinary tract

infections, such as haematuria and bacteria in urine, have been

selected as important biomarkers. The details are collated in the

Supplementary Note 3.
3.4 Multi-model analysis reveals
characteristics among different age and
sex groups

Leveraging our model’s transparency and feature extraction

capabilities, we conducted group modeling for populations with

varying demographic characteristics to unearth the diagnostic value

of indicators across different groups. To mitigate the potential

model bias introduced by data imbalance, we ensured basic

balance in the sample volume of each age and sex category for

both T2DM patients and normal individuals, as illustrated in

Supplementary Figure S5 and Supplementary Table S2.
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In most cases, age and sex will be correlated with T2DM

incidence, which indicates that T2DM in different age and sex

groups might have different characteristics. To further explore the

importance of each feature for T2DM prediction in different age

and sex groups, we tried three additional ways to divide the PEI

Dataset: i. by age; ii. by sex; and iii. by age and sex. The number and

proportion of people in different age and sex groups are shown in

Supplementary Figure S6 and Supplementary Table S2. After the

division of the datasets, 26 sub-datasets (8 ages + 2 sexes + 8 ages × 2

sexes) were generated, and 78 additional models (26 datasets × 3

models) were built. The performance of each model is shown in

Figures 5A, B. The WDD-KNN and MVT-WDD-DI algorithms

performed well on each group of datasets, with AUC values mostly

above 0.9, while the performance of MVT-WDD-BF was not as

good. Therefore, in the subsequent analysis, only the weights of the

first two algorithms were taken into consideration.

The results showed that the importance of the clinical indicators

varied in different age and sex groups (Figure 5C; Supplementary

Figure S6). We not only integrated the results of these models using

the WDD-KNN and MVT-WDD-DI algorithms but also analysed

the distribution of their measured values (Supplementary Figures

S7-13) to explain the various importance of these indicators for

T2DM diagnosis in the different groups.

The significance of glomerular filtration rate (GFR) in T2DM

diagnosis diminishes with age, showing greater importance in the 5-

49 age group (Figures 5C, 6B). Elevated GFR in T2DM patients aged

5-49 distinguishes them from normal groups, particularly in the 5-

39 (Figure 6). This aligns with studies linking diabetes and GFR,
FIGURE 4

Important feature weights from different algorithms and datasets. Heat map based on the normalized feature weight values. The summation of a
column (an algorithm) is 1. Darker colors represent larger weight values. The top 25% features in every column are framed by black rectangle.
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where early diabetic kidney disease (DKD) phases show increased

GFR due to various changes in ultrastructural, vascular, and tubular

factors (29). As renal health declines, GFR decreases (29, 30). Our

findings suggest that GFR’s diagnostic value for T2DM varies across

ages, particularly useful for early screening in younger populations,

extending beyond its role in DKD.

Triglycerides (TG) showed greater significance in the 5-39 age

group compared to others (Figure 5C; Supplementary Figure S6),

with notable differences in TG distribution between T2DM patients

and normal individuals in this age range (Supplementary Figure

S7). This variation is attributed to age-related dietary and metabolic

differences and a genetic link identified by Saxena, R. et al. (31) High

TG levels in T2DM patients are associated with increased

cardiovascular risks (32) and metabolic changes (33). Our model

emphasizes TG’s importance in T2DM, especially in younger age

groups, aligning with current research trends.

Haemoglobin (HGB) was more important in the 55- to 95-year-

old group (Supplementary Figures S5C, S6A). In T2DM patients, as
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age increased, their lower HGB compared to that in normal people

became more pronounced (Supplementary Figure S12). Based on

our knowledge and experience, anaemia is diagnosed by HGB

decline, so the association between anaemia and T2DM might be

the use of metformin. There are reports supporting that long-term

metformin use in T2DM patients can cause anaemia (34, 35), and

our EHR included patients who used metformin since metformin

has been a commonly prescribed drug for T2DM patients for

decades. Similarly, in diabetic patients with chronic kidney

disease (CKD), some factors cause iron-deficiency anaemia, such

as low intestinal absorption and gastrointestinal bleeding (36). In

addition, erythropoietin deficiency and hyporesponsiveness can

lead to anaemia in diabetic patients with CKD (36–38). Nephrotic

syndrome, characterized by oedema, hypoalbuminaemia,

dyslipidaemia, and increased transferrin catabolism, contributes

to anaemia due to iron and erythropoietin deficiency (36, 39, 40).

Long-term administration of angiotensin-converting enzyme

(ACE) inhibitors and angiotensin receptor antagonists in diabetic
A B

C

FIGURE 5

Model performance of 10-fold cross validation and feature importance in different age and sex groups. (A) The AUC values of the three algorithms
when modeling male, female and both sexes of different ages. Error bars were generated by 10-fold cross validation (error bar represents standard
deviation). (B) The AUC values of the three algorithms when modeling male and female of all ages. (C) Heat map of normalized feature weight
values extracted from the model for male and female of different ages, ‘M’ represents male, ‘F’ represents female.
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patients also leads to a reversible decrease in HGB through a direct

blockade of the proerythropoietic effects of angiotensin II on red

cell precursors, degradation of physiological inhibitors of

haematopoiesis, and suppression of IGF-I (36, 41). Thus, based

on many studies and reports, taking HGB as an important feature

will be a useful indicator for older patients with longer duration of

diabetes, so HGB was selected after modelling the EHR data. In

other words, HGB decline might be a marker of T2DM or T2DM-

correlated disease, but it might be interfered with by some

confounding factors, so its use for early diagnosis might be

limited. This limitation is caused by the lack of medication

information in our EHR data. Despite our meticulous selection of

the patient’s first record within the hospital system, we cannot

guarantee that they have not undergone therapeutic interventions at

other institutions. To address this shortcoming, cohort studies with

long-term follow-up are needed.

The Neutrophils (NEU), neutrophil rate (NEU-R), lymphocyte

rate (LYM), and lymphocyte rate (LYM-R) have also been observed

to correlate with age or sex, as discussed in Supplementary Note 8.

The result of this section demonstrates that through group

modeling and the model’s feature extraction capability, we

identified several age and sex-related biomarkers for T2DM

prediction. Integrating insights from the results, it’s evident that

our model can glean valuable auxiliary diagnostic information from

internal parameters like feature weights and distance functions.

This effectively showcases the algorithm’s transparency throughout

the modeling process, highlighting its capacity to provide

interpretable insights crucial for clinical application.
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4 Discussion

Here, we developed WDD framework-based models for the

prediction of T2DM using physical examination features in EHRs.

Using the model parameters, the importance of the features can be

measured by the distance between the sample and optimal point.

Based on our investigation, the top 25% of indicators were found to

be directly or indirectly related to T2DM, offering potential value as

diagnostic markers for T2DM.

In our analysis, a variety of white blood cells—neutrophils,

basophils, eosinophils, and lymphocytes—emerged as significant

features. This aligns with existing literature, which indicates that

T2DM patients experiencing concurrent infections may exhibit

inflammation, leading to an altered white blood cell count (42, 43).

While current research posits that the count or ratio levels of these

white cells alone do not suffice as diabetes risk factors, a multifaceted

approach is often necessary. For instance, the neutrophil-lymphocyte

ratio is recognized as an independent predictor of T2DM (44). The

inclusion of these white blood cells as important indicators by our

model is consistent with current research insights, further affirming

the potential of combining these white blood cell levels for aiding

T2DM diagnosis. Moreover, this demonstrates our model’s

proficiency in capturing the complex interrelationships among

indicators, highlighting its diagnostic relevance.

Indicators related to red blood cells and platelets, such as mean

platelet volume, plateletcrit, hematocrit, coefficient of variation of red

cell distribution width, mean corpuscular volume, and mean

corpuscular haemoglobin, were also identified as significant by our
A

B

C

FIGURE 6

Distribution of GFR values in different groups. (A) Different age and sex groups. (B) Different age groups. (C) Different sex groups. All the GFR values
were from origin EHRs.
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model. In T2DM patients experiencing insulin resistance and

metabolic syndrome, the adverse metabolic conditions—including

hyperglycemia, hypertension, dyslipidemia, inflammation, and

impaired fibrinolysis—elevate the risk of atherosclerosis and lead to

microvascular complications like diabetic retinopathy, nephropathy,

and neuropathy (45, 46). Additionally, atherosclerosis, which may

result from increased platelet adhesion and hypercoagulability in

T2DM patients, is a key pathological mechanism behind

macrovascular complications (46). These vascular complications

can cause abnormalities in red blood cells and platelets. Therefore,

the aforementioned indicators are linked to the common

microvascular and macrovascular complications in diabetics,

suggesting their potential as diagnostic markers for T2DM.

Urinalysis-related indicators, such as haematuria, leukocytes in

urine, mucinous filaments, bacteria in urine, epithelial cells in urine,

urine pH, and specific gravity, have been selected as significant

markers by our model. These indicators are primarily associated

with conditions prevalent among individuals with diabetes, such as

urinary tract infections (28), which are notably common and can

lead to haematuria or abnormal quantities of cells and bacteria in

the urine. Moreover, the inflammation caused by these infections

may result in an abnormal number of white blood cells, further

validating the model’s ability to discern potential relationships

between indicators. The combination of increased net acid

excretion and reduced use of ammonia buffers in individuals with

diabetes leads to lower urine pH (47, 48). A lower urine pH

heightens the risk of nephrolithiasis, including uric acid stones

(47, 49). Diabetic nephropathy may manifest through abnormal

urine specific gravity, where a lower-than-normal urinary specific

gravity, along with increased polyuria, signals diabetes insipidus

(50). These findings underscore the interconnectivity of urinary

markers with diabetes-related infections and complications,

emphasizing their potential diagnostic relevance.

While individual physical examination indicators often cannot

serve as standalone diagnostic criteria for T2DM, our model

successfully integrates multiple indicators to construct a

diagnostic model for T2DM. Leveraging the model’s high

interpretability, we can determine the importance of each

indicator in the diagnosis, enhancing its capability to aid in the

auxiliary diagnosis of T2DM. This approach not only harnesses the

collective diagnostic potential of various indicators but also

provides valuable insights into their diagnostic significance,

offering a refined perspective on T2DM diagnosis.

Besides, based on our clinical knowledge, the diagnosis of T2DM

often correlates with demographic factors. Therefore, we segmented

the data by age and gender, utilizing the feature weights provided by

our model. Through this process, combined with a literature search,

we identified several biomarkers related to age or sex, such as

glomerular filtration rate, triglycerides, and haemoglobin. This

further validates our model’s efficacy in extracting medically

valuable information and illustrates that different indicators may

require attention when diagnosing diabetes in patients of varying ages

and sexes. This approach not only enriches the diagnostic model with

nuanced clinical insights but also underscores the importance of

personalized medicine in the management and treatment of T2DM.
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The results show that our algorithm boasts a high degree of

internal interpretability, enabling the extraction of key indicators

for T2DM diagnosis without the need for third-party tools.

Furthermore, by analyzing the model’s parameters (Figure 3), we

can comprehend the mechanism behind the selection of important

indicators, thereby providing reliable auxiliary diagnostic

information. Additionally, our model possesses a distinct

advantage as mentioned in the Methods section: benefiting from

the transparency of WDD, its internal distance function is easily

modifiable. Instead of imputing missing values, our approach

involves ‘tolerating’ them by incorporating penalty terms into two

of the algorithms. This strategy diminishes the necessity for

exhaustive searches for high-quality template data during the

imputation process, proving WDD to be a highly transparent and

interpretable auxiliary diagnostic algorithm.

This work suggests that machine learning could extend beyond

predictive accuracy to include interpretative insights, which might

be useful in clinical settings. Such insights have the potential to aid

clinicians in understanding the basis of diagnostic suggestions given

by the model. This could lead to a more cooperative relationship

between machine learning and healthcare professionals. However,

the integration of these technologies in clinical practice requires

careful consideration and ongoing evaluation.
5 Conclusion

Overall, we developed three WDD-based interpretability

algorithms and built T2DM diagnostic models, identifying several

relevant diagnostic indicators with potential utility in assisting

T2DM diagnosis. However, it is crucial to acknowledge that the

mechanisms of interaction among these indicators, as well as their

causal connections with T2DM, cannot be directly deduced from

the current model information. In our future work, leveraging the

transparency of WDD, we plan to incorporate knowledge of causal

probabilities to enhance our model further, uncover the complex

relationships between indicators and T2DM.
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