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Background: Data-driven digital learning could improve the diagnostic

performance of novice students for thyroid nodules.

Objective: To evaluate the efficacy of digital self-learning and artificial intelligence-

based computer-assisted diagnosis (AI-CAD) for inexperienced readers to diagnose

thyroid nodules.

Methods: Between February and August 2023, a total of 26 readers (less than 1 year

of experience in thyroid US from various departments) from 6 hospitals participated

in this study. Readers completed an online learning session comprising 3,000 thyroid

nodules annotated as benign ormalignant independently. Theywere asked to assess

a test set consisting of 120 thyroid nodules with known surgical pathology before

and after a learning session. Then, they referred to AI-CAD and made their final

decisions on the thyroid nodules. Diagnostic performances before and after self-

training and with AI-CAD assistance were evaluated and compared between

radiology residents and readers from different specialties.

Results: AUC (area under the receiver operating characteristic curve) improved after

the self-learning session, and it improved further after radiologists referred to AI-

CAD (0.679 vs 0.713 vs 0.758, p<0.05). Although the 18 radiology residents showed

improved AUC (0.7 to 0.743, p=0.016) and accuracy (69.9% to 74.2%, p=0.013) after

self-learning, the readers from other departments did not. With AI-CAD assistance,

sensitivity (radiology 70.3% to 74.9%, others 67.9% to 82.3%, all p<0.05) and accuracy

(radiology 74.2% to 77.1%, others 64.4% to 72.8%, all p <0.05) improved in all readers.
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Abbreviations: AI-CAD, artificial intelligence-bas

diagnosis; K-TIRADS, Korean Thyroid Imaging Repor

AUC, area under the receiver operating characteristic

correlation coefficients.
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Conclusion:While AI-CAD assistance helps improve the diagnostic performance

of all inexperienced readers for thyroid nodules, self-learning was only effective

for radiology residents with more background knowledge of ultrasonography.

Clinical Impact: Online self-learning, along with AI-CAD assistance, can

effectively enhance the diagnostic performance of radiology residents in

thyroid cancer.
KEYWORDS

thyroid cancer, artificial intelligence, ultrasound, learning, digital learning
Highlights
• Key-finding: Online self-learning with 3,000 cases

improved the diagnostic performance of 26 inexperienced

readers (0.679 vs 0.713, p=0.027). Results from an artificial

intelligence-based computer-assisted diagnosis program

improved it even more (0.713 vs 0.758, p=0.001)

• Importance: Online self-learning can improve the

diagnostic performance of inexperienced readers from

variable backgrounds, and performance can be further

enhanced with artificial intelligence-based computer-

assisted diagnosis software.
Introduction

The primary tool for diagnosing thyroid cancer is ultrasonography

(US) (1–5). While US exhibits a high diagnostic accuracy, it is

inherently operator-dependent and this necessitates appropriate

training of related personnel to maintain the quality of examinations.

Traditionally, US training isconducted through textbooks, lectures, or

one-on-one education sessions between an educator and trainee.While

the latter method has been effective, it also has notable disadvantages,

such as putting a significant burden on educators and resources and an

inability to guarantee a consistent quality of education (6).

Considerable experience is required to make accurate diagnoses

with US, and the skill of examiners is known to correlate with the

number of scans they have performed (7, 8). Thus, trainees need

sufficient practice before performing examinations on people; not only

is foundational knowledge of scan techniques or anatomy required but

also preparation for actual “diagnosis” or “decision-making” is

required. The diagnostic performance of inexperienced readers is
ed computer-assisted

ting and Data System;

curve; ICC, intraclass
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known to improve through one-on-one training or structured

training in the radiology department (9–11). Considering the

pattern-based diagnosis of thyroid nodules in US, simple training

with a large number of image examples combined with answers can be

helpful when learning how to differentiate benign and malignant

thyroid nodules. In a past study, deep learning software achieved

similar diagnostic performance to expert radiologists based on 13,560

images (12), and in another, meaningful improvements in diagnostic

performance were also observed in college students who had no

previous experience in thyroid US, who went through learning

sessions using a large training input of image-pathology sets (13).

With the development and commercialization of artificial

intelligence-based computer-assisted diagnosis (AI-CAD) in thyroid

imaging, potential improvements have been reported in diagnostic

performance, particularly among readers with relatively limited

experience (14–16). Thyroid Imaging Reporting and Data System

(TI-RADS) is commonly used in the evaluation of thyroid nodules,

and one study showed that an AI algorithm trained on TI-RADS

characteristics outperformed another trained solely on distinguishing

benign from malignant nodules (17). Furthermore, another study

reported that an AI-proposed new TI-RADS criteria demonstrated

superior specificity compared to the established American College of

Radiology (ACR) TI-RADS (18). This underscores the potential of AI

to enhance diagnostic protocols by leveraging structured reporting

systems like TI-RADS. These advancements in AI-CAD not only

support diagnostic precision but also provide crucial feedback during

the learning phase, directly assisting beginner radiologists. We

hypothesize that AI assistance can further aid beginner radiologists

in diagnosing thyroid nodules after they undergo a self-learning

process, ensuring more consistent and reliable diagnostic outcomes.

In this study, we investigated the value of self-learning and AI-

CAD assistance in inexperienced readers.
Materials and methods

This study was approved by the Institutional Review Board of

Severance Hospital and informed consent was obtained from all

participants (No. 4–2022-1562).
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Study design

Between February and August 2023, we recruited 26

inexperienced readers (less than 1 year of experience in thyroid

US) from 6 hospitals. These participants were medical residents or

fellows specializing in various departments including radiology,

internal medicine, surgery, and family medicine. At first, readers

were asked to watch a 5-minute online lecture (available via https://

youtu.be/pnF5vUaIovI, Korean only) on K-TIRADS (Korean

Thyroid Imaging Reporting and Data System classification (19) and

perform a pretest consisting of 120 US images to make binary

decisions (benign vs malignant) and assess K-TIRADS categories.

Next, readers learned with a training set of 3,000 US images using an

online platform, designed to consecutively display single nodule

images, each accompanied by a binary diagnosis of benign or

malignant. The platform allowed readers to adjust the playback

speed according to their preferences. After completing the learning

session, readers immediately repeated the same test as the pretest.

Lastly, they underwent the test again, this time with AI assistance,

using the SERA (SEveRance Artificial intelligence) program described

in the following section. They were asked to complete training and

testing within two weeks, and while the pace of online learning was

adjusted to each individual, the readers had to record the time taken

to study all 3,000 cases and the time spent on testing (Table 1).
Learning and test sets

We selected 3,000 images from 13,560 image sets utilized in a

previous study (13). Images that demonstrated the most significant

mean accuracy enhancement compared to earlier data points were

selected, and these images made up Set 3 in the preceding study

(13). The mean age of patients from whom the US images were

derived for the learning set was 48.2 ± 13.8 years, and 81% of the

patients were women. The mean size of the nodules was 20.0 ± 11.0

mm, with 49% being benign and 51% malignant, the latter of which

98.8% were identified as papillary thyroid carcinoma.

The test set, which was not included in the learning set, included

120 surgically confirmed thyroid nodules. The sample size for the

test set was determined through estimations of the effect size, non-

centrality parameters, denominator degrees of freedom, and power

calculations. The mean age of patients from whom the US images
Frontiers in Endocrinology 03
were obtained for the test set was 43.7 ± 12.4 years, and 78.3% of the

patients were women. The mean size of the nodules was 20.1 ± 9.4

mm. In terms of pathology, 48% of the nodules were benign and

52% were malignant, with a vast majority (93.5%) of the malignant

nodules being classified as papillary thyroid carcinoma.

The standard reference of the test set for K-TIRADS assessment

was consensus among the three experienced readers (5, 13, 23 years

of experience in thyroid imaging). For reference, their intraclass

correlation coefficient (ICC) was 0.908 (95% CI 0.876–0.933).
AI-CAD application

SERA is an online deep learning-based computer-aided

diagnosis program trained with 13,560 US images of thyroid

nodules that were surgically confirmed or cytologically proven as

benign (category II) or malignant (category VI) on the Bethesda

system and larger than 1cm in size (12). When users upload an US

image cropped around the focal thyroid lesion according to user

preference, SERA provides continuous numbers between 0 and 100,

which correspond to the probability of the given test image being

malignant (Figure 1). Since SERA presents results that are

dependent on how images are cropped and which images are

uploaded, the SERA scores are impacted by the initial judgments

of users. In prior research, SERA showed comparable diagnostic

performance to expert radiologists in an external validation set for

diagnosing thyroid nodules (12).
Statistical analysis

Sensitivity, specificity, accuracy and area under the receiver

operating characteristic curve (AUC) were used to assess the

diagnostic performance of each inexperienced reader. Interobserver

agreement was quantified by the ICC. A two-sample t-test was used

to detect differences between groups, specifically readers of radiology

against readers of other specialties. The paired t-test was used to

assess changes in diagnostic performance within the same group

throughout the training program.

All statistical analyses were performed using SPSS (version 26.0)

and MedCalc 22.009 (MedCalc Software, Oostende, Belgium). A p-

value of 0.05 or less was considered statistically significant.
TABLE 1 General information on the 26 inexperienced readers from 6 hospitals.

Total (%) Radiology department
(n=18)

Other departments
(n=8)

p-value

Department
Radiology
Internal medicine
Surgery
Family medicine

18 (69.2)
2 (7.7)
2 (7.7)
4 (15.4)

Duration of previous thyroid US (month, SD) 2.3 ± 3.0 2.4 ± 2.6 2.4 ± 4.1 0.969

Time required for self-learning (min, SD) 222 ± 120 247 ± 140 165 ± 42 0.122

Time required for test with AI assistance (min, SD) 83 ± 59 83 ± 68 83 ± 41 0.990
Min, minute; SD, standard deviation; AI, artificial intelligence.
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Results

Among 26 participants, 18 readers were radiology residents

(1st and 2nd year), and the other 8 were 4 fellows in endocrinology

and surgery and 4 residents in family medicine (3rd year).

All 26 readers had none to little experience with thyroid US

(range 0–10 months). The learning process for the 3,000 sets

took an average of 222 minutes, and the test for the 120 sets

utilizing AI assistance was completed in an average of 85 minutes

(Table 1). There was no statistical difference in the duration of

exposure between radiology residents and readers of other

specialties (Table 1).
Frontiers in Endocrinology 04
Changes in diagnostic performance after
self-learning

After self-learning with 3,000 cases, 26 readers improved

accuracy (68.0% vs 71.2%, p=0.037) and AUC (0.679 vs 0.713,

p=0.027) compared to their pretest performance (Table 2).

We separated 18 readers of radiology residency from the

remaining 8 readers, and the pretest results of the radiology

residents showed higher specificity (73.8% vs 47.4%, p=0.04)

(Table 3). After self-learning, the radiology residents improved

accuracy (69.9% to 74.2%, p=0.013) and AUC (0.7 to 0.743,

p=0.016), but readers of other departments did not. Also,
TABLE 2 Changes in the mean diagnostic performance of 26 readers during the learning program.

Pretest Posttest* P-value† AI-assistance P-value‡

Sensitivity (%) 70.2 ± 15.7 69.6 ± 13.4 0.857 77.2 ± 8.7 0.002

Specificity (%) 65.7 ± 24.7 73.1 ± 20.0 0.126 74.3 ± 18.0 0.584

Accuracy (%) 68.0 ± 6.6 71.2 ± 6.4 0.037 75.8 ± 5.1 0.001

AUC 0.679 ± 0.07 0.713 ± 0.07 0.027 0.758 ± 0.06 0.001

ICC 0.575 ± 0.12 0.601 ± 0.13 0.104 0.590 ± 0.12 0.608
AI, artificial intelligence.
AUC, area under the receiver operating characteristic curve; ICC, intraclass correlation coefficients.
* after self-learning.
† Comparison between pretest and posttest.
‡ Comparison between posttest and test with AI assistance.
FIGURE 1

Image of the working process of the SERA program. When an US image is uploaded and cropped by the user, SERA presents the binary result
(benign or malignant) with a malignant probability score. SERA, SEveRance Artificial intelligence program.
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radiology residents showed better accuracy (74.2% vs 64.4%,

p<0.001) and AUC (0.743 vs 0.647, p<0.001) than readers from

other departments (Table 3, Figure 2).
Changes in diagnostic performance with
AI assistance

For all readers, diagnostic performance improved more with AI

assistance compared to posttest; sensitivity (69.6% vs 77.2%,

p=0.002), accuracy (71.2% vs 75.8%, p=0.001) and AUC (0.713 vs

0.758, p=0.001) all improved (Table 2). In the radiology

group, sensitivity increased from 70.3% to 74.9% (p=0.023), and

accuracy from 74.2% to 77.1% (p=0.046). In the other departments

group, sensitivity increased from 67.9% to 82.3% (p=0.024),

accuracy from 62.4% to 72.8% (p=0.007), and AUC from 0.647

to 0.725 (p=0.006). Final sensitivity, specificity, accuracy and

AUC were not statistically different between the two groups

(Table 3, Figure 2).
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Changes in K-TIRADS assessment

When we calculated the ICC for K-TIRADS assessment in

consensus with the three staff radiologists, the overall ICC for K-

TIRADS assessment did not significantly change during self-learning

(0.575 vs 0.601). In the subgroup analysis, the ICC of radiology

residents was higher than the other department readers in the pretest

(0.615 vs 0.485, p=0.002). However, the ICC of readers from other

departments increased after self-learning, The ICC showed no

statistical difference between the two groups after self-learning (0.621

vs 0.557, p=0.203) (Table 3). The ICC value for each reader before and

after self-learning is shown in Supplementary Table 1.
Discussion

In this study, we investigated the effectiveness of online-based

self-learning for diagnosing thyroid cancer in 26 inexperienced

readers from six different hospitals from diverse specialties.
TABLE 3 Changes in the mean diagnostic performance of 26 readers during the learning program compared between radiology residents and readers
of other specialties.

Pretest Posttest* P-value† AI-assistance P-value‡

Sensitivity (%)

Radiology 66.1 ± 14.4 70.3 ± 9.1 0.125 74.9 ± 7.8 0.023

Other 79.2 ± 18.3 67.9 ± 20.9 0.145 82.3 ± 9.0 0.024

P-value§ 0.067 0.763 0.069

Specificity (%)

Radiology 73.9 ± 18.3 78.3 ± 14.4 0.323 79.5 ± 13.4 0.637

Other 47.4 ± 28.6 61.4 ± 26.5 0.273 62.7 ± 22.4 0.795

P-value§ 0.04 0.129 0.08

Accuracy (%)

Radiology 69.9 ± 5.4 74.2 ± 4.9 0.013 77.1 ± 3.9 0.046

Other 63.9 ± 7.4 64.4 ± 3.7 0.862 72.8 ± 6.5 0.007

P-value§ 0.066 <0.001 0.115

AUC

Radiology 0.7 ± 0.06 0.743 ± 0.51 0.016 0.772 ± 0.04 0.053

Other 0.633 ± 0.08 0.647 ± 0.38 0.671 0.725 ± 0.07 0.006

P-value§ 0.059 <0.001 0.111

ICC

Radiology 0.615 ± 0.11 0.621 ± 0.14 0.771

Other 0.485 ± 0.07 0.557 ± 0.1 0.008

P-value§ 0.002 0.203
AI, artificial intelligence.
AUC, area under the receiver operating characteristic curve; ICC, intraclass correlation coefficients.
* after self-learning.
† Comparison between pretest vs. posttest.
‡ Comparison between posttest vs. with AI assistance.
§ Comparison between residents in radiology vs. readers of other specialties.
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Furthermore, we examined the impact of AI assistance on their

diagnostic performance for thyroid nodules. After training with a set

of 3,000 images, both AUC and accuracy improved for all readers on

average, and AI assistance further enhanced these metrics.

Previously, a similar method of self-learning was proposed with

13,560 images being learned by six college freshmen (13). The six

freshmen also showed improved sensitivity, specificity, accuracy,

and AUC. However, it took an average of 30 hours for these

freshmen to learn with 13,560 images (13), and viewing 13,560

images at a specific learning location for this amount of time poses

considerable challenges in real life. In this study, we provided 3,000

images and all training was executed via an online platform,

enabling participants to learn in their personal space at their

convenience and record their results subsequently. In our study,

we trained individuals with little to no experience in thyroid US but

found that those more likely to benefit from training were radiology

residents, family medicine residents, endocrinology fellows, and

surgery fellows. On average, our participants took a mean of 222

minutes to learn from the 3,000 images, and this training led to

increase in accuracy and AUC.

When we performed a subgroup analysis according to the

medical department, the benefit of digital self-learning was only

significant in radiology residents. Although there was no statistical

difference in the recorded duration of exposure in the learning

session between the radiology and other department groups,

radiology residents are continuously exposed to images and cases

through lectures and conferences during their training. This aspect

of learning is likely to differentiate them from readers from other

medical specialties. For groups less familiar or exposed to US

images or radiological diagnostics, self-learning with 3,000 images

may simply not be enough to achieve significant increase in
Frontiers in Endocrinology 06
diagnostic accuracy. Given the variation in outcomes across

different specialties, incorporating detailed explanations for

correct or incorrect answers during the self-learning phase could

potentially enhance understanding and retention, particularly for

those less familiar with ultrasound imaging. This method could

mirror more interactive learning approaches found in question

banks, which have been shown to improve diagnostic skills by

reinforcing learning points through immediate feedback.

After the self-learning process, the final test performance with

AI-CAD assistance showed additional increases in sensitivity, AUC,

and accuracy. Previous research has well-documented the increased

advantage that AI-CAD offers to beginners in US (12, 20–24). AI-

CAD appears to supplement self-learning by offering direct

assistance on specific cases, rather than just amplifying the

learning effect. Unlike digital self-learning, AI-CAD assistance

was effective for all readers, regardless of whether they were from

the radiology department or others.

Additionally, as K-TIRADS is predominantly used for image

interpretation in Korea, we also sought to ascertain whether the self-

learning program had an impact on K-TIRADS assessment.

Although the overall ICC for K-TIRADS assessment did not

improve with self-learning, the ICC of readers from other

specialties increased to the ICC of radiology residents. While such

categorical assessments are known to have high interobserver

variability (25), if we take into consideration that our standard

reference group of experienced readers had an ICC of 0.908, we can

assume that K-TIRADS assessments by inexperienced readers need

further calibration. The challenges of these assessments appear hard

to overcome with image-diagnosis set training.

Our study was conducted entirely on an online platform,

enabling participants to learn at their own pace and schedule.
A B

D E

C

FIGURE 2

Mean diagnostic performance of readers during the learning program. (A) sensitivity, (B) specificity, (C) accuracy, (D) AUC and (E) ICC with 95%
confidence intervals. The pretest was performed before self-learning and the posttest was performed after self-learning. AI, artificial intelligence;
AUC, area under the receiver operating characteristic, ICC, intraclass correlation coefficients.
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This approach facilitated the recruitment of participants from

hospitals located in diverse regions. One major advantage of

online learning is its ability to reduce the burden on instructors,

offer flexibility in terms of time and location, and provide consistent

education to a broad audience (26). The proliferation of online

learning, especially post-COVID, means that learners today

have a strong propensity for web- and social media-based

curricula (27, 28). However, US education isn’t just about gaining

knowledge; it encompasses the development of psychomotor skills,

visual perception for image acquisition, interpretation, and

integration into medical decision-making (29). While our online

self-learning can address some of these aspects, we anticipate it

being particularly effective as a preparatory step to enhance

diagnostic performance and boost confidence before trainees

handle real clinical situations.

Similarly, AI-based diagnostic augmentation has shown

comparable trends in improving diagnostic performance across

other medical fields such as dermatology, cardiology, and

oncology, where it enhances accuracy and aids less experienced

practitioners. The success of these applications suggests that the

learning methods employed in our study could potentially be

adapted to these fields. In line with expanding our understanding

of AI’s utility in medical training, further research could involve

testing readers of different experience levels, including senior

radiology residents, fellows, and junior faculty. Such studies

would help ascertain if even more senior readers can benefit from

AI, potentially broadening the scope of AI tools in supporting

ongoing professional development and decision-making processes

across various stages of a medical career.

There are some limitations to our study. First, since our

approach was entirely based on online learning and testing, we

had limited control over the learning process. Although we

restricted the learning period to two weeks, outcomes might differ

between participants who studied intensively and those who learned

sporadically. Second, we assessed the overall effects on 26 learners

from various medical departments, but the standard deviation of

performance due to their different specialty backgrounds was

substantial, especially for readers from other specialties than

radiology. This variability makes it challenging to achieve

statistical significance. Third, we evaluated performance based on

binary diagnoses, which may seem overly simplistic. Finally,

although we provided a set of 3000 cases for the one-time self-

learning session, repetitive training might change the results.

In conclusion, In conclusion, our study demonstrated that while

AI-CAD assists all inexperienced readers in improving diagnostic

performance for thyroid nodules, the effectiveness of self-learning

appears more pronounced in radiology residents, likely due to their

prior ultrasonography knowledge. Further studies could explore its

impact on other non-radiologist groups.
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