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Background: Endometriosis (EM) is a prevalent gynecological disorder frequently

associated with irregular menstruation and infertility. Programmed cell death

(PCD) is pivotal in the pathophysiological mechanisms underlying EM. Despite

this, the precise pathogenesis of EM remains poorly understood, leading to

diagnostic delays. Consequently, identifying biomarkers associated with PCD is

critical for advancing the diagnosis and treatment of EM.

Methods: This study used datasets from the Gene Expression Omnibus (GEO) to

identify differentially expressed genes (DEGs) following preprocessing. By cross-

referencing these DEGs with genes associated with PCD, differentially expressed

PCD-related genes (DPGs) were identified. Enrichment analyses for KEGG and

GO pathways were conducted on these DPGs. Additionally, Mendelian

randomization and machine learning techniques were applied to identify

biomarkers strongly associated with EM.

Results: The study identified three pivotal biomarkers: TNFSF12, AP3M1, and

PDK2, and established a diagnostic model for EM based on these genes. The

results revealed a marked upregulation of TNFSF12 and PDK2 in EM samples,

coupled with a significant downregulation of AP3M1. Single-cell analysis further

underscored the potential of TNFSF12, AP3M1, and PDK2 as biomarkers for EM.

Additionally, molecular docking studies demonstrated that these genes exhibit

significant binding affinities with drugs currently utilized in clinical practice.

Conclusion: This study systematically elucidated the molecular characteristics of

PCD in EM and identified TNFSF12, AP3M1, and PDK2 as key biomarkers. These

findings provide new directions for the early diagnosis and personalized

treatment of EM.
KEYWORDS
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1 Introduction

Endometriosis (EM) is a medical disorder characterized by the

presence of endometrial cells at sites beyond the uterus. It is a chronic

and debilitating disorder that causes pain in the pelvic area and

infertility (1, 2). According to epidemiological research, the

occurrence of EM in women of reproductive age is estimated to be

between 10% and 15%, impacting approximately 190 million women

globally (3–5). The diagnosis of EM is frequently delayed due to

uncertain etiological mechanisms, a lack of specific symptoms and of

non-invasive diagnostic indicators (6). There is an average 6.7-year gap

between symptom onset and diagnosis (7), with some cases taking up

to 12 years to obtain an accurate diagnosis and appropriate treatment,

thereby missing the optimal treatment window (8). Currently, the most

reliable method for diagnosing EM is the combination of laparoscopy

and histological investigation, which is widely regarded as the best

approach. Nevertheless, laparoscopic surgery has inherent risks,

including physical injury, adhesions, and decreased fertility (9, 10).

EM has always been a hot topic in gynecological research. Moreover,

exploring its pathogenesis and finding safe, effective, non-invasive

diagnostic methods are crucial for patients with EM.

Programmed cell death (PCD), often referred to as regulated cell

death, is a highly organized process of cellular suicide that incorporates

precise signal cascades and molecular effect mechanisms. It is a

conserved evolutionary process (11) that includes various forms,

such as apoptosis, ferroptosis, autophagy, necroptosis, and pyroptosis

(12). Under physiological conditions, PCD helps eliminate aging,

damaged, or abnormal cells, thereby maintaining tissue homeostasis.

However, in certain disease states, abnormal activation or inhibition of

PCD can lead to pathological cell death.

Previous studies have shown that patients with EM have ectopic

endometrial tissue that displays aberrant apoptotic phenomena.

These phenomena may have a strong connection to the

development and clinical aspects of this disease (13). Specifically,

the apoptosis rate of endometrial cells in patients with EM is

reduced, allowing the exfoliated cells to evade the body’s

clearance mechanisms and continue growing in ectopic lesions,

thereby promoting the occurrence of EM (14). Additionally, the

level of autophagy in in situ endometrial cells of patients with EM is

significantly lower than that in normal endometrial cells (15). This

reduced autophagy may also decrease apoptosis, enabling cells to

evade detection by the immune system and allowing endometrial

cells to survive in ectopic locations. Recent studies have also found

that a major defect in EM is resistance to ferroptosis, leading to

abnormalities in ectopic endometrial tissue. The distribution of

retrograde menstrual tissue allows the lesions to survive and settle

in the abdominal cavity. Furthermore, the disruption of iron

balance is believed to have a significant impact on the

development of EM lesions and the resulting inflammation (16).

These data indicate a strong correlation between the advancement

of EM and PCD.

The relationship between PCD and EM has not been

comprehensively analyzed. Therefore, this study aims to identify

PCD-related biomarkers in EM using bioinformatics, Mendelian

randomization, and machine learning techniques. Additionally, it

seeks to establish diagnostic models and identify related molecular
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clusters for EM. These findings will serve as significant benchmarks for

the advancement of therapeutic medications and clinical interventions.
2 Materials and methods

2.1 Data source

Gene expression data from GSE51981, GSE7305, and GSE23339

were obtained from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/). The GSE51981 dataset includes

148 samples (GPL570 platform). To ensure the specificity and

accuracy of the analysis, samples with other pathological

conditions (non-EM) were excluded. After rigorous screening, 77

EM samples and 34 healthy control tissue samples were included as

the training set for subsequent analyses. The GSE7305 dataset

(GPL570 platform) includes 10 EM samples and 10 normal tissue

samples, selected for validation analysis. The GSE23339 dataset

(GPL6102 platform) includes 10 EM samples and 9 normal

tissue samples.

FinnGen is an extensive genomics initiative that examined over

500,000 samples from Finnish biobanks to establish connections

between genetic variation and health data. The objective was to

comprehend the mechanisms and vulnerabilities of diseases. The

project involved a partnership between Finnish academic institutes

and biobanks, along with worldwide industry partners (17). We

acquired publicly accessible summary statistics from the IEU Open

GWAS platform, specifically the finn-b-N14_ENDOMETRIOSIS

dataset. It consists of 8,288 cases of EM and 68,969 controls of

European ancestry, making a total of 77,257 samples.

We also downloaded the single-cell RNA sequencing (scRNA-

seq) dataset GSE213216 from the GEO database. The dataset was

submitted by Kate Lawrenson on September 12, 2022, and was

made public on October 11, 2022 (18). From this dataset, we

obtained six normal samples and nine EM samples.

Additionally, we obtained 1,382 PCD-related genes from a

previous study (19) (Supplementary Table 1). Table 1 shows

detailed, related information.
TABLE 1 Data source.

Name Type Source Description

GSE51981 RNA-seq GEO 77 cases of EM
and 34 controls

GSE7305 RNA-seq GEO 10 cases of EM
and 10 controls

GSE23339 RNA-seq GEO 10 cases of EM
and 9 controls

GSE213216 scRNA-seq GEO 9 cases of EM
and 6 controls

PCDs Genes literature Contains
1382 genes

N14_ENDOMETRIOSIS GWAS IEU
Open GWAS

8288 cases of
EM and
68969 controls
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2.2 Identification of DEGs

The “limma” package (version 3.56.2) in R software (20) was

used to identify differentially expressed genes (DEGs). DEGs were

determined based on adjusted p-values below 0.05 and an absolute

log2 fold change exceeding 1 between the EM and healthy control

groups. A volcano plot was then generated in R using the ggplot2

package (version 3.4.4) to graphically represent DEGs. This plot

demonstrates both the extent of gene expression variations and

their statistical significance. The R package ggvenn (version 0.1.10)

(21) was utilized to conduct an intersection analysis between DEGs

and programmed cell death related genes (PCDs) to find

differentially expressed PCDs (DPGs).
2.3 GO and KEGG analysis

To ascertain the functions of DPGs in EM, we performed GO and

KEGG pathway enrichment analyses using the clusterProfiler package

(version 4.8.3) in R (22). The significance level was established at a p-

value of less than 0.05. GO analysis encompasses three essential

categories: cellular components (CC), molecular functions (MF), and

biological processes (BP), which are vital for scrutinizing physiological

operations (21). The researchers utilized KEGG analysis to investigate

possible pathways (22). The R tools, ggplot and GOplot, were utilized

to visually represent the outcomes of the GO and KEGG studies.
2.4 Identifying candidate genes

To investigate the cause-and-effect relationship between DPGs and

EM, DPGs were considered the independent variables and EM the

dependent variable in the Mendelian randomization (MR) analysis.

The R package ‘TwoSampleMR’ (version 0.5.6) (23) was used to

identify single nucleotide polymorphisms (SNPs) that are strongly

linked to the exposure factors and can be used as instrumental variables

(IVs) (P < 5×10^−8). IVs exhibiting significant linkage disequilibrium

(LD) (r² < 0.001, kb = 10000) were subsequently eliminated. The

‘TwoSampleMR’ package’s mv_harmonise_data function was

employed to standardize effect alleles and effect sizes, whereas the

mv_lasso_feature_selection function was utilized to remove collinearity

and choose variables. Several MR techniques were employed to validate

the causal association between important target genes and EM, such as

Wald ratio, inverse variance weighting (IVW) (24), MR Egger (25).

When there was only one eQTL available for a gene, the Wald ratio

approach was utilized. For genes with two or more genetic tools, the

IVW method was given priority (26). Special emphasis was placed on

genes with p-values below 0.05. Furthermore, using Cochran’s Q test,

heterogeneity tests were performed to assess the presence of

heterogeneity, with P-values less than 0.05 indicating the presence of

heterogeneity. Additionally, Egger’s regression intercept was used for

horizontal pleiotropy tests, with P-values less than 0.05 indicating

evidence of horizontal pleiotropy. The expression patterns of these

genes in the GSE51981 training set were evaluated to validate the final

candidate genes.
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2.5 Identification of biomarkers and
construction of diagnostic models

Random forest (RF) (27), support vector machine (SVM) (28),

LightGBM (29), gradient boosting decision tree (GBDT) (30), and

XGBoost (31) were used to accurately identify biomarkers associated

with EM by taking the intersection of the results from these different

machine learning methods. Subsequently, multivariable logistic

regression analysis was conducted using the rms package (version

6.7.1) in R (32), and a nomogram model for diagnosing EM was

constructed based on the biomarker data. The “total score” of themodel

was calculated by aggregating the scores of each predictor, with each

predictor being allocated a distinct value. The diagnostic accuracy of the

nomogram model was assessed by analyzing ROC curves and AUC

values obtained from both the training and validation sets. This analysis

was conducted to confirm the model’s diagnostic effectiveness. The

evaluation of the ROC curve was conducted using the pROC package

(version 1.18.5) in the R programming language (33). Additionally, the

accuracy and practical value of the diagnostic model were evaluated by

performing decision curve analysis and calibration curve analysis using

the rms package (version 6.7.1) (32). Furthermore, the ggpubr package

(version 0.6.0) in R was used to provide the expression levels of

biomarkers in both the training and validation sets.
2.6 Single cell RNA sequencing

The scRNA-seq data was analyzed using the Seurat tool (version

5.0.1) in R (34). Cells that exhibited less than 200 gene expressions or

genes that were expressed in less than three cells were eliminated.

Furthermore, cells with Unique Molecular Identifier (UMI) counts

below 300 or above 2500, cells that expressed mitochondrial genes in

over 10% of the cell population, and cells that expressed hemoglobin

genes in over 3% of the cell population were excluded. The Seurat

package’s “NormalizeData” function was employed for data

normalization, which was subsequently followed by batch correction

and dimensionality reduction using theHarmony package (version 0.1.1)

in R (35). At a resolution of 0.5, 20 principal components (PCs) were

used to identify cell clusters. The “FindAllMarkers” function in Seurat

was utilized to identify differentially expressed genes for each cluster,

using the following parameters: “min.pct = 0.25” and “logfc.threshold =

0.25”. Afterwards, the SingleR package (version 2.4.0) (36) was utilized

along with known cell type marker genes to label each cell cluster.

Ultimately, the analysis focused on the distribution and expression

patterns of these genes across various cell types.
2.7 Consensus cluster analysis

The training set of 77 EM samples underwent unsupervised

hierarchical clustering analysis using the ConsensusClusterPlus

package (version 1.64.0) in R (37). The analysis involved 1000

iterations with a sample rate of 80%. The following criteria were

used as the basis for clustering: 1) the cumulative distribution

function (CDF) curve flattens and grows gradually; 2) no cluster
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contains a small number of samples; 3) the D area decreases to its

maximum; and 4) after clustering, inter-cluster correlation

decreases, while intra-cluster correlation increases.
2.8 Evaluating the immune infiltration of
the sub-clusters

To evaluate the presence of immune cells in the sub-clusters, we

utilized the GSVA package (version) (38) and the GSEAbase

package (version) (39) in R to measure the proportional

abundance of immune cells within these sub-clusters. Enrichment

scores were compared among different subgroups and visualized

using the ggplot2 package (version 3.4.4).
2.9 Protein-ligand interaction analysis

We obtained the 3D structures of three key target proteins from

UniProt (https://www.uniprot.org/). The chemical structures of

Dienogest, Goserelin, and Danazol in Structure Data File (SDF)

format were sourced from PubChem (https://pubchem.ncbi.

nlm.nih.gov/). These structures were converted to mol2 format

using the OpenBabel program (40). The protein crystal structures

were acquired from the Protein Data Bank (PDB) and underwent

dehydration and hydrogenation using PYMOL (41). The converted
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protein receptors and small-molecule ligands were used

in molecular docking experiments with AutoDock software.

A visualization of the docking results was created using PyMOL.
2.10 Statistical analyses

The bioinformatics analyses and execution of all R programs were

performed using R software (version 4.3.1). The means of normally

distributedvariablesbetween twogroupswere comparedusingunpaired

Student’s t-tests. If the data did not follow a normal distribution, the

Wilcoxon test was used to compare them. Significance levels were

denoted as ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.
3 Results

3.1 Identification of DPGs between EM and
normal controls

Figure 1 illustrates the detailed workflow of this study. A total of

3055 differentially expressed genes (DEGs) related to EM were

identified, including 1922 upregulated genes and 1133

downregulated genes (Supplementary Table S2). These DEGs

were visualized using a volcano plot (Figure 2A). Subsequently,

by intersecting the 1382 known PCD-related genes with the DEGs,
FIGURE 1

Flowchart of the research. DEGs, differentially expressed genes; MR, Mendelian randomization; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes; scRNA, Single-Cell RNA Sequencing Analysis.
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we identified 269 DPGs (Figure 2B). The expression differences of

these DPGs between the EM group and healthy controls were

visually represented using a heatmap (Figure 2C).
3.2 Functional annotation and pathway
enrichment of DPGs

Functional annotation and pathway enrichment analyses were

performed on the DPGs. The results of the GO enrichment analysis

indicate that these genes are involved in multiple signaling

pathways associated with PCD (Figure 2D). The pathways

encompassed are the intrinsic apoptotic signaling pathway,

regulation of apoptotic signaling pathway, regulation of

autophagy, macroautophagy, intrinsic apoptotic signaling

pathway triggered by DNA damage, extrinsic apoptotic signaling

pathway, mitochondrial structure organization, apoptotic

mitochondrial changes, negative regulation of apoptotic signaling

pathway, and regulation of intrinsic apoptotic signaling pathway.

The KEGG pathway enrichment analysis (Figure 2E) indicated that

these genes are involved in pathways, such as lysosome, apoptosis,

autophagy, and necroptosis.
3.3 Identification of candidate genes

In this study, MR analysis was performed on 269 genes. Using

Wald ratio and IVW methods, we identified 17 genes with statistical

significance (P-values < 0.05) under strict selection criteria. During
Frontiers in Endocrinology 05
this process, we paid particular attention to eliminating interference

that may arise from pleiotropy and heterogeneity, ensuring the

accuracy and reliability of the analysis results. Among these 17

genes, eight had odds ratios (OR) greater than 1, while the other

nine had OR values less than 1 (Figures 3A, B). We then observed the

expression patterns of these genes in the GSE51981 training set. The

results showed that in the EM group, 13 genes had significantly

increased expression levels, while four genes had significantly

decreased expression levels (Figure 3C). Based on these findings,

we inferred that genes with OR greater than 1 and increased

expression levels in the EM group are positively correlated with

EM, whereas those with OR less than 1 and decreased expression

levels in the EM group may be negatively correlated. Further analysis

identified six potential harmful genes and two potential protective

genes, which were determined to be candidate genes. The copy

number variation (CNV) positions of these eight candidate genes

were mapped to their respective chromosomal locations (Figure 3D).
3.4 Identification and validation of
biomarkers for EM

In this study, various machine learning techniques were used for

gene selection. SVM identified eight genes (Figure 4A), While

LightGBM identified five genes, RF identified six genes.

(Figures 4B, C). XGBoost identified five genes (Figure 4D), and

GBDT identified five genes (Figure 4E). Through intersection analysis

of these results, three key genes were ultimately identified: TNFSF12,

AP3M1, and PDK2 (Figure 4F). A model was constructed based on
B C

D E

A

FIGURE 2

Differential expression analysis of programmed cell death genes in endometriosis (A) Volcano plot of differentially expressed genes in endometriosis.
(B) Venn diagram of differentially expressed genes and genes related to programmed cell death, showing their intersecting genes. (C) Heatmap of
DPGs. (D) Gene Ontology enrichment analysis of DPGs. (E) KEGG pathway enrichment analysis of DPGs.
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these three key diagnostic genes to predict the risk of EM, and its

overall performance was evaluated (Figure 4G). The predictive

accuracy of the model was validated using calibration curves

(Figure 4H) and decision curve analysis (DCA) (Figure 4I). ROC

analysis showed that the combined diagnostic AUC value of these

three genes was 0.9, indicating its high accuracy in diagnosing EM.

Additionally, the model was evaluated using validation sets GSE7305

and GSE23339, with ROC analysis showing AUC values of 0.94 and

0.88, respectively, highlighting the model’s stability and reliability

across different datasets.

Regarding individual gene performance, TNFSF12 demonstrated an

AUC of 0.89 in the training dataset GSE51981 and achieved AUC values

of 0.94 and 0.89 in the validation datasets GSE7305 and GSE23339,

respectively. Regarding AP3M1, the AUC was 0.82 in the training set,

with corresponding values of 0.91 and 0.79 in the validation sets

GSE7305 and GSE23339, respectively. PDK2 showed an AUC of 0.82

in the training dataset and attained values of 0.99 and 0.77 in the

validation datasets GSE7305 and GSE23339 (Figure 5A). These data

emphasize the potential of TNFSF12, AP3M1, and PDK2 as diagnostic

biomarkers for EM. Additionally, we analyzed the expression differences

of these three genes in both the training and validation sets. In the

training set GSE51981, TNFSF12 and PDK2 showed significantly

increased expression in EM samples compared to healthy endometrial

samples, whereas AP3M1 was significantly decreased in EM samples

(Figures 5B). These expression patterns were validated in the validation

sets GSE7305 andGSE23339 (Figures 5C, D),consistent with the findings

in the training set. These results further support the potential of

TNFSF12, AP3M1, and PDK2 as diagnostic biomarkers for EM.
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3.5 Biomarkers analysis in scRNA-seq data

scRNA-seq analysis was performed on tissue samples from patients

with EM and from participants in the control group, initially

comprising 144,476 cells (42,641 from EM samples and 101,835

from control samples). After stringent data quality control, 90,615

cells were retained for subsequent analysis (32,024 cells from EM

samples and 58,591 cells from control samples). High-dimensional data

dimensionality reduction and clustering analysis were performed using

Uniform Manifold Approximation and Projection (UMAP),

successfully identifying 19 different cell subpopulations. The cell

types were identified as T cells, endometrial stromal cells, NK cells,

monocytes, endothelial cells, smooth muscle cells, fibroblasts, B cells,

epithelial cells (Figure 6A). Comparative analysis of cell composition

differences between EM samples and control groups indicated an

increase in B cells, fibroblasts, and T cells in EM samples, while the

proportions of endometrial stromal cells, endothelial cells, epithelial

cells, NK cells, and smooth muscle cells decreased (Figures 6B, C). In

this study, we particularly focused on the distribution and expression

patterns of the core genes TNFSF12, AP3M1, and PDK2.

The analysis results showed that in the EM group, the expression

levels of TNFSF12 and PDK2 were significantly elevated, while

AP3M1 exhibited a significant decreasing trend. These differences

were highly significant statistically and consistent with previous RNA

sequencing analysis results (Figures 6D, E). Subsequently, we

conducted a detailed analysis of cell type distribution to gain

deeper insights into the expression patterns of these genes. We

found that TNFSF12 was primarily distributed in smooth muscle
B

C D

A

FIGURE 3

Identification of candidate genes. (A) Forest plot presenting Mendelian randomization analysis results for 17 genes. (B) Volcano plot illustrating
Mendelian randomization analysis of DPGs. (C) Gene expression levels of 17 candidate genes in the GSE51981 dataset. (D) Chromosomal distribution
of copy number variation locations for eight candidate genes. Significance levels were denoted as ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.
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cells and fibroblasts, with high expression levels. Similarly, AP3M1

was mainly expressed in endothelial cells and smooth muscle cells,

whereas PDK2’s high expression was limited to fibroblasts

(Figures 6F, G). These findings are significant, highlighting the

potential of TNFSF12, AP3M1, and PDK2 as biomarkers.
3.6 Identification of biomarker sub-clusters
in EM

In this study, we divided 77 EM samples into different groups

based on the expression profiles of TNFSF12, AP3M1, and PDK2.

Using an unsupervised hierarchical clustering algorithm, the most

stable clustering result was obtained when the k-value was set to 3

(k=3) (Figures 7A–D). Subsequently, principal component analysis

(PCA) revealed significant specificity in gene expression patterns

among different sub-clusters, as validated by the PCA plot

(Figure 7E). Additionally, we created a series of box plots
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(Figure 7F), illustrating the expression levels of these genes in

different sub-clusters and their significant differences.
3.7 Discrimination of immune infiltration
characteristics among the sub-clusters

Based on our subgroup analysis of EM samples, single-sample

gene set enrichment analysis (ssGSEA) was used to assess immune

infiltration in different subgroups, particularly focusing on

significant differences with P-values less than 0.05. The immune

infiltration analysis results (Figure 7G) showed significant changes

in the immune microenvironment among the different subgroups.

Specifically, in Cluster 1, we observed higher abundances of certain

immune cell types, such as central memory CD4+ T cells, effector

memory CD4+ T cells, memory B cells, plasmacytoid dendritic

cells, and type 2 helper T cells. In Cluster 2, the numbers

of activated B cells, CD56dim natural killer cells, and helper
B C

D E F

G H I

A

FIGURE 4

Machine learning-based biomarker identification. (A) SVM identified eight biomarkers. (B) LightGBM identified six biomarkers. (C) RF identified six
biomarkers. (D) XGBoost identified five biomarkers. (E) GBDT identified six biomarkers. (F) Venn diagram of biomarkers identified using different
machine learning methods, showing their intersecting biomarkers. (G-I) Construction of EM Diagnostic Model.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1372221
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xie et al. 10.3389/fendo.2024.1372221
Tcells significantly increased. Meanwhile, in Cluster 3, the

infiltration of g-d T cells was relatively higher.
3.8 Molecular docking of biomarkers

Globally, dienogest, danazol, and goserelin are widely used for

treating EM. To further investigate the interactions between these

drugs and biomarkers, we conducted detailed studies using

advanced molecular docking techniques. In this process, we

focused on evaluating the binding capabilities of these drug

molecules with the three biomarkers, quantifying this capability

by precisely calculating binding energies. Typically, lower binding

energy values indicate more stable binding conformations. Our
Frontiers in Endocrinology 08
molecular docking analysis demonstrated significant binding

affinities between the three biomarkers and dienogest, danazol,

and goserelin. All docking binding energies were below −7.54 kcal/

mol, indicating that these drugs can effectively bind to biomarkers

naturally. These results not only confirm the molecular specificity

of these drugs but also provide important insights into their

mechanisms of action in treating EM (Figures 8A, B).
4 Discussion

EM is a multifaceted gynecological disease that affects the entire

body (4, 5). Because of its rising occurrence, frequent relapse, and

notable shortcomings in clinical diagnosis and treatment, it has
B

C

D

A

FIGURE 5

Validation of the diagnostic value of the diagnostic model and biomarkers. (A) ROC evaluation of the diagnostic value of the model and biomarkers.
(B) Gene expression levels of biomarkers in GSE51981. (C) Gene expression levels of biomarkers in GSE7305. (D) Gene expression levels of
biomarkers in GSE23339. Significance levels were denoted as ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.
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become a subject of academic research in recent years (6, 9).

Nevertheless, the absence of precise biomarkers that can be used

to detect EM has significantly impeded its prompt diagnosis,

thereby necessitating research for the identification of reliable

molecular biomarkers for a correct diagnosis. This study aimed to

examine the function and diagnostic importance of PCDs in EM.

Through the intersection of DEGs and PCDs, we identified a total

of 269 DPGs. Enrichment analysis of these genes revealed that

multiple key biological pathways play important roles in EM.

Apoptosis, a form of PCD, plays a significant role in EM.

Compared to cells from women without EM, ectopic endometrial

stromal cells (EESC) and eutopic endometrial stromal cells (EuESC)

from patients with EM exhibited enhanced survival capabilities.

Several studies have demonstrated that endometrial cells from

patients with EM are less sensitive to apoptosis than those from

healthy controls (14, 42). It has been shown that EESCs exhibit higher

expression levels of the anti-apoptotic genes Bcl-2 and Bcl-xL

compared to normal endometrial cells (CESCs) and diseased

endometrial cells (EuESCs). The upregulation of these genes

inhibits apoptosis, thereby increasing the survival capacity of

ectopic endometrial cells. Moreover, the expression of the
Frontiers in Endocrinology 09
apoptosis-related gene Caspase-3 is significantly reduced in EESCs,

further supporting their resistance to apoptosis (43). The p53 and

TNF pathways play crucial roles in cell cycle regulation and

apoptosis. The inhibition of p53 signaling pathway activity and the

dysregulation of TNF signaling pathway activity also lead to reduced

apoptosis, thereby promoting the progression of EM (44, 45).

Necroptosis, a form of programmed necrosis, that distinct from

apoptosis, is an active cell death process executed through specific

molecular mechanisms. Necroptosis signaling is closely related to

various signaling pathways involved in physiological responses,

such as inflammation, immune response, and tissue homeostasis

maintenance (46). Studies have shown that the expression of

necroptosis-related genes is associated with the pathological

processes of EM, particularly in terms of inflammatory response

and immune cell infiltration (15, 47). These findings suggest that

PCDs play important roles in EM, affecting cell survival,

proliferation, and apoptosis through various mechanisms, thereby

contributing to the progression of EM.

Due to the swift advancement of artificial intelligence (AI),

machine learning algorithms can be used to effectively differentiate

and analyze complex feature data. Consequently, they are extensively
B

C D E

F G

A

FIGURE 6

Distribution and expression of biomarkers in single cells. (A) UMAP plot showing 17 identified cell subpopulations and nine cell types. (B) UMAP plot
displaying cell distribution in normal and EM samples. (C) Changes in the proportions of nine cell subpopulations in normal and EM samples.
(D, E) Expression levels of biomarkers in normal and EM samples. (F, G) Distribution of biomarkers across nine cell subpopulations.
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employed in the discovery and screening of pivotal genes. MR is a

strategy used to infer causality based on genetic variation. It has gained

significant popularity in medical and scientific research in recent years.

By using genetic variants as instrumental variables, MR avoids

common confounding factors and reverse causation issues, enabling

a more accurate evaluation of the causal effects of genes on diseases

(48). Initially, we used MR to validate whether the DPGs were indeed

causally related, identifying eight key candidate genes from the 269

DPGs. Subsequently, we integrated five different machine learning
Frontiers in Endocrinology 10
models to analyze the expression profiles of the candidate genes,

precisely identifying three biomarkers (TNFSF12, AP3M1, and PDK2).

The results of the Mendelian randomization analysis indicated

that TNFSF12 and PDK2 were positively correlated with EM in

genetic predictions, whereas AP3M1 showed an inverse relationship.

ROC curve assessments demonstrated that these three genes had

good diagnostic performance both in combination and individually

in diagnosing EM, highlighting their potential as biomarkers. Further

validation of these results was achieved through transcriptome
B C

D E F

G

A

FIGURE 7

Consensus cluster analysis. (A–E) Consensus clustering analysis based on biomarkers identified three subclusters. (F) Gene expression levels of three
biomarkers across the three subclusters. (G) Immune cell infiltration abundance in the three subclusters. Significance levels were denoted as follows:
*P < 0.05, **P < 0.01, and ***P < 0.001. NS indicates non-significant results with P > 0.05.
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mRNA expression level analysis, using data from both the training

and validation sets, showing significantly elevated levels of TNFSF12

and PDK2 in the EM group, while AP3M1 was significantly reduced.

Through various analyses, we confirmed the critical roles of these

biomarkers in EM, further establishing their potential as diagnostic

tools and therapeutic targets.

TNFSF12, also known as TWEAK or CD255, is a member of the

tumor necrosis factor (TNF) superfamily and is an important pro-

inflammatory cytokine widely expressed in various tissues and cells,

participating in multiple physiological and pathological processes

(49). Although there are no direct reports linking TNFSF12 to EM,

existing studies suggest that the interaction between TNFSF12 and its

receptor Fn14 can activate several signaling pathways, including the
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classical and alternative NF-kB pathways, leading to the production

and release of inflammatory cytokines (50). This can result in

exacerbated local inflammatory responses. These inflammatory

factors might accumulate in endometriotic lesions, intensifying

local inflammation and promoting the maintenance and expansion

of the lesions. Additionally, the TWEAK-Fn14 interaction can

regulate cell survival and proliferation through multiple signaling

pathways, including PI3K/Akt and MAPK (51, 52) The activation of

these pathways can upregulate the expression of anti-apoptotic genes,

contributing to the occurrence and progression of EM. TNFSF12 also

modulates the functions of immune cells, such as NK cells and T cells.

TWEAK can act on embryonic stem cells to inhibit Th1 immune

activation by suppressing the activity of NK cells (49). Studies have
B

A

FIGURE 8

Molecular docking results of biomarkers and clinical drugs. (A) Molecular Docking Visualization of Biomarkers and Clinical Drugs. (B) Heatmap of
Binding Energies from Molecular Docking Visualization of Biomarkers and Clinical Drugs.
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shown that in patients with EM, the function of NK cells is impaired,

with significantly reduced cytotoxic capabilities. This dysfunction

might enable endometriotic tissue to evade immune system clearance,

facilitating the invasion and sustained growth of ectopic endometrial

cells (53). Furthermore, TNFSF12 can promote the expression of

angiogenic factors (51), potentially aiding in the formation of new

blood vessels in the lesion area, thereby providing sufficient nutrients

and oxygen to ectopic endometrial cells, which further promotes

lesion expansion.

AP3M1 is a key subunit of the AP-3 complex, which is primarily

responsible for intracellular vesicle transport from the Golgi

apparatus to lysosomes and related organelles (54). This regulation

is crucial for maintaining cell function and structural integrity.

Studies have shown a negative correlation between AP3M1 and

EM risk through genome-wide MR and colocalization analysis (55),

which is consistent with our findings. Previous studies have

confirmed that the loss of AP-3 complex function negatively

impacts the normal cytotoxic activity of NK and CTL cells. The

absence of the AP-3 complex leads to degranulation defects in these

cells, thereby weakening their cytotoxic function (56). Since EM is

associated with weakened NK cell cytotoxicity, we speculate that the

loss of AP3M1 may lead to dysfunction of the AP-3 complex,

affecting NK cell toxicity and promoting the progression of EM.

PDK2 is a member of the pyruvate dehydrogenase kinase family

and is expressed in various tissues throughout the body (57). PDKs,

including PDK2, are key metabolic regulatory enzymes that inhibit

the activity of pyruvate dehydrogenase (PDH) through

phosphorylation, altering the metabolic state of cells. This

mechanism is expressed in various tissues and promotes aerobic

glycolysis in tumor cells and other pathological states, supporting

cell survival in hypoxic environments (58). PDK2 plays a crucial

role in balancing glycolysis and oxidative phosphorylation by

regulating the activity of the pyruvate dehydrogenase complex

(PDHC). When PDK2 expression is elevated, cell metabolism

undergoes reprogramming similar to that of tumor cells (59).

Specifically, PDK2 inhibits PDH activity, thereby preventing

pyruvate from adequately entering the TCA cycle, leading to

reduced mitochondrial membrane potential and decreased

reactive oxygen species (ROS) production. This environment

reduces the occurrence of apoptosis, potentially helping ectopic

endometrial cells evade PCD.

In single-cell analysis, we observed significantly elevated

expression levels of TNFSF12 and PDK2 in EM, whereas AP3M1

expression was significantly reduced. This finding further supports

our previous conclusions. The application of molecular docking

technology is crucial for understanding the interactions between

clinical drugs and biomarkers, using limited resources to identify

potential strong drugs. Dienogest, goserelin, and danazol are

commonly used non-surgical treatments for EM (60, 61). Through

molecular docking, we assessed the binding abilities of dienogest,

goserelin, and danazol to these biomarkers. The calculated binding

energies indicated significant affinity between these clinical drugs and

the biomarkers, suggesting that TNFSF12, AP3M1, and PDK2 could

serve as potential targets for dienogest, goserelin, and danazol. The

specific regulatory mechanisms of dienogest, goserelin, and danazol

on TNFSF12, AP3M1, and PDK2 still require further investigation.
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Additionally, unsupervised clustering analysis indicated that,

based on the expression levels of biomarkers, different patients with

EM could be divided into three distinct subgroups. For the different

subgroups, we also conducted immune cell abundance and

infiltration analyses. The differences in immune infiltration

characteristics among the various subgroups of EM may reflect

the diverse roles and mechanisms of immune regulation within

these subgroups. It is well known that EM exhibits heterogeneity in

clinical presentation and treatment, reflecting its complex etiology,

suggesting that stratified management plans based on its

characteristics may yield better outcomes.

Although this study employed multi-omics methods and

validated the roles of these biomarkers in EM at multiple levels,

some limitations still need to be addressed. First, this study is

entirely based on bioinformatics analysis, emphasizing the necessity

for subsequent experimental validation. Furthermore, the

conclusions were derived from a restricted number of EM cases,

highlighting the necessity for more extensive patient research to

bolster the dependability of the findings. The diagnostic model

established in this study, known as the EM model, also needs to

undergo additional scrutiny and external validation before it can be

potentially applied in clinical settings.
5 Conclusions

In summary, this study systematically revealed the molecular

characteristics of PCD in EM and identified three key biomarkers:

TNFSF12, AP3M1, and PDK2. Through MR analysis, we confirmed

the genetic causal relationships between these genes and EM. Multi-

dataset validation and single-cell analysis further substantiated the

significant expression differences of these genes in ectopic

endometrial tissue. Additionally, molecular docking analysis

demonstrated significant binding affinities between these genes

and clinically used drugs, highlighting their potential in diagnosis

and treatment. These findings suggest that TNFSF12, AP3M1, and

PDK2 could be potential diagnostic biomarkers and therapeutic

targets for EM.
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