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fractures in X-ray images
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Purpose: To develop and validate a deep learning radiomics (DLR) model that

uses X-ray images to predict the classification of osteoporotic vertebral

fractures (OVFs).

Material and methods: The study encompassed a cohort of 942 patients,

involving examinations of 1076 vertebrae through X-ray, CT, and MRI across

three distinct hospitals. The OVFs were categorized as class 0, 1, or 2 based on

the Assessment System of Thoracolumbar Osteoporotic Fracture. The dataset

was divided randomly into four distinct subsets: a training set comprising 712

samples, an internal validation set with 178 samples, an external validation set

containing 111 samples, and a prospective validation set consisting of 75 samples.

The ResNet-50 architectural model was used to implement deep transfer

learning (DTL), undergoing -pre-training separately on the RadImageNet and

ImageNet datasets. Features from DTL and radiomics were extracted and

integrated using X-ray images. The optimal fusion feature model was identified

through least absolute shrinkage and selection operator logistic regression.

Evaluation of the predictive capabilities for OVFs classification involved eight

machine learning models, assessed through receiver operating characteristic

curves employing the “One-vs-Rest” strategy. The Delong test was applied to

compare the predictive performance of the superior RadImageNetmodel against

the ImageNet model.

Results: Following pre-training separately on RadImageNet and ImageNet

datasets, feature selection and fusion yielded 17 and 12 fusion features,

respectively. Logistic regression emerged as the optimal machine learning

algorithm for both DLR models. Across the training set, internal validation set,

external validation set, and prospective validation set, the macro-average Area

Under the Curve (AUC) based on the RadImageNet dataset surpassed those

based on the ImageNet dataset, with statistically significant differences observed

(P<0.05). Utilizing the binary “One-vs-Rest” strategy, the model based on the
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RadImageNet dataset demonstrated superior efficacy in predicting Class 0,

achieving an AUC of 0.969 and accuracy of 0.863. Predicting Class 1 yielded

an AUC of 0.945 and accuracy of 0.875, while for Class 2, the AUC and accuracy

were 0.809 and 0.692, respectively.

Conclusion: The DLR model, based on the RadImageNet dataset, outperformed

the ImageNet model in predicting the classification of OVFs, with generalizability

confirmed in the prospective validation set.
KEYWORDS

osteoporotic vertebral fractures, classification, X-ray computed tomography, deep
learning, radiomics
Introduction

Osteoporosis (OP) is a prevalent metabolic bone disease,

characterized by diminished bone strength and an elevated risk of

fractures (1). Among osteoporotic fractures (OFs), those occurring in

the spine, termed osteoporotic vertebral fractures (OVFs), are the most

common (2). OVFs are fractures resulting from low-energy trauma,

akin to a fall from a standing position in adults, and are linked to

substantial rates of disability and mortality (3). Postmenopausal

women exhibit an approximate 40% prevalence of OVFs, while

elderly men experience rates between 25% and 33%. In China, a new

case of OVF arises approximately every 17.4 seconds (4).

OVFs often manifest subtly with a complex clinical

presentation. Acknowledged by both national and international

scientific communities, the consensus is that achieving a

comprehensive and precise classification of OVFs holds

significant value for early diagnosis, treatment, and prognosis

assessment (5). Several classification methods for OVFs have been

put forth, such as the Genant semi-quantitative method (6), Heini

classification (7), Osteoporotic Fracture Classification (8), and

ASTLOF (9). However, none of these methods have garnered

international acceptance (10). The ASTLOF classification,

recognized for its good reproducibility and clinical utility (11),

was selected as the standard for classification in this study.

Conventional radiography, characterized by its speed, practicality,

and cost-effectiveness, boasts the additional advantage of a relatively

low radiation dose (0.3-0.7 mSv). The National Institute for Health

and Care Excellence recommends conventional X-ray imaging as

the preferred modality for OVFs (12). Given the widespread

availability of digital radiography (DR) equipment in primary

healthcare facilities across China, including remote areas (13), the

development of a predictive model for OVFs based on X-ray images

holds significant clinical importance.

Radiomics is a field focused on extracting numerous features

from medical images, facilitating the evaluation of microstructural

changes in trabecular bone (14), discerning osteoporosis (15),
02
distinguishing between acute and chronic vertebral fractures (16),

and forecasting the risk of vertebral fractures (17). Recent

advancements in deep learning and radiomics have led to

significant progress in the classification and evaluation of OVFs, as

highlighted by several key studies. Dong et al. (6) used chest and

lumbar spine X-ray images from the MrOS (The Osteoporotic

Fractures in Men) dataset and classified OVFs into moderate/severe

fractures and normal/minor fractures based on the Genant semi-

quantitative method, utilizing GoogLeNet for training to subtype

OVFs. The model achieved an AUC of 0.99, demonstrating high

diagnostic performance in identifying moderate/severe OVFs.

However, the MrOS study was limited to male OVFs patients from

six clinical centers in the United States, necessitating further testing to

determine the model’s applicability to females and international

populations. Zhang et al. (18) employed U-net and U-Graph

Convolution Network for thoracolumbar localization and

classification, achieving AO classification through a multi-branch

output network. The system’s accuracy was 97.93% for fracture

detection and 79.56% for AO classification assessment, indicating

its capability to accurately evaluate OVFs based on AO classification.

However, this study only involved A1-4 type fractures, excluding

Type B and C fractures. Dong et al. (19) trained models (GoogLeNet,

Inception-ResNet-v2, EfficientNet-B1, and two ensemble algorithms)

based on the m2ABQ classification method for OVFs, using

ImageNet pre-trained models for transfer learning. The best-

performing model achieved excellent results (AUCs of 0.948 for the

local test set and 0.936 for the MrOS test set), yet the authors did not

analyze misclassified cases nor explore how image features affect the

output of each model.

DLR is a branch of machine learning, focuses on deriving

profound image features, often using pretrained network

architectures like ResNet50 on ImageNet. ImageNet, with its

extensive collection of natural world images, plays a vital role in

effective transfer learning, requiring a degree of resemblance

between the model’s training imagery and the target application

(20). On the other hand, RadImageNet, an open-source database of
frontiersin.org

https://doi.org/10.3389/fendo.2024.1370838
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2024.1370838
medical images derived from various medical sources, is posited to

be more apt for DTL in comparison to ImageNet (21). Therefore, in

this research, X-ray images of the thoracolumbar vertebrae from

different medical centers were used to develop DTL-based

predictive models for OVFs identification, pre-training separately

on RadImageNet and ImageNet datasets and following the ASTLOF

classification system. The efficacy of these models was then assessed

and compared using data from multiple centers.
Methods

Design and participants

This study utilized X-Ray images from multicenter. Following

thorough review and approval by the respective hospital

ethics committees, the retrospective dataset was granted an

exemption from the need for patient informed consent. In

contrast, patients included in the prospective validation set were

duly informed and provided written consent by signing informed

consent forms.

To ensure the robustness and generalizability of our DLR model

for classifying OVFs using X-ray images, we divided our dataset into

four distinct subsets: training, internal validation, external validation,

and prospective validation. The training set was used to develop the

model, allowing it to learn to identify patterns and features indicative

of OVFs.The internal validation set was employed to fine-tune the

model parameters and mitigate overfitting, providing an initial

assessment of the model’s performance. The external validation set

was included to test the model’s generalizability to new, unseen data

from different populations or settings, crucial for evaluating its

applicability in diverse clinical environments. Finally, the

prospective validation set was utilized to validate the model on

prospectively collected data, offering insights into its real-world

performance and ensuring its reliability and applicability over time

and under varied conditions.
Frontiers in Endocrinology 03
To form the training and validation sets (both internal and

external), patient data from Center I and Center II, including X-

ray, CT, and MRI related to OVFs, were gathered from December

2018 to December 2022. The selection criteria for the cases were

defined as follows: Inclusion criteria included patients aged 50 years

or older diagnosed with OVFs (22), encompassing those without any

history of trauma or with only minor trauma incidents; availability of

complete Dicom datasets for X-ray, CT, and MRI examinations,

conducted within a maximum two-week interval; and comprehensive

clinical data availability, including gender, age, and results fromDual-

energy X-ray absorptiometry (DXA) exams. The exclusion criteria

were suspected fracture cases due to infection or tumors; poor image

quality or presence of artifacts; and patients with unclear health status

or fracture classification. From January 2023 to June 2023, an

independent prospective validation set was added from Center III,

following the same inclusion and exclusion criteria. Figure 1 provides

a detailed schematic of the case selection process, illustrating the

random assignment of cases to the training set and internal validation

set in an 8:2 ratio. For further information about the case collection

process, grouping, image preprocessing, feature extraction and

analysis, and model development, refer to the flowcharts and DLR

workflow in Figures 2 and 3.
Classification

All cases were classified and graded using the ASTLOF, which

assigns scores to OVFs based on four aspects: vertebral morphology,

MRI imaging, bone density values, and clinical symptoms (23). The

descriptions are as follows: ① Morphological changes (CT scan):

Normal = 0 points, compression = 1 point, burst = 2 points; ②MRI

examination: Normal = 0 points, high signal changes on fat-

suppressed imaging = 1 point, presence of vacuum phenomenon

or fluid sign within the vertebral body = 2 points; ③ Bone density: T-

score > -2.5 = 0 points, -3.5 ≤ T-score ≤ -2.5 = 1 point, T-score ≤

-3.5 = 2 points; ④ Clinical presentation: No significant pain = 0
FIGURE 1

Flowchart summarizes patient selection and allocation to the training set, internal and external validation set and prospective validation set of the
multicenter study.
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points, position-induced lumbago = 1 point, persistent pain or

presence of neurological symptoms = 2 points. Based on the total

score, the classification is as follows: Class 0 (total score ≤ 3 points,

conservative treatment), Class 1 (total score = 4, conservative or

surgical treatment), Class 2 (total score ≥ 5 points, surgical

treatment). Two radiologists, A and B, with 6 and 10 years of

experience, respectively, evaluated the classification of OVFs. In

instances of conflicting outcomes, a conclusive decision was reached

through collaborative consultation.
Frontiers in Endocrinology 04
Acquisition of X-ray images and analysis of
clinical baseline features

Data on age, gender, and T- score from DXA were retrieved

from the clinical health records system. Details about the imaging

devices used for X-ray, CT, and MRI, along with the associated

imaging parameters, are provided in Supplementary Table S1. In

the process of X-ray imaging for the thoracic or lumbar spine, it was

essential to align the X-ray beam’s central ray perpendicular to
FIGURE 3

Workflow of deep learning radiomics workflow.
FIGURE 2

Flowchart in this study.
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either the 7th thoracic vertebra or the 3rd lumbar vertebra. The

analyses and processing in this research were conducted using the

lateral view images acquired from vertebral DR examinations.
Image segmentation

Precision in segmenting vertebral bodies is crucial for the

analysis that follows. In our research, physicians carried out the

segmentation manually. Initially, physician A imported the X-ray

images into the ITK-SNAP software (version 3.8.0, available at

http://www.itksnap.org). During this process, the edges of the

fractured vertebral bodies were carefully outlined and filled by

hand. Care was taken to exclude adjacent intervertebral discs,

pedicles, and any surrounding tissue

The outlining of the region encompassing the fractured

vertebral body was carefully executed to ensure completeness and

accuracy before being saved as a mask file in ‘nii’ format (refer to

Figure 4). A month subsequent to this, 30 patients were randomly

chosen from the training dataset, and their images were re-

delineated by both physician A and physician B. To assess the

consistency of vertebral body delineation, both intra-observer and

inter-observer reliability were measured using the intraclass

correlation coefficient (ICC) among the participants.
Radiomics and DTL features extraction

Each image underwent Z-score normalization to minimize

variations across the images. The protocol for feature extraction

adhered to the standards set by the Image Biomarker

Standardization Initiative, as referenced in (24). Subsequently, the

extracted radiomics features were harmonized across different centers

utilizing the Combat method, detailed in (25), to mitigate discrepancies

in the data. Utilizing the PyTorch deep learning framework within the

Python 3.6 environment, the DTL method was executed, aligning with

methodologies used in prior research (26). For this study, the ResNet50

model (Figures 5, 6) was selected as the foundational model for DTL,

with a meticulously adjusted learning rate to enhance performance.
Frontiers in Endocrinology 05
Since the transfer features were selected from the second-to-last layer of

the model (Average-Pooling layer), we divided the model parameters

into two parts: the Backbone part and the Task-specific part. The

initialization of the Backbone part used the pre-trained model

parameters from RadImageNet (27) and ImageNet. The task-specific

segment of the model received a random parameter initialization,

consistent with the cosine annealing approach to learning rate decay

(28). In our study, we employed the following hyperparameters for

training our model: optimizer set to ‘Adam’, a batch size of 8, and

training for 30 epochs. This learning rate was dynamically adjusted

based on iteration count, as detailed in Supplementary S2. For more

details, please check the Supplementary S3.
Feature selection and fusion

Initially, the selection of radiomic features was based on both

their repeatability and minimal redundancy, focusing on those with

an intraclass correlation coefficient (ICC) of 0.8 or higher (29). For

features demonstrating high repeatability, Spearman’s rank

correlation coefficient was employed to evaluate the inter-feature

correlations. In instances where the correlation between any two

features exceeded 0.9, only one of these features was preserved. To

ensure maximum representation of the features, a strategy of greedy

recursive elimination was applied. This involved systematically

removing the feature with the greatest redundancy at each step.

In the final step, the LASSO algorithm was employed. This method

shrinks regression coefficients to zero by building a penalty function

denoted as l. Through this process, stable radiomics features were

selected for inclusion in the LASSO-Cox analysis. For more details

about the process of feature selection and fusion, please refer to

Supplementary S4.
Development of the deep learning
radiomics model

To prevent data leakage, model training was exclusively

conducted on the training dataset. Subsequent to the selection
FIGURE 4

Imaging segmentation of the vertebral body in a 63-year-old female patient diagnosed with acute OVFs, rated an ASTLOF score of 4. The set includes:
(A) lateral views on X-ray image, (B) sagittal spine CT image without contrast enhancement, (C) sagittal T2-weighted, fat-suppressed MR image displaying
hyperintensity indicative of acute OVFs, (D) lateral X-ray image post percutaneous vertebral augmentation, and (E) ROI identified on lateral X-ray image.
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and integration of features, various machine learning classifiers

were developed using the scikit-learn library. These classifiers

encompassed a range of algorithms, including Logistic Regression

(LR), Extremely Randomized Trees (Extratrees), Support Vector

Machine (SVM), Light Gradient Boosting Machine (LightGBM),

Multilayer Perceptron (MLP), Random Forests (RF), eXtreme

Gradient Boosting (XGBoost) and k-Nearest Neighbor (KNN).

To optimize model training on the training dataset, the grid search

algorithm was implemented, allowing for the adjustment of commonly
Frontiers in Endocrinology 06
used parameters within each model. A comparative evaluation of the

performance across various classification models was conducted. To

determine the most effective parameters for these models, 5-fold cross-

validation was employed, leading to the identification of optimal fused

feature labels. Furthermore, the significance of different features was

assessed using the SHapley Additive exPlanations (SHAP) value

(accessible at https://github.com/slundberg/shap). This method

quantifies the contribution of each feature to the predictive

outcomes, thereby elucidating their importance.
FIGURE 5

A basic architecture of a convolutional neural network.
FIGURE 6

Schematic diagram of the deep convolutional neural network pre-training and fine-tuning network structure.
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Model evaluation and statistical analysis

In the realm of machine learning, a fundamental method for

handling multi-class classification tasks involves the concept of

decomposition. This approach entails dividing the multi-class

problem into multiple binary classification tasks. In our study, we

employed the widely recognized ‘One-vs-Rest’ strategy for such

multi-class scenarios. As an example, under this strategy, if

Class 0 is designated as positive, then Class 1 and Class 2 are

considered negative. Similarly, when Class 1 or Class 2 is assigned

the positive label, the other two categories are automatically

labeled as negative. Consequently, a trio of ‘One-vs-Rest’ (OvR)

classification models were developed and trained. To assess the

efficacy of these prediction models, Receiver Operating

Characteristic (ROC) curves were constructed, and various

metrics including the Area under the Curve (AUC), accuracy,

sensitivity, and specificity were calculated. The models’ capability

to generalize was then appraised using internal and external

validation sets, along with a prospective validation set. For a

comprehensive evaluation of the multi-class task, this study

utilized both macro-averaged and micro-averaged AUC as the

metrics of choice, which are different approaches to aggregate

multiple confusion matrices. The macro-averaged AUC approach

involves computing the AUC for each individual class and then

averaging these AUCs across all classes. On the other hand, the

micro-averaged AUCmethod amalgamates the predictive outcomes

of all classes into a singular confusion matrix, from which the

collective AUC is derived. Statistical analyses in this study were

conducted using the R software (version 4.0.3). To conclude, the

Delong test was applied to assess the AUC differences between

prediction models, with a P-value less than 0.05 deemed indicative

of a statistically significant variance.
Result

Clinical baseline characteristics

In our study, 942 patients who satisfied the inclusion criteria were

enrolled, ranging in age from 50 to 97 years, with an average age of

69.34 ± 10.19 years. The cohort consisted of 678 female and 264 male

patients. Based on the DXA T-score classification, the study included

16 patients with normal bone mass, 205 with reduced bone mass, and

721 with osteoporosis. Within this group, 86 patients had experienced

2 osteoporotic vertebral fractures (OVFs), and 24 had 3 OVFs, bringing

the total number of vertebral fractures analyzed to 1076. The

demographic and clinical characteristics of these patients are detailed

in Table 1, while Table 2 outlines their treatment categorization across

three different classes. In Class 0 (1-3 points), 357 patients (72.9%)

underwent conservative treatment, and 113 patients (27.1%)

underwent surgery. In Class 1 (4 points), conservative treatment was

administered to 159 patients (34.5%), with the remaining 302 patients

(65.5%) receiving surgical treatment. Lastly, in Class 2 (5-8 points),

conservative treatment was given to 37 patients (29.6%), and surgical

treatment was opted for in 85 patients (70.4%).
Frontiers in Endocrinology 07
Features selection (RadImageNet-based)

In the analysis, the LASSO-Cox regression model was applied to

reduce the dimensionality of the combined features. The process of

selecting the optimal penalty coefficient (l set at 0.0222) and the

feature selection methodology are illustrated in Supplementary Figure

S5. This figure depicts how the coefficients of the features vary with

changes in l. Post the final round of feature selection, a total of 14

radiomics features and 3 DTL features were selected to form the

composite features. Utilizing these features and their respective

regression coefficients, the DTL_Radscore was formulated, as

shown in Supplementary Figure S6. The detailed equation used to

calculate the DTL_Radscore is available in Supplementary S7.
Features selection (ImageNet-based)

In the application of the LASSO-Cox regression analysis, the

selected penalty coefficient (l) was determined to be 0.0126. The

procedure used for selecting features, along with a curve graph that

illustrates how the coefficients of the features change with l, is
presented in Supplementary Figure S8. Upon completion of the

final feature selection process, a combination of 6 radiomics

features and 6 deep transfer learning (DTL) features were

maintained as the fused features. These features, along with their

associated regression coefficients, were utilized to develop the

DTL_Radscore, as depicted in Supplementary Figure S9. For a

comprehensive understanding of the DTL_Radscore calculation,

the formula is provided in Supplementary S10.
Model construction and validation

According to the comparison of macro-averaged AUC,

accuracy, and F1-score, the LR algorithm performed the best in

the fused feature models trained on RadImageNet (Supplementary

Table S11) and ImageNet datasets (Supplementary Table S12). The

validation results of the two sets of fused feature prediction models

for the three-class classification task can be found in Table 3. Based

on the RadImageNet dataset, the macro-averaged AUC for the

training set, internal validation set, external validation set, and

prospective validation set were all higher compared to the ImageNet

dataset (0.913 vs 0.831, 0.926 vs 0.826, 0.940 vs 0.844, 0.913 vs

0.872). The Delong test revealed statistically significant differences

(P<0.05) in all pairwise comparisons. Figure 7 displays the ROC

curves of the two sets of fused feature models in predicting OVF

classifications in the prospective validation set. Based on the binary

“OvR” strategy, the RadImageNet dataset model showed the most

effective prediction for Class 0, with an AUC of 0.969 and accuracy

of 0.863. The AUC and accuracy for predicting Class 1 were 0.945

and 0.875, respectively, while for predicting Class 2, they were 0.809

and 0.692, respectively. Figure 8 shows cases where the prediction

model based on the ImageNet dataset made classification errors,

while the model based on the RadImageNet dataset made

correct classifications.
frontiersin.org
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Feature importance for LR multiclass
classification models based
on RadImageNet

To evaluate the contribution of each feature to the model

predictions, the SHAP values for each feature were calculated.

Supplementary Figure S13 displays the features ranked by their

global SHAPley additive explanation values for the three-class

classification and each individual class. This helps assess their
Frontiers in Endocrinology 08
contribution to the model predictions. The SHAP decision plots

in Supplementary Figure S14 provide an intuitive visualization of

the workflow of the prediction model in predicting Class 0, Class 1,

and Class 2 in the prospective validation set.
Discussion

In contrast to clearly identifiable traumatic vertebral fractures,

osteoporotic vertebral fractures (OVFs) are typically more subtle

and often remain undetected. Inadequate treatment of OVFs can

compromise spinal stability and balance, potentially resulting in

severe neurological damage and an elevated risk of mortality (30).

Accurate classification of OVFs is crucial not only for precise

diagnosis but also for guiding appropriate clinical interventions.

Establishing an extensive and detailed classification system for

OVFs is immensely valuable for assessing fracture risk, selecting

suitable treatments, and evaluating long-term prognoses (31). This

study believes that an ideal classification system should have the

following characteristics: ① It should incorporate multidimensional

evaluation using X-ray, CT, and MRI imaging parameters. ② It

should consider the patient’s clinical symptoms, such as back pain
TABLE 2 OVFs according to the ASTLOF classification and their
distribution among the therapeutic method.

Classification

Conservative
treatment
(n=553, %)

PVA
(n=403,

%)

Open
surgery

(n=120, %)

Class 0 (1-3points) 357 (64.6) 98 (24.3) 35 (29.2)

Class 1 (4points) 159 (28.7) 232 (57.6) 70 (58.3)

Class 2 (5-8points) 37 (6.7) 73 (18.1) 15 (12.5)
OVFs, osteoporotic vertebral fractures; ASTLOF, Assessment System of Thoracolumbar
Osteoporotic Fracture; PVA, Percutaneous Vertebral Augmentation.
TABLE 1 Baseline Characteristic of patients with OVFs in the Training set, Internal/External validation set and Prospective validation set.

Characteristic
Training set
(n=712)

Interval Validation set
(n=178)

External Validation set
(n=111)

Prospective validation set
(n=75)

Sex, No. (%)

Female 531 (74.6) 123 (69.1) 70 (63.1) 51 (68.0)

Male 181 (25.4) 55 (30.9) 41 (36.9) 24 (32.0)

Age (years)

Mean (range) 70.38±10.49 68.01±10.73 65.54±9.19 65.83±11.32

DXA T-score

Mean (range) -2.7±0.70 -3.0±0.81 -2.7±0.53 -2.9±0.69

Fracture location, No. (%)

Thoracic 205 (28.8) 47 (26.4) 19 (17.1) 19 (25.3)

Lumbar 507 (71.2) 131 (73.6) 92 (82.9) 56 (74.7)

Fracture staging, No. (%)

Acute 472 (66.3) 104 (58.4) 76 (68.5) 53 (70.7)

Chronic 240 (33.7) 74 (41.6) 35 (31.5) 22 (29.3)

ASTLOF score, No. (%)

1-3 points 330 (46.3) 75 (42.1) 53 (47.7) 32 (42.7)

4 points 294 (41.3) 85 (47.8) 49 (44.1) 33 (44.0)

5-8 points 88 (12.4) 18 (10.1) 9 (8.2) 10 (13.3)

Therapeutic method, No. (%)

Conservative treatment 354 (49.7) 97 (54.5) 60 (54.1) 42 (56.0)

PVA 290 (40.7) 58 (32.6) 36 (32.4) 19 (25.3)

Open surgery 68 (9.6) 23 (12.9) 15 (13.5) 14 (18.7)
OVFs, osteoporotic vertebral fractures; DXA, Dual-energy X-ray absorptiometry; ASTLOF, Assessment System of Thoracolumbar Osteoporotic Fracture; PVA, Percutaneous
Vertebral Augmentation.
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and neurological symptoms. ③ Each classification should have

specific treatment approaches. ④ It should have high reliability

and reproducibility. ⑤ It should allow for the assessment of severity

and prognosis based on the classification. The ASTLOF

classification system takes into account vertebral morphology,

MRI images, bone mineral density T-scores, and clinical

symptoms. It is a comprehensive and systematic evaluation index

that assigns scores and helps select targeted treatment plans. It is

easy to use in clinical practice and has significant clinical guidance
Frontiers in Endocrinology 09
value. Studies have shown that this classification system has high

consistency and reproducibility and can effectively guide clinical

treatment (23).

In the past few years, the rapid advancements in artificial

intelligence have significantly influenced research in the

classification of osteoporotic vertebral fractures (OVFs), with a

primary focus on detection methods. Studies have demonstrated

that approaches based on deep learning and radiomics are superior

to traditional methods of visual analysis (6, 32). Despite this
A B

FIGURE 7

ROC Curves Comparing the Predictive Performance in the prospective validation set (A. RadImageNet, B. ImageNet).
TABLE 3 The classification performance of the models in the Training set, Internal/External validation set and Prospective validation set.

Model
Training set Interval validation set External validation set Prospective validation set

Accuracy AUC# Accuracy AUC Accuracy AUC Accuracy AUC

RadImageNet-based

Class 0 0.846
0.959

(0.942-0.976)
0.835

0.958
(0.926-0.991)

0.827
0.981

(0.954-0.999)
0.863

0.969
(0.939-0.999)

Class 1 0.801
0.923

(0.899-0.948)
0.837

0.913
(0.868-0.958)

0.788
0.921

(0.865-0.977)
0.875

0.945
(0.903-0.988)

Class 2 0.813
0.852

(0.795-0.910)
0.857

0.897
(0.799-0.995)

0.444
0.904

(0.776-0.999)
0.692

0.809
(0.681-0.937)

Three classification* 0.825
0.913

(0.886-0.940)
0.837

0.926
(0.885-0.968)

0.802
0.940

(0.890-0.989)
0.852

0.913
(0.860-0.967)

ImageNet-based

Class 0 0.731
0.894

(0.866-0.921)
0.782

0.939
(0.899-0.978)

0.860
0.895

(0.832-0.958)
0.769

0.935
(0.891-0.979)

Class 1 0.792
0.873

(0.842-0.905)
0.800

0.819
(0.756-0.882)

0.714
0.762

(0671-0.854)
0.754

0.907
(0.853-0.961)

Class 2 0.636
0.720

(0.650-0.790)
0.612

0.698
(0.557-0.838)

0.400
0.857

(0.708-0.999)
0.667

0.758
(0.619-0.896)

Three classification 0.752
0.831

(0.794-0.867)
0.787

0.826
(0.762-0.890)

0.766
0.844

(0.766-0.922)
0.761

0.872
(0.808-0.937)
*Date are macro-average, #Date in parentheses are 95% confidence intervals.
AUC, Area under curve.
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progress, most current studies on OVF classification and detection

have confined their research to dividing data from a single center

into training and validation sets for internal validation purposes.

Yet, variations in image scanning techniques, post-processing

reconstruction, scanning parameters, and differences among

equipment from various manufacturers can lead to considerable

discrepancies in radiomics findings (33). Additionally, single-center

studies lack data heterogeneity and may result in varying degrees of

overfitting. Multi-center studies provide diverse radiological data,

and prediction models undergo independent external validation,

which can better interpret the heterogeneity of OVFs and align with

the development of precision medicine. The strength of this study

lies in the use of chest and lumbar spine X-ray images from three

hospitals, employing the ASTLOF classification system, conducting

DTL separately based on the RadImageNet and ImageNet datasets,

constructing a predictive model that combines radiomics and DTL

features, evaluating its performance in predicting OVFs

classification, and validating it with an independent prospective

external set.

The ImageNet dataset contains millions of natural images and

has been widely used to train various deep learning models, finding

extensive applications in various medical scenarios. However, the

ImageNet dataset was primarily designed for natural images, and

medical images have their own characteristics and challenges, such as

high noise and low contrast. The limitations in using the ImageNet

dataset for texture representation in medical imaging are notable,

primarily because the dataset lacks the intricate 2D and 3D structures

typical of human anatomy. Consequently, DTL that relies on the

ImageNet dataset might not be fully applicable to specific medical

contexts. In contrast, the RadImageNet database, encompassing over

1.35 million grayscale medical images, includes a diverse array of

anatomical structures like bones, muscles, and nerves. Research

indicates that this database can significantly enhance DTL’s

effectiveness in medical applications and exhibits superior

generalization abilities in such contexts (34).
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The results of this study also confirm that the predictive model

based on the RadImageNet dataset outperforms the ImageNet

model. In the case of imbalanced samples, the “One-vs-Rest”

strategy is generally chosen for multi-classification tasks (35). The

predictive model using the “OvR” strategy in this study

demonstrates satisfactory classification ability, being most effective

in identifying Class 0 and 1 classifications. However, in the

prospective validation set, the AUC and accuracy for predicting

Class 2 are slightly lower, which may be related to the smaller

sample size of Class 2. Additionally, a possible explanation is that

the inducible back pain (score 1) or persistent pain (score 2) in

patients is related to many factors that cannot be directly measured

or quantified by radiomics, such as the patient’s overall health status

and pain threshold. In the context of multi-classification tasks, the

SHAP value is frequently utilized to determine the significance of

features. These values reveal whether each predictive variable

positively or negatively influences the outcome (36). Notably, the

Small Dependence Low Gray Level Emphasis (SDLGLE) feature has

the highest correlation coefficient. A higher SDLGLE value suggests

a more irregular texture (37). In cases of acute OVFs, common

indicators such as disruption of the vertebral endplate, fractures

within the trabecular bone, and uneven vertebral body density are

primary contributors to this irregular texture. Furthermore, acute

OVFs may exhibit elevated signal alterations in T2-weighted

imaging with fat suppression sequences (noted as score 1) or

display indications of vacuum phenomena and effusions within

the vertebral body (noted as score 2). These manifestations also

contribute to the irregularity of the texture. While the

interpretability of features derived from current deep transfer

learning models warrants additional investigation, this does not

impede the identification and mapping of lesion-specific features

through convolutional operations. These identified features can

then be leveraged in the construction and classification of models.

Our study demonstrates that the fusion feature model has

strong clinical value in distinguishing OVFs classifications.
FIGURE 8

Prediction example based on RadImageNet model. An examples of a 65-year-old female patient with OVFs (ASTLOF score: 5) in the prospective
validation set. This case was misclassified by the ImageNet model, but correctly reclassified as the Class 1 by the RadImageNet model (A. X-ray, B.
CT, C. MRI, D. X-ray with PVA).
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However, there are still some limitations that can be further

explored and addressed in future work. Firstly, there is an

imbalance in the sample sizes of the three classifications, such as

a relatively small sample size for Class 2, which may result in

misclassification as Class 0 or 1 and subsequently reduce the overall

classification accuracy. In the future, increasing the sample size to

overcome this imbalance is expected to achieve more convincing

validation results. Secondly, considering that the vertebral body is

inherently a three-dimensional structure, reliance solely on lateral

images may not encapsulate all its features. Future studies should

include anterior-posterior images to ensure a more thorough

feature representation. Lastly, the interpretability of deep learning

features extracted using the DLR method remains limited.

Advancing research into the interpretability of radiomics features

is crucial for augmenting the clinical utility of the DLR approach in

practical settings.
Conclusion

Our study combines deep learning features with radiomics

features based on the RadImageNet dataset to construct a

predictive model for distinguishing OVFs classifications. Compared

to the ImageNet dataset, this model has good clinical utility in

predicting OVFs classifications and guiding treatment planning.
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