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Objective: Diabetes mellitus is the leading cause of death worldwide, and

multiple risk factors associated with diabetes mortality.

Methods: Employing spatial statistics, we characterized the spatial distribution

and patterns of diabetes mortality, and revealed the spatial relationship between

diabetes mortality and 11 socioeconomic and environmental risk factors at the

country level, from 1990 to 2019.

Results: Globally, significantly high rates of diabetes mortality were primarily

clustered in countries with limited land areas or located on islands, such as Fiji,

Kiribati, Eswatini, and Trinidad and Tobago. Countries with weaker economic

independence are more likely to have higher diabetes mortality rates. In addition,

the impact of socioeconomic and environmental factors was significant at the

country level, involving health expenditure, number of physicians, household and

ambient air pollution, smoking, and alcohol consumption. Notably, the spatial

relationship between diabetes mortality and ambient air pollution, as well as

alcohol consumption, showed negative correlations. Countries with high

diabetes mortality rates generally had lower levels of ambient air pollution and

alcohol consumption.

Conclusion: The study highlights the spatial clustering of diabetes mortality and

its substantial variation. While many risk factors can influence diabetes mortality,

it’s also essential to consider the level of these factors at the country level.

Tailoring appropriate interventions based on specific national circumstances

holds the potential to more effectively mitigate the burden of diabetes mortality.
KEYWORDS
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1 Introduction

Diabetes mellitus is one of the major disease burdens in global

public health. People with diabetes not only have a range of

metabolic disorder problems, but also have an increased risk of

cancer and other non-communicable diseases (NCD), compared

with the general population (1). Diabetes is one of the top 10 causes

of death worldwide, which caused approximately 1.5 million deaths

in 2019 (2, 3). Diabetes deaths account for 35.6% of deaths from

NCD and 2.7% of deaths from all causes worldwide (2). The burden

of diabetes has developed into an essential constraint on public

health and economic development.

Diabetes, as a prominent global disease burden, has garnered

substantial and focused attention in recent years (4). Previous studies

have analyzed diabetes from diverse perspectives, including

epidemiology (3), risk factors (3, 5), and social or economic burdens

(6, 7). These investigations have provided a relatively comprehensive

picture of the epidemiological process of diabetes and the impact of

various external factors on diabetes (4, 8). However, spatial aspects are

also worth paying attention to in diabetes spatial epidemiology

research. These spatial pattern disparities in risk factors contribute to

the spatial heterogeneity of risk factors, ultimately resulting in spatial

heterogeneity in diabetes burden and diabetes-related health

inequalities. Specifically, the heterogeneity in socioeconomic status is

associated with inequalities in diabetes healthcare, leading to elevated

diabetes deaths in countries with various incomes (6). Given that,

investigating spatial patterns and heterogeneity is conducive not only to

mitigating the disease burden of diabetes but also to narrowing the

associated health inequalities.

To comprehend the spatial pattern and heterogeneity of

diabetes more comprehensively, several issues continue to merit

consideration and resolution. Notably, the majority of studies on

diabetes traditionally treated areas as independent geographic units,

often overlooking the interplay between areas (3, 9). In contrast,

spatial statistics integrate spatial relationships into calculations,

facilitating the direct exploration of the spatial distribution and

dynamics of diabetes (9, 10). This approach also offers a more

accurate assessment of how risk factors impact distinct geographic

areas. Furthermore, in recent decades, the number of deaths due to

diabetes has significantly increased in countries of varying regions

or income levels, with significant variations in the underlying

factors (11, 12). Globalization and economic development change

are intricately correlated with the widespread prevalence of diabetes

(4, 13). With globalization and economic development, multiple

risk factors that directly or indirectly influence diabetes have

undergone significant changes (13, 14). These factors encompass

multiple macro aspects, such as healthcare services, lifestyle

changes, environmental pollution, social well-being, and

urbanization (14). Further, it is imperative to comprehensively

illustrate the spatial heterogeneity of these factors at a broader

geographic scale. Consequently, there is a vital necessity to

investigate the long-term, global-scale spatial distribution and

patterns of diabetes mortality, as well as the spatial relationship

between social and environmental factors and diabetes mortality.
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This study adopts a geographical epidemiology approach to reveal

the spatial distribution, changes, patterns, and relationship of diabetes

mortality. Utilizing spatial statistics and diabetes mortality data at the

country level, it is possible to explore the spatial distribution and

patterns of diabetes on a global scale, revealing regional clusters and

disparities in diabetes mortality. The spatial statistics applied in this

section encompass the Moran’s I statistics, and Getis-Ord Gi*.
Furthermore, drawing from the Sustainable Development Goals

(SDGs), this study collected 11 risk factors potentially associated with

diabetes mortality. Through the application of two spatial relationship

techniques, namely the Geodetector and spatial lag model, this study

quantifies the spatial correlation and regression between spatial

heterogeneity of diabetes mortality and these risk factors.
2 Methods

2.1 Data sources

Deaths due to diabetes were defined as death where diabetes is the

underlying cause (15–18). These deaths included those caused by

type 1 and type 2 diabetes, categorically identified as 5A10 and 5A11

according to the International Classification of Diseases (ICD)

version 11 (19). The diabetes data for this study encompasses

estimated age-standardized mortality rates of diabetes mellitus for

203 countries and territories from 1990 to 2019. The diabetes data

were collected from the Global Health Data Exchange query tool

(http://ghdx.healthdata.org/gbd-results-tool), maintained by the

Institute for Health Metrics and Evaluation (IHME).

Accounting for differences in age structure, we utilized the age-

standardizedmortality rate to represent diabetes mortality in this study.

The age-standardized mortality rate is calculated by applying the age-

specific mortality rates observed within a particular population to the

standard population’s age structure (20). This standard population

typically represents a hypothetical population with a standard age

distribution, here the World Standard Population. Adjusting for age in

this manner enhances the accuracy of mortality rate comparisons

between countries with different age structures.

There are two classifications of regions to measure diabetes

mortality from geographic or economic perspectives. We have

divided countries into 21 GBD regions based on geographic locations

to highlight regional variations. Meanwhile, we have categorized

countries into four groups based on World Bank income levels to

highlight economic disparities across countries, including low-income

countries (LICs), lower-middle-income countries (LMICs), upper-

middle-income countries (UMICs) and high-income countries (HICs).

Diabetes mortality attributable to risk factors is based on the SDG

indicators. SDGs provide a comprehensive framework of indicators

closely related to sustainable development, such as health,

environment, poverty, inequality, and well-being (2). In this study,

we selected nine SDG indicators and two indicators related to the SDGs

to contrast the framework of factors influencing diabetes mortality

(Table 1). These factors were divided into three categories, namely

health and healthcare, environment, development, and well-being.
frontiersin.org

http://ghdx.healthdata.org/gbd-results-tool
https://doi.org/10.3389/fendo.2024.1370489
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xu et al. 10.3389/fendo.2024.1370489
Given limitations in data availability, we utilized risk factors

from 2019 for spatial relationship analysis. The data for the 11 risk

factors in 2019 were collected from multiple sources. From the

Global Health Observatory, the health dataset of the World Health

Organization (WHO), we obtained the data for multiple risk

factors, including per capita health expenditure, universal health

coverage, number of physicians, overweight in children, alcohol

consumption, tobacco smoking prevalence, household air pollution,

ambient air pollution (21). Data for high body-mass index was

obtained from IHME (22). Data for urban population was obtained

from the United Nations World Urbanization Prospects (23). Data

for the human development index was obtained from the United

Nations Human Development Reports 2020 (24). To conduct

spatial analysis, these data are at the country level, encompassing

203 countries and territories as possible.
2.2 Statistical analysis

2.2.1 Spatiotemporal analysis
In spatiotemporal analysis, spatial statistical methods were

employed to explore the spatial variation, temporal change, and

spatial distribution pattern of diabetes mortality rates from 1990 to

2019, at the country level. We investigated the temporal trends for

age-standardized mortality rates of diabetes from 1990 to 2019 by

calculating the average annual percentage change (AAPC) along

with 95% confidence intervals (CI) through a Joinpoint regression

analysis. The AAPCs calculations were performed using the

Joinpoint software (v5.0.2, https://surveillance.cancer.gov/
Frontiers in Endocrinology 03
joinpoint/), maintained by the U.S. National Cancer Institute. The

Permutation Test (Monte Carlo Permutation) was selected to

determine the significant level of AAPCs. Then, we employed

Global Moran’s I to examine the global spatial autocorrelation of

diabetes mortality rates from 1990 to 2019 (Moran, 1950), and

Anselin local Moran’s I and Getis-Ord Gi* was utilized to reveal and
visualize the local spatial autocorrelation and distribution of

diabetes mortality rates in 1990 and 2019. Spatial analyses,

including Moran’s I statistics and Getis-Ord Gi*, were conducted

in ArcGIS Pro (v3.0, ESRI, Redlands, CA, USA). The Compact

Miller projection was employed for geographical visualization and

spatial analyses on a global scale (25).

Global Moran’s I is a frequently used spatial statistical method

for global spatial autocorrelation of geographical features. It

characterizes the spatial patterns of geographical features by

measuring feature locations and attribute values (26). We applied

Moran’s I to determine the spatial patterns of diabetes mortality,

exploring whether it is spatial clustering or dispersion. The equation

for the calculation is as follows:

I =
n

on
i=1on

j=1wij

on
i=1(xi − �x)on

j=1Wij(xj − �x)

on
i=1(xi − �x)2

where n is the total number of countries; xi and xj are diabetes

mortality rates of countries i and j (where i ≠ j); �x is the average over

all locations of countries; wij is the spatial weight between countries i

and j. Spatial weight quantifies the spatial relationships or

connectivity between different countries, and we used a distance-

based spatial Weight in this study. The value of Moran’s I ranged

from -1 to 1. A positive Moran’s I indicate spatial clustering of health
TABLE 1 Summary of 11 risk factors for diabetes mortality.

Category Risk factor Interpretation Unit SDGs

Health
and Healthcare

Per capita health expenditure Current health expenditure per capita
1000$

SDG
1.a.2

Universal health coverage UHC Service Coverage Index reflects essential healthcare
service coverage

%
SDG
3.8.1

Number of physicians Number of physicians per 1,000 people Per
1,000

SDG
3.c.1

High body-mass index Proportion of the population exposed to a high body mass index
–

SDG
2.2.2

Overweight in children Overweight prevalence among children under 5 years of age
%

SDG
2.2.2

Alcohol consumption Per capita alcohol consumption for the population aged 15
and above

L
SDG
3.5.2

Tobacco smoking prevalence Estimate of current tobacco smoking prevalence
%

SDG
3.a.1

Environment Household air pollution The proportion of the population with primary reliance on polluting
fuels and technologies for cooking

%
SDG
7.1.2

Ambient air pollution Concentrations of fine particulate matter (PM2.5)
–

SDG
11.6.2

Development
and wellbeing

Urban population The proportion of the population living in urban areas % –

Human Development Index Composite index reflecting a country’s health, education, and
living standards

– –
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indicators, while a negative Moran’s I suggest spatial dispersion. A

Moran’s I equal to 0 implies a random distribution of health

indicators. The Z-score and P-value provide statistical significance

on the calculated Moran’s I using a 95% confidence level.

Anselin local Moran’s I is a spatial statistic used to detect local

spatial autocorrelation in geographical features. It is designed to

identify local clustering or dispersion patterns in space. Local

Moran’s I reveal the spatial correlation between each geographic

unit and its neighboring units by computing the spatial

relationships and uncovering the local spatial structure around

each location. The equation used for the calculation is as follows:

Ii =
n
Wi

on
j=1Wij(xi − �x)(xj − �x)

where Ii is the Moran’s I for country i. Local Moran’s I results can be

categorized into four quadrants: high-high, high-low, low-high, and

low-low. Specifically, high-high indicates a country and its

neighboring countries both have high values, suggesting the local

clusters of high values. High-low indicates a country has a high

value, but its neighboring countries have low values, suggesting the

local dispersal of high values. The Z-score and P-value also provide

statistical significance for Local Moran’s I, corresponding to a 95%

confidence level.

Following Anselin local Moran’s I, Getis-Ord Gi* was employed

to further reveal the significance of local clusters of geographical

features. Getis-Ord Gi* is a spatial statistic that analyzes local spatial
patterns of geographical features. It determines whether the

clustering pattern of features is high- or low-value concentration

(27). The equation for the calculation is as follows:

G*i =  o
n
j=1wijxj − �xon

j=1wij

on
j wijxj

where wij is the spatial weight between countries i and j. Positive Gi*
indicates that country i is surrounded by high values mortality, and

the country is regarded as a hot spot; negative Gi* indicates that

country i is surrounded by low values mortality, and the country is

regarded as a cold spot. In addition, based on statistical significance,

Gi* can be categorized into four levels: high significance, middle

significance, low significance, and not significance.

2.2.2 Spatial relationship analysis
In relationship analysis, spatial analysis techniques were

employed to quantify the spatial correlation and regression

between diabetes mortality rates and risk factors in 2019. Initially,

Geodetector was utilized to evaluate the individual contributions of

risk factors to the spatial heterogeneity observed in diabetes

mortality rates. Then, we fit the ordinary least squares (OLS)

model to adjust the spatial lag model. Based on the OLS model,

variance inflation factors (VIF) were computed for the risk factors

to assess potential multicollinearity. Further, Lagrange multiplier

(LM) and robust LM tests were conducted to determine the

reliability of the spatial lag model and to mitigate against multiple

hypotheses. Last, the spatial lag model was employed to investigate

the spatial impact of risk factors on spatial heterogeneity of diabetes

mortality rates. To objectively compare the performance of the OLS
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and spatial lag model, fit statistics such as R2 and Akaike

Information Criterion (AIC) statistics were employed (28).

The Geodetector is a spatial statistic for detecting spatial

stratified heterogeneity (SSH) of spatial features (29). Unlike

methods requiring linear hypotheses, the Geodetector offers a

capacity to evaluate the individual impact of driving factors on

spatial features. If the spatial distribution of diabetes mortality rates

is similar to that of a given factor, then the distribution of diabetes

mortality rates can be attributed to the factor. The equation for the

calculation is as follows:

q = 1 −o
L
h=1Nhs

2
h

Ns 2

where N is the total number of countries; s2 is the variance of factor

in the study area; h = 1, 2,…, L is strata of variable. The value of the

q-statistic ranged from 0 to 1. A q-statistic of 0 represents that the

factor’s explanatory power is not significant, while a value of 1

indicates perfect explanatory power. To perform the analysis in the

Geodetector, we reclassified factors into 5 levels using the natural

break classification method (30). Spatial correlation analysis was

performed using Geodetector software (http://geodetector.cn/).

The spatial lag model is a spatial regression model applied to

quantify the effect of long-term stable factors, such as

socioeconomic status, local economic development, geographic

environment, and living conditions (31, 32). The equation for the

calculation is as follows:

si = rWsi + Xb +∅

where si is the dependent variable for a specific location. r is the

spatial autoregressive coefficient of the lag term, which measures the

extent to which the value of si in a location is influenced by the values

of si in neighboring locations. W is the spatial adjacent matrix,

reflecting the spatial trend of the response variables. X are all selected

socioeconomic and environmental factors in this study. b is the

spatial regression coefficient of the explanatory variables. ∅ is the

error term of the spatial autocorrelation. Regression analyses,

including OLS and Spatial lag model, were performed using the R

(v4.3.2, https://www.r-project.org/).
3 Results

3.1 Spatial distribution and temporal
trends of diabetes mortality

Globally, the age-standardized mortality rate of diabetes increased

from 17.92 (95% uncertainty interval [UI], 16.89 to 18.82) per 100,000

population in 1990 to 19.47 (18.08, 20.71) per 100,000 population in

2019, corresponding to an increase AAPC of 0.29% (95%CI, 0.27% to

0.31%) (Figure 1, Supplementary Table S1).

Regionally, diabetes mortality rates exhibited significant

geographic variations across the GBD regions (Figure 1,

Supplementary Table S1). In 2019, Oceania reported the highest

diabetes mortality rate (123.74 [95%UI, 102.16 to 149.28] per

100,000), followed by Southern Sub-Saharan Africa (69.89 [95%
frontiersin.org
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UI, 64.51 to 75.17] per 100,000) and Central Latin America (45.73

[95%UI, 40.38 to 51.42] per 100,000). In contrast, the region with

the lowest mortality rate was High-income Asia Pacific (4.39 [95%

UI, 3.89 to 4.77] per 100,000), followed by Eastern Europe (6.68

[95%UI, 5.94 to 7.41] per 100,000) and West Europe (8.93 [95%UI,

8.01 to 9.46] per 100,000). Notably, the mortality rate in Oceania

exceeded the global average by approximately sixfold. In addition,

from 1990 to 2019, Oceania experienced a consistent increase in

mortality rates, corresponding to an AAPC of 1.07% (95%CI, 1.03%

to 1.11%).The highest increase in mortality rate was observed in

Central Asia (-2.20% [95%CI, -2.27% to -2.14%]), while High-

income Asia Pacific (3.27% [95%CI, 3.03% to 3.48%])experienced

the most substantial decline in mortality rates.

When considering income levels, many disparities in diabetes

mortality rates between countries emerge (Figure 1, Supplementary

Table S2). In 2019, diabetes mortality rates ranked from low to high

as follows: HICs (10.29 [9.43, 10.82] per 100,000), UMICs (16.08

[14.72, 17.33] per 100,000), LMICs (32.82 [29.97, 35.54] per 100,000),

and LICs (34.72 [31.08, 38.7] per 100,000). This rank remained

consistent over the past three decades. Notably, HICs (-0.99% [95%,

-1.03% to -0.96%]) experienced a substantial decline in diabetes

mortality and LICs (-0.17% [95%, -0.18% to -0.16%]) saw a slight

decline, both exhibiting a continuous downward trend. Conversely,

LMICs (1.02% [95%, 0.95% to 1.08%]) experienced a consistent and

substantial increase in diabetes mortality, with the gap between

LMICs mortality rate and that of LICs was steadily narrowing.

At the country level, the disparities in diabetes mortality

exhibited significant magnitude (Supplementary Table S1). In

2019, the three countries with the highest mortality rates were Fiji

(260.75 [212.99 to 313.42] per 100,000), Kiribati (206.61 [160.67 to

256.04] per 100,000), and the Federated States of Micronesia

(171.59 [128.74 to 229.5] per 100,000), all located in Oceania.

Notably, among Oceania countries, 17 countries had mortality

rates three times higher than the global average, and 14 countries

had rates five times higher. Among Latin America and the

Caribbean, 13 countries reported mortality rates three times

higher than the global average, and high mortality countries were

concentrated in the Caribbean and vicinity. In Sub-Saharan African
Frontiers in Endocrinology 05
countries, only 7 countries reported mortality rates three times

higher than the global average, whereas all of them showed an

increasing trend in mortality. High mortality rate countries in Sub-

Saharan Africa were all located in southern and central Africa. In

contrast, the lowest mortality rates were observed in Japan (2.08 [1.8

to 2.25] per 100,000), Singapore (2.45 [2.13 to 2.7] per 100,000) and

Belarus (2.52 [2.02 to 3.17] per 100,000).
3.2 Spatial autocorrelation of
diabetes mortality

Using spatial autocorrelation analysis, the Moran’s I value for

diabetes mortality rates from 1990 to 2019 ranged from 0.39 to 0.42,

with all Z-score > 2.58 and P< 0.05, indicating consistent spatial

clustering of diabetes mortality (Table 2). Countries tend to be

neighboring countries with similar mortality rates. In addition, the

results of the spatial correlation of diabetes mortality indicated that

the distribution of diabetes is associated with potential geographic

risk factors.

Anselin local Moran’s I and Getis-Ord Gi* were employed to

determine the local spatial autocorrelation of diabetes mortality rates

between 1990 and 2019 (Figures 2, 3). Throughout the study period,

there was observed a relatively stable global distribution of clusters and

outliers, as well as hot and cold spots. Through Anselin local Moran’s I,

clusters of diabetes mortality rates were persistently distributed in

countries within Oceania, and Southern Sub-Saharan Africa, indicating

spatial clustering of mortality rates in these countries. In 2019, high-low

outliers were observed in Afghanistan, Pakistan, Iraq, Jordan, Palestine,

and Eritrea, presenting countries with high mortality rates surrounded

by low rates. Conversely, low-high outliers were observed in Australia,

New Zealand, the Philippines, and Timor-Leste, presenting countries

with low mortality rates surrounded by high rates. Following Anselin

local Moran’s I, Getis-Ord Gi* was utilized to assess the significance of

spatial clustering in diabetes mortality rates. The results reveal the

essentially consistent distribution of cold and hot spots and clusters.

Notably, hot spots in Oceania consistently maintained the highest level

of significance, with those in Southeast Asia ranging from middle to
FIGURE 1

Age-standardized death rates of diabetes mellitus for GBD regions, and World Bank income levels by AAPC in 2019; the gray line represents
expected values based on the AAPC and rates in GBD regions. AAPC, average annual percentage change; ASDR, age-standardized death rate;
GBD, Global Burden of Disease Study.
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high significance. Due to the significantly high mortality rates in

Oceania countries, Australia and New Zealand, countries with low

mortality rates, have also been considered hotspots. Hot spots in Latin

America and the Caribbean countries exhibited a downward trend in

statistical significance, indicating a mortality decline in these countries.

Generally, stable spatial clustering with high significance was mostly

found in island countries, such as countries in Oceania and the

Caribbean. Furthermore, in comparison to Oceania countries,

African countries, except for those in southern Africa, exhibited

significantly lower mortality rates, explained the absence of persistent

hot spots in Africa. However, with the rise in mortality rates in

southern African countries, some countries in southern Africa have

also shifted to hot spots.
Frontiers in Endocrinology 06
3.3 Spatial heterogeneity analyses of
diabetes mortality

The Geodetector was employed to explore the spatial correlation

between diabetes mortality rates and risk factors (Table 3). The q-

statistic values for 11 risk factors ranged from 0.055 to 0.373, with all P-

value< 0.05, indicating the significant spatial correlation between

mortality and these factors. Among these factors, universal health

coverage exhibited the strongest correlation with mortality, closely

followed by per capita health expenditure and human development

index. In contrast, factors such as ambient air pollution, overweight in

children, and high body-mass index exhibited relatively weaker

correlations with mortality.
A

B

FIGURE 2

Clusters and outliers of age-standardized mortality rate of diabetes mellitus between 1990 (A) and 2019 (B).
TABLE 2 Global Moran’s I of the age-standardized rate of diabetes mortality between 1990 and 2019.

Year Moran’s I Z-score P-value Spatial pattern

1990 0.420 23.309 <0.001 Clustering

1995 0.422 23.649 <0.001 Clustering

2000 0.403 22.706 <0.001 Clustering

2005 0.398 22.355 <0.001 Clustering

2010 0.392 22.031 <0.001 Clustering

2015 0.409 22.944 <0.001 Clustering

2019 0.422 23.682 <0.001 Clustering
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Through the OLS model, VIF results revealed that all 11 risk

factors exhibited values lower than 5, indicating the absence of

multicollinearity among these factors (Supplementary Table S2).

The fit statistics of the OLS model presented R2 and AIC values of
Frontiers in Endocrinology 07
0.34 and 1995.20, respectively (Supplementary Tables S3, S4).

Moran’s I of residual for the OLS model remained statistically

significant, indicating the model failed to capture spatial structures

in the data. Both the LM and Robust LM tests conducted for the

spatial lag model yielded statistically significant results, thereby

affirming the reliability of the model and avoiding multiple

hypotheses. By incorporating spatial weight, and error terms into

the model, the spatial lag model exhibited an improvement

compared to the OLS model, with an elevated R2 (0.39) and a

reduced AIC (1993.24). Furthermore, Moran’s I of residual for the

spatial lag model was not significant, indicating that these factors

adequately addressed spatial effects on diabetes mortality rates.

After the spatial correlation, the spatial lag model was utilized to

conduct spatial regression, quantifying the impact of risk factors on

spatial heterogeneity of diabetes mortality (Table 4). Among these

factors, seven exhibited significant spatial impact on spatial

heterogeneity of diabetes mortality (P< 0.05). Notably, per capita

health expenditure, number of physicians, alcohol consumption,

and ambient air pollution exhibited negative correlations with

mortality, while high body-mass index, tobacco smoking

prevalence, and household air pollution displayed positive

correlations with mortality. For instance, a 1000$ rise in health

expenditure was associated with a 3.424% decrease in diabetes

mortality. An increase in one physician per 1,000 people was

associated with a 5.410% decrease in diabetes mortality.

Conversely, a 1% rise in tobacco smoking prevalence was

associated with a 0.498% increase in diabetes mortality. Similar

patterns were observed for the remaining significant factors. On the
A

B

FIGURE 3

Getis-Ord Gi* of age-standardized mortality rate of diabetes mellitus between 1990 (A) and 2019 (B).
TABLE 3 The q-statistic of risk factors for diabetes mortality in 2019
by Geodetector.

Category Risk factor q-
statistic

P-
value

Health and Healthcare Per capita
health expenditure

0.339** <0.001

Universal
health coverage

0.373** <0.001

Number of physicians 0.188** <0.001

High body-mass index 0.098* 0.011

Overweight in children 0.070* 0.013

Alcohol consumption 0.209** <0.001

Tobacco
smoking prevalence

0.129** <0.001

Environment Household air pollution 0.187** 0.000

Ambient air pollution 0.055* 0.043

Development
and wellbeing

Urban population 0.113** <0.001

Human
Development Index

0.299** <0.001
Statistical significance level: *p< 0.05; **p< 0.01.
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other hand, while there was a significant spatial correlation with

mortality rates, the spatial impact of universal health coverage,

overweight in children, and urban population on mortality rates

was not statistically significant (P > 0.05).
4 Discussion

Diabetes is a significant public health challenge globally.

Gaining insights into the distribution and spatial determinants of

diabetes mortality is pivotal for reducing mortality rates and

narrowing the inequalities in diabetes deaths across countries.

Employing spatial statistics, this study highlighted the distribution

of high diabetes mortality, and quantified multiple spatial

relationships between diabetes mortality and social and

environmental factors. Through these, many overlooked or

counterintuitive patterns in diabetes distribution and the

relationship with risk factors have been revealed. The findings

underscore the notable regional clustering of diabetes mortality

rates and illuminate the multifaceted nature of the association with

risk factors.

Deaths due to diabetes represent a widespread global health

burden, and exhibit significant regional clustering. Over the past

three decades, the global diabetes mortality rate has remained below

20 per 100,000. Diabetes mortality in countries within East Asia,

Europe, and North America was consistently significantly lower

than the global mortality rate. Conversely, in some regions, the
Frontiers in Endocrinology 08
mortality rate has been significantly higher than the global average.

High diabetes mortality is primarily concentrated in countries with

regions such as Oceania, Latin America and the Caribbean, and

Sub-Saharan Africa, with most of these countries having mortality

rates approximately twice as high as the global average. Among

these countries, specifically countries in Oceania, the Caribbean,

and Southern Africa, the mortality rates were even more than 3 to

12 times higher than the global average mortality rate. This

indicates that diabetes mortality rates are significantly higher in

many island countries, which is a conspicuous pattern of attention.

Compared to the significant differences in diabetes mortality

rates observed when classified by geographic regions, the differences

in mortality rates based on income levels are much smaller. The

diabetes mortality rates in LICs and LMICs are approximately 2 to 3

times higher than in UMICs and HICs, and even less than twice the

global mortality rate. Notably, in high diabetes mortality countries,

there was also a significant disparity in income levels. In Sub-

Saharan Africa, a region with generally high diabetes mortality

rates, the majority of countries are LICs or LMICs, with mortality

rates approximately twice the global average. In regions with

exceptionally high mortality rates such as Oceania, the Caribbean,

and Southern Africa, the majority of countries are UMICs or HICs.

These reflect the complexity of diabetes mortality, with geographic

location and income levels both potentially impacting diabetes

mortality, requiring multifaceted analysis.

High diabetes mortality displays a conspicuous pattern of

geographic clustering. Significantly high rates of diabetes

mortality were concentrated in Oceania and the Caribbean,

regions exclusively comprised of island countries. Notably, in

Oceania, island countries such as Fiji, Kiribati, Nauru, and

Micronesia consistently exhibited alarmingly high diabetes

mortality, with rates 5 to 12 higher than the global average. This

trend in island countries can be attributed to multifaceted factors,

including geographical constraints, economic structure, and dietary

practices. Previous studies reported that countries in the Pacific

islands experienced great changes in social and economic structure

(33). These changes have profoundly impacted the traditional

economic frameworks of these nations, largely due to external

influences. Substantial imported foods with high sugar substituted

local traditional foods, such as fish and vegetables, which had

dramatically increased sugar consumption among Pacific

Islanders (34). This shift towards an unhealthy diet, coupled with

a decline in physical activity, has led to a rapid escalation in obesity

rates and diabetes prevalence, culminating in a stark rise in diabetes

mortality. Similarly, these transitions have been observed in the

Caribbean and adjacent countries (35, 36). For example, in Jamaica,

an upper-middle-income country with a high prevalence of obesity

and diabetes, economic shifts have been intricately associated with

shifts in dietary habits (36). Cheaper foods, such as processed meat,

sweetened beverages, and simple carbohydrates, contributed to a

considerable increase in sugar consumption. The insufficient

diagnosis and treatment of diabetes have not been effective in

curbing prevalence and mortality (37). Furthermore, Southern

Africa had a significantly high mortality concentrated, with rates

even exceeding the global average by more than 3 to 5 times. Among

these countries, those with limited land areas or located on islands,
TABLE 4 The coefficient of risk factors for diabetes mortality in 2019 by
Spatial Lag Model.

Category
Risk factor

Coefficient
(95% CI)

P-
value

Health
and Healthcare

Per capita
health expenditure

-3.424
(-8.556, -1.205)

0.039

Universal
health coverage

0.102 (-0.233, 0.610) 0.591

Number
of physicians

-5.410
(-11.332, -2.773)

0.005

High body-
mass index

1.252 (1.237, 2.377)
<0.001

Overweight
in children

-0.508
(-1.899, 0.221)

0.286

Alcohol
consumption

-0.910
(-2.978, -0.186)

0.148

Tobacco
smoking prevalence

0.498 (0.214, 1.125) 0.015

Environment Household
air pollution

0.271 (0.186, 0.600) 0.004

Ambient
air pollution

-0.457
(-1.218, -0.477)

0.008

Development
and wellbeing

Urban population
-0.108

(-0.417, 0.094)
0.351

Human
Development Index

24.527
(-12.764, 55.471)

0.109
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such as Eswatini, Lesotho, and Mauritius, reported the highest

mortality rates (38). These finding suggest that island countries or

countries with limited land areas particularly vulnerable when it

comes to addressing diabetes in the face of external shocks.

Geographical location and socioeconomic constraints hinder these

countries from making timely adjustments to address diabetes,

ultimately significantly increasing the health burden from diabetes.

The findings also exhibited the intricate spatial relationships

between diabetes mortality and multifaceted risk factors, at the

country level. The Geodetector results exhibited that there was a

significant spatial correlation between diabetes mortality and all risk

factors. The spatial regression results, however, displayed the

intricate impact of risk factors on diabetes mortality.

Among these risk factors, several exhibited significant negative

impacts on spatial heterogeneity of diabetes mortality, including per

capita health expenditure, and number of physicians. Conversely,

tobacco smoking prevalence, household air pollution, and high

body-mass index displayed significant positive impacts on diabetes

mortality. For these factors, our findings are consistent with

previous studies at the individual level. As a chronic and complex

disease, diabetes requires effective and long-term diagnosis and

treatment, generally associated with adequate health expenditure

and physicians (4, 6). Prioritizing countries with low per capita

health expenditure and number of physicians would be highly

beneficial for reducing the overall mortality rate. Notably, despite

most countries within Oceania being UMICs or HICs, the per capita

health expenditure and number of physicians in Oceania were both

merely one-third of the world average in 2019, and slightly higher

than those in Sub-Saharan Africa (39). Alongside rapid economic

development, it is imperative to correspondingly enhance the

quality of healthcare services, which is essential for mitigating the

burden of diabetes mortality. Meanwhile, prolonged exposure to

household air pollution is disadvantageous to people with diabetes

and heightens the risk of diabetes mortality (40). In both Oceania

and Sub-Saharan Africa, a substantial proportion of the population

still relies on polluting fuels and technologies for cooking and

heating (12). Promoting economic development and encouraging

the replacement of polluted energy sources with clean energy

sources is also beneficial for reducing diabetes-related mortality in

these countries. Moreover, reducing tobacco smoking prevalence

can further mitigate the risk of diabetes mortality at the country

level (41). These findings suggest that these risk factors have similar

impacts on diabetes mortality at the country level as at the

individual level. Improving these risk factors on a global scale can

effectively alleviate the burden of diabetes-related mortality.

However, the spatial regression results also revealed different

outcomes compared to individual-level studies. In this analysis,

alcohol consumption, and ambient air pollution were found to

exert a significant negative impact on diabetes mortality. Previous

studies at the individual level have demonstrated that long-term

ambient air pollution exposure was associated with an increased risk

of diabetes mortality (14). Nevertheless, ambient air pollution

predominantly arises from industrial emissions and transportation

(42). Regions with high ambient air pollution levels were primarily

observed in South Asia, Central Asia, Northern Africa, and Western

Asia, where most countries had persistently moderate diabetes
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mortality rates (43). Most countries with significantly high diabetes

mortality rates, such as those in Oceania and Southern Africa,

experienced ambient air pollution levels that were only about half

to two-thirds of the global average ambient air pollution (21).

Furthermore, household air pollution, which has a more direct

impact on individuals, often surpasses ambient air pollution

concentrations (42, 44). Meanwhile, a similar pattern emerged in

the case of alcohol consumption. While alcohol consumption can be

detrimental to the health of people with diabetes, countries with high

alcohol consumption were primarily highly developed HICs, such as

European countries, Australia, and New Zealand (45). In contrast,

alcohol consumption in Oceania was merely half of the global average

alcohol consumption, and that in Sub-Saharan Africa was slightly

lower than the global average (21). Overall, despite improving

ambient air pollution and reducing alcohol consumption being

advantageous to people with diabetes, the impact of these factors

was different at the country level. These factors were generally lower

in countries with high diabetes mortality rates. Tailoring appropriate

measures based on specific national circumstances can more

effectively reduce the burden of diabetes mortality.

There are several limitations in this study. First, our study relied

on the GBD 2019 data, which were constrained by limitations in

primary data availability, discordant case definitions, and

collinearity among covariates. Second, constrained by data

availability, this study conducted spatial analysis at the country

level. However, it is crucial to note that spatial heterogeneity also

varied significantly even within countries with large areas, such as

Canada, China, the United States, and Russia. Future studies would

benefit from delving into sub-country levels to unravel the nuanced

associations between diabetes burden and risk factors. Last, certain

social indicators related to diabetes mortality were not considered as

risk factors in this study due to data disparity and feasibility, such as

healthcare services accessibility and educational levels. In future

studies, the data involving more indicators will be collected and

analyzed to strengthen the spatial relationship analysis.
5 Conclusion

The present study described comprehensive spatiotemporal

dynamics of diabetes mortality and its spatial relationships with

social, economic, and environmental risk factors from 1990 to 2019.

The high diabetes mortality rates were primarily concentrated in

countries with limited land areas or located on islands, such as

countries in Oceania and the Caribbean. When considering income

levels, LICs, and LMICs exhibited higher diabetes mortality in

general, whereas significantly high rates of diabetes mortality were

primarily observed in HICs or UMICs with rapid economic growth

but relatively fragile. Spatial relationship analysis revealed that

several risk factors exhibited an impact on diabetes mortality at

the country level, consistent with findings at the individual level.

These factors included per capita health expenditure, number of

physicians, tobacco smoking prevalence, household air pollution,

and high body-mass index. These findings offer a comprehensive

depiction of the spatiotemporal distribution and seasonal variations

in diabetes mortality across different geographic regions.
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