
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Joseph V. Martin,
Rutgers University Camden, United States

REVIEWED BY

Abdulsamed Kükürt,
Kafkas University, Türkiye
Di He,
Memorial Sloan Kettering Cancer Center,
United States

*CORRESPONDENCE

Fang Zhang

zhangfangf11@163.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 13 January 2024
ACCEPTED 27 December 2024

PUBLISHED 22 January 2025

CITATION

Zhu S, Hao Z, Chen Q, Liu X, Wu W and
Zhang F (2025) A two-sample bidirectional
Mendelian randomization analysis between
telomere length and hyperthyroidism.
Front. Endocrinol. 15:1369800.
doi: 10.3389/fendo.2024.1369800

COPYRIGHT

© 2025 Zhu, Hao, Chen, Liu, Wu and Zhang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 22 January 2025

DOI 10.3389/fendo.2024.1369800
A two-sample bidirectional
Mendelian randomization
analysis between telomere
length and hyperthyroidism
Shiben Zhu1†, Ziyu Hao2†, Qihang Chen1†, Xiaoliu Liu3,
Wenyan Wu3 and Fang Zhang4*

1School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, Hong Kong
SAR, China, 2Jockey Club School of Public Health and Primary Care, The Chinese University of Hong
Kong, Hong Kong, Hong Kong, SAR, China, 3Medical Laboratory of Shenzhen Luohu People’s
Hospital, Shenzhen, Guangdong, China, 4Department of Science and Education, Shenzhen Baoan
Women’s and Children’s Hospital, Shenzhen, Guangdong, China
Background: hyperthyroidism characterized by low thyrotropin, highlighting

complications and risks, including cardiac issues, osteoporosis, adverse

pregnancy outcomes, unintentional weight loss, and increased mortality

associated with untreated hyperthyroidism. However, the casual association

between telomere length (TL) and hyperthyroidism remains unclear.

Objective: We aim to explore the casual relationship between TL

and hyperthyroidism.

Methods: A two-sample bidirectional Mendelian randomization (MR) analysis

employed the inverse variance weighted (IVW) method, supplemented by

additional approaches such as Weighted Median (WM), and MR Egger.

Results: The summary statistics for TL were derived from the UK Biobank,

comprising 472,174 individuals, while the data for hyperthyroidism were

sourced from the GWAS Catalog and the FinnGen database, encompassing

cohorts of 460,499 and 173,938 individuals, respectively. Utilizing 139

genome-wide significant single nucleotide polymorphisms (SNPs) as

instrumental variables (IVs) for TL, forward MR analyses indicated a negative

causal effect of TL on hyperthyroidism. The risk of hyperthyroidism decreased as

genetically predicted TL increased by one standard deviation, as determined by

the IVW form GWAS Catalog (OR:0.659,95%CI: 0.541-0.802, p <0.001) and IVW

from FinnGen(OR:0.634, 95%CI: 0.479-0.840, p = 0.001). Other MR methods

exhibited a consistent trend in the impact of TL on hyperthyroidism. Reverse MR

analysis suggested no causal association between TL and hyperthyroidism (p >

0.05). Sensitivity analyses confirmed the robustness of these results, suggesting

minimal susceptibility to confounding factors and bias.
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Conclusion: The finding that longer telomeres reduce hyperthyroidism risk

highlights the need to validate hyperthyroidism’s impact on telomere length,

offering valuable insights for prevention and treatment.
KEYWORDS

Mendelian randomization analysis, telomere length, hyperthyroidism, casual
effect, GWAS
1 Introduction

Hyperthyroidism, a prevalent endocrine disorder, affects 0.2-

1.3% of the general population (1), with women more affected than

men, and increases with age (2). Given the critical role of thyroid

hormones in essential physiological processes like growth (3),

maturation (4), and metabolism (5), many efforts have the

positive association between thyroid function and cancer

development (6, 7). Without treatment, hyperthyroidism can lead

to serious complications including cardiac arrhythmias (8),

congestive heart failure (9), osteoporosis (10), adverse obstetric

outcomes (11), and metabolic imbalances (12), such as increased

resting energy demand and gluconeogenesis (13). The intricate

consequences of hyperthyroidism highlight the importance of

understanding its prevalence and the diverse underlying

mechanisms, emphasizing the need for effective control and

prevention of associated disorders (14).

Hyperthyroidism, characterized by elevated thyroid hormone

levels, plays a significant role in the aging process. Age-related

changes in thyroid function have important implications for

longevity (3). Studies suggest that longevity in vertebrates is

positive associated with low metabolic rates and TH levels (15),

and thyrotoxicosis in mice has been linked to aging traits like

malnutrition and immune senescence (16). Telomeres are

indispensable DNA-protein complexes at the ends of

chromosomes, crucial for maintaining genomic stability by

protecting repeated “TTAGGG” sequences (15). However, with

each cell division, telomeres shorten, leading to replicative

senescence, genetic instability, and ultimately cell death when

critically short (16). Telomere length (TL) has been extensively

studied as a biomarker for human aging across various tissues (17),

with research linking TL to increased susceptibility to conditions

such as cardiovascular disease (18), type 2 diabetes (19), cancers

(20), Alzheimer’s disease (21), chronic kidney disease (22), chronic

obstructive pulmonary disease (23), and alcohol consumption (24).

However, the casual relationship between TL and hyperthyroidism

remains underexplored.

Mendelian randomization (MR) as a statistical tool is used in

epidemiology to examine causal associations between exposures,

biomarkers, or risk factors and outcomes. MR is particularly useful

in situations where conducting randomized controlled trials is not
02
feasible or poses ethical dilemmas (17). MR is an excellent approach

for mitigating the issues of residual confounding and reverse

causality, which are sometimes encountered when studying

observational data using alternative approaches (18). Recent

research has explored the connections between depression (19),

mortality (20), Graves’ diseases (21), multiple sclerosis (22), and TL.

However, no MR analysis investigated the causal relationship

between TL and hyperthyroidism.

Our study investigates the causal relationship between TL and

hyperthyroidism using a two-sample bidirectional Mendelian

randomization analysis. Using genome-wide association study

(GWAS) data, we present casual evidence that genetically predicted

longer TL decreases the risk of developing hyperthyroidism. Then, we

validate these findings with an independent dataset from the Finne

cohort. These findings underscore the potential of telomere length as a

biomarker for hyperthyroidism, offering insights that could inform novel

preventive and therapeutic strategies, including personalized treatments.
2 Methods

2.1 Study design

We perform a conventional bidirectional MR study, using single

nucleotide polymorphisms (SNPs) that are strongly linked to the

target variable as instrumental variables (IVs). The GWAS datasets

were used to assess the probable causal impact of the exposure on

the outcomes. Genetic variants are the primary and effective IVs in a

MR study. To be considered qualified IVs, they must adhere to three

fundamental principles specified in MR theory. Figure 1A depicts

the whole flowchart of this MR study, whereas Figure 1B represents

the basic MR assumptions and acronyms. Furthermore, the data for

exposure and outcomes were obtained from separate and

independent samples.
2.2 Selection of IVs

To discover SNPs substantially linked with both TL and

hyperthyroidism, we used a strict significance criterion of p < 5 ×

10-8. In addition, we used strict criteria to exclude any association
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between genetic markers, using a 10,000 kilobase aggregation

window and putting the r2 threshold at 0.001. Afterwards, each

SNP was carefully examined for any departures from basic

assumptions ② and ③ by consulting the PhenoScanner database.

To evaluate the efficacy of IVs, we calculated the F-statistic for each

SNP as well as for the full set. We take the formulas (23, 24) for

calculating F-statistic for single SNP and total set. A F-statistic

greater than 10 suggests a significant association between the SNP

and the observed phenotype.

MR also entails ascertaining the concordance between the

exposure SNP and its impact on the same gene, therefore

influencing the outcome. We excluded palindromic SNPs to

prevent any potential biases caused by strand orientation or allele

coding. We removed palindromic SNPs with intermediate allele

frequency and standardized the exposure and outcome data. The

MR-PRESSO (25) and MR Egger (26) methods were used to

mitigate the impact of horizontal pleiotropy. The MR-PRESSO

outlier test generated p-values to assess the pleiotropy of each SNP,

while the global test determined an overall p-value to quantify

horizontal pleiotropy. The SNPs were sorted based on their MR-

PRESSO outlier test p-values. Subsequent global testing of MR-

PRESSO was conducted on the remaining SNPs after the

elimination of each individual SNP. The p-value surpassed 0.05,

indicating a lack of statistical significance. The subsequent MR

study used the remaining SNPs after excluding pleiotropic SNPs.

Then inverse MR analysis has been finished.
2.3 Data source

All data was obtained from the public available IEU Open

GWAS project. After a thorough and careful evaluation, we
Frontiers in Endocrinology 03
excluded unnecessary studies and individuals who were not of

European descent. Our analysis utilized summary-level data from

GWAS that specifically investigated the genetic factors linked to TL.

The TL data we primarily relied on came from the UK Biobank (27).

More precisely, genetic variations associated with the length of

telomeres were obtained from GWAS that included a group of

472,174 people. This group included an almost equal proportion of

men (45.8%) and females (54.2%), and all participants were of

European descent (28). In the case of hyperthyroidism, SNPs were

chosen as IVs from a GWAS dataset obtained from the GWAS

Catalog (29) and FinnGen. The sample size of Hyperthyroidism

which from the GWAS database consists of 460,499 people of

European descent, consisting of 3,557 cases and 456,942 controls.

The sample size of Hyperthyroidism which from the FinnGen

consists of 173,938 people of European descent, consisting of 962

cases and 172,976 controls. Table 1 presents a concise summary of

the results in this investigation.
2.4 Statistical analysis

In order to examine the cause-and-effect connection between

TL and hyperthyroidism, we used the IVW random-effects model

(30) as our main method. Combining Wald for each SNP within a

meta-analysis paradigm was part of this analysis. Additionally, we

utilized other two techniques, such as the WM (31), MR Egger (26)

to reassure that our results would remain stable. We conducted

sensitivity analyses to ensure robustness, including assessments for

heterogeneity, pleiotropy, leave-one-out tests, and MR-PRESSO

analysis. Heterogeneity was assessed with Cochran’s Q test (32)

(< 0.05 considered significant). MR-Egger intercept analysis

evaluated directional pleiotropy (p > 0.05 indicates negligible
FIGURE 1

The research design in the bidirectional MR analysis. (A) Schematic illustrating the experimental plan. Red represents the use of forward MR analysis,
where TL is used as the predictor and hyperthyroidism is the outcome. The color azure represents the use of reverse MR analysis, where
hyperthyroidism is used as the predictor and TL as the result. (B) The three essential assumptions of MR analysis. SNPs refer to single nucleotide
polymorphisms, IVs are instrumental variables, TL stands for telomere length, MR represents Mendelian randomization, X denotes the exposure, and
Y represents the outcome.
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pleiotropy). MR-PRESSO assessed outliers. Leave-one-out tests

confirmed stability and reliability of causal relationships. The MR

analyses were performed using the TwoSampleMR, mr.raps,

forestploter, and MR-PRESSO programs in the R statistical

environment, version 4.3.2.
3 Results

3.1 Instrumental variables

In our forward MR, we originally chose 154 SNPs as IVs to

investigate the relationship between TL and hyperthyroidism.

PhenoScanner analysis could not find any connections between

these SNPs and established confounding factors or outcomes. After

removing palindromic SNPs, there were 141 remaining SNPs that

were suitable for study. During the MR-PRESSO outlier testing, in

the GWAS database, two SNPs, namely rs10774624 and rs2763979,

were detected as outliers. In FinnGen, two SNPs, namely rs2306646

and rs762810, were detected as outliers. Post-outlier removal, every

single SNP in this revised group had an F-statistic more than 10,

thereby leading to a R2 value of 3.72%, with the combined F-statistic

reaching 120.

In the reverse MR analysis, we first selected 13 SNPs as

instrumental factors for hyperthyroidism, with a specific emphasis

on studying hyperthyroidism. The PhenoScanner inquiry, like the
Frontiers in Endocrinology 04
TL analysis, discovered no correlation between these SNPs and any

confounding variables or outcomes. After eliminating palindromic

SNPs, a total of 12 and13 SNPs remained for further study. MR-

PRESSO verified the dependability of these SNPs, identifying four

SNPs (rs1794280, rs2160215, rs4338740, rs758778) and three SNPs

(rs11571297, rsrs11646791, rs1794511) as anomalies. After

removing these outliers, every single one of these SNPs had an F-

statistic that significantly exceeded 10. The aggregate coefficient of

determination (R2) for these SNPs were 8.92 and 0.621, while their

cumulative F-statistic amounted to -57625 and 13.12.

A detail list of SNPs that were excluded from the final analysis

owing to not satisfying the inclusion criteria can be found in

Supplementary Table S1. The complete details of all SNPs

included in the final analysis can be found in Supplementary

Table S2, which is included in the supplementary materials.
3.2 MR results

Our forward MR analysis indicates that genetically predicted

increases in TL significantly reduce the risk of hyperthyroidism.

This causal relationship is consistently supported by three analytical

methods—IVW, Egger, and WM—as shown in Figure 2. In the

GWAS database, IVW analysis reveals a significant negative

association between TL and hyperthyroidism (OR: 0.695, 95% CI:

0.541–0.802, p < 0.001), which is corroborated by Egger (OR: 0.578,
FIGURE 2

Forest plot of the bidirectional two-samples MR analysis. SNP, single nucleotide polymorphism; OR, odds ratio.
TABLE 1 An overview of the GWAS summary statistics.

Traits Data
source

Author & Year Sample
Size

Cases Control No.
of SNPs

Sex Ancestry GWAS ID

TL UK
Biobank

Codd et al. (2021) 472,174 0 472,174 20,134,421 Males
and
Females

European ieu-b-4879

Hyperthyroidism GWAS
Catalog

Sakaue et al. (2021) 460,499 3,557 456,942 24,189,279 Males
and
Females

European ebi-a-GCST90018860

Hyperthyroidism FinnGen
Tuomo Kiiskinen et al. (2021)

173,938 962 172,976 16,380,189 Males
and
Females

European
finn-b-
AUTOIMMUNE_
HYPERTHYROIDISM
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95% CI: 0.406–0.822, p = 0.002) and WM (OR: 0.761, 95% CI:

0.570–1.016, p = 0.063). Similarly, in the FinnGen database, IVW

confirms this association (OR: 0.634, 95% CI: 0.479–0.840, p =

0.001), supported by Egger (OR: 0.568, 95% CI: 0.345–0.934, p =

0.027) and WM (OR: 0.551, 95% CI: 0.371–0.820, p = 0.003).

In contrast, reverse MR analysis finds no significant association

between hyperthyroidism and TL. In the GWAS database, IVW

reports an OR of 0.999 (95% CI: 0.987–1.011, p = 0.844), Egger an

OR of 0.997 (95% CI: 0.952–1.044, p = 0.901), and WM an OR of

1.002 (95% CI: 0.989–1.015, p = 0.742). Similarly, in the FinnGen

database, IVW suggests a slight association (OR: 0.984, 95% CI:

0.972–0.996, p = 0.009), but Egger (OR: 0.959, 95% CI: 0.946–0.971,

p < 0.001) and WM (OR: 0.991, 95% CI: 0.981–1.001, p = 0.105) do

not indicate a strong causal link. These findings are summarized

in Figure 2.

In our bidirectional MR analysis, leave-one-out evaluations and

funnel plots were used to examine the relationship between TL and

hyperthyroidism, as shown in Figure 3. The forward MR funnel plot

revealed a symmetrical distribution, supported by IVW (p < 0.001,

p = 0.001) and MR-Egger (p = 0.002, p = 0.027) analyses. In

contrast, the reverse MR funnel plot showed asymmetry, suggesting

potential bias, with GWAS IVW (p = 0.844), MR-Egger (p = 0.901),

FinnGen IVW (p = 0.009), and MR-Egger (p < 0.001) results

confirming this.

Leave-one-out analyses in Figure 3 validated the stability of the

results, showing a consistent negative causal link in forward MR

and no significant relationship in reverse MR. Scatter plots in

Figure 3 further illustrate a significant negative association in

forward MR and no correlation in reverse MR, reinforcing the

robustness of our findings.
3.3 Sensitivity analysis

We investigated both the presence of heterogeneity and

horizontal pleiotropy, and detailed findings are provided in
Frontiers in Endocrinology 05
Table 2. In this study, we explored the association between TL

and hyperthyroidism. Utilizing 139 SNPs and 137SNPs as

explanatory variables, we accounted for 3.72% and 0.9% of the

variation (r2), demonstrating robust F-statistic of 120 and 125.64.

Heterogeneity tests, such as MR Egger and IVW from GWAS,

resulted in Q values of 189 (p = 0.002) and 190 (p = 0.002)

respectively, indicating substantial heterogeneity. In FinnGen,

resulted in Q values of 208 (p<0.001) and 209 (p<0.001)

respectively, indicating substantial heterogeneity. The assessment

of Pleiotropy by MR Egger and MR-PRESSO indicated that the

results were statistically significant.

Our reverse MR study, which used hyperthyroidism as the

independent variable and included 8 and 10 SNPs, produced the R2

value of 8.92 and 0.621. F-statistic are of -57625 and 13.12. The

observed direction exhibited heterogeneity, as shown by Q values of

11.8 (p = 0.067) and 15.306(p = 0.053) for MR Egger, 11.8

(p = 0.108) and 56.025(p<0.001) for IVW. The results in the

GWAS database showed a lack of pleiotropic effects. in the

FinnGen database, a significant pleiotropic effect was shown.
4 Discussion

By two-sample bidirectional MR analyses, we firstly have

explored that increased telomere length is associated with

decreased risk of hyperthyroidism. An previous investigation (33)

suggested an association between genetic variants governing TL and

thyroid cancer risk. Our current study expands upon this assertion

by leveraging data from larger cohorts than previously employed.

Through a comprehensive and focused analysis, we establish a

causal relationship between TL and hyperthyroidism. Our findings

demonstrated robustness and consistency across various MR

methods. Collectively, the result offers compelling evidence

supporting a causal connection between shortened telomeres and

hyperthyroidism, hinting at distinct underlying mechanisms for the

disease. We further validated the causal link between
FIGURE 3

Visualization of MR analysis.
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hyperthyroidism and TL, we found no significant association in

GWAS (IVW, OR = 0.999, p = 0.844, 95% CI: 0.987-1.011). In

FinnGen, we found association between TL and hyperthyroidism

(IVW, OR = 0.984, p = 0.009, 95% CI: 0.972-0.996). This suggests a

specific correlation between TL and the progression of

hyperthyroidism. In our MR study, we incorporated valid IVs

from the latest and most extensive GWAS database of TL.

Subsequently, we established stringent criteria for IV selection,

opting only for TL variants significantly associated with TL

measurements and meeting the three core assumptions of MR

analysis. Additionally, to mitigate bias in causal estimation, we

employed three MR methods, ensuring the validity and consistency

of results in sensitivity analyses. Addressing heterogeneity,

horizontal pleiotropy, and outliers, our findings suggest that

hyperthyroidism may result from shortened TL and a senescent

immune system. Conversely, hyperthyroidism appears to have no

impact on TL.

Hyperthyroidism itself is not typically considered an age-related

disease, but the risk factors and underlying causes can be influenced

by age-related factors (34). This is an intricate biological process

that may be roughly categorized into replicative senescence, caused

by inherent cellular mechanisms such as telomere shortening, and

cellular senescence, which can be induced by different stressors such

oxidative stress and DNA damage (35). Based on our research, we

hypothesize that the process of telomere shortening may play a

significant role in causing cellular senescence in hyperthyroidism.

This is similar to how telomere-associated driver mutations are

linked to rheumatoid arthritis (36), systemic sclerosis (37), and

systemic lupus erythematosus (38). Shorter TL could also result

from immune senescence (39). Currently, there is a growing

recognit ion of the correlat ion between telomere and

hyperthyroidism. The process of telomere length shortening is

accelerated by age (40), and this is likely a component of the

modified immune response seen in individuals with

hyperthyroidism. To reduce the role of confounding factors, we

excluded TL variations in our MR analysis that are related with

features that might independently affect the risk of

hyperthyroidism. prior research consistently indicates that a

shorter TL is associated with an increased risk of developing
Frontiers in Endocrinology 06
immune-mediated inflammatory diseases (41, 42). Our results

align with these prior studies.

The result indicating a cause-and-effect relationship between

premature telomere erosion and hyperthyroidism offers many

possibilities. Possible therapeutic strategies may include

interventions targeting inadequate telomere maintenance, either

on a broad scale or specifically in cells that play a significant role in

the development of the illness (43). Replenishing telomere length is

a complex process that cannot be easily achieved, since just

enhancing the activity of telomerase may raise the likelihood of

developing cancer (44). Current clinical studies, such as

NCT04110964 (45), are examining this method in different

medical diseases. Safe telomerase activation treatment is being

investigated in other medical disciplines, such as cardiology, to

mitigate the possible danger of increasing endogenous telomerase

activity (46). This therapy involves temporarily delivering modified

TERT RNA to prevent sustained elevation of telomerase activity

(47). Despite encountering difficulties in achieving in vivo targeted

distribution, the use of this method in hyperthyroidism may

become possible in the future due to potential advancements.

Androgens may also normalize telomerase levels in cells from

individuals with telomere illness who have heterozygous

mutations in the TERT gene (48).

Approaches that enhance general well-being while positively

influencing TL promotion exist. Speculatively, these approaches

could be further integrated into the clinical management of

hyperthyroidism patients (49), incorporating strategies such as

exercise (50), stress reduction (51), and mindfulness (52). Our

findings indicate that individuals with hyperthyroidism tend to

engage in reduced physical activity, likely exacerbated by poor

physical health. Thoughtfully increasing exercise could yield

multiple benefits, promoting chromosomal telomere length while

enhancing fitness and mental health (50). Similarly, stress resulting

from challenging life circumstances, like social deprivation, may be

alleviated through mindfulness practices (51). Relatively

straightforward measures that enhance patient well-being could

fundamentally contribute to reducing telomere attrition.

Our research has many limitations. The major investigations of

TL and hyperthyroidism GWAS solely involved individuals of
TABLE 2 Heterogeneity and pleiotropy in our bidirectional MR analysis.

Exposure Outcome
No.
of
SNPs

R2 F-
statistic

Heterogeneity Pleiotropy

MR Egger IVW MR-Egger MR-PRESSO

Q
p-
value

Q
p-
value

Intercept p RSSobs p

TL
Hyperthyroidism
from GWAS

139 0.037 120 189 0.002 190 0.002 0.004 0.379 193 0.002

Hyperthyroidism
from GWAS

TL 8 8.92 -57625 11.8 0.067 11.8 0.108 <0.001 0.939 14.3 0.156

TL
Hyperthyroidism
from FinnGen

137 0.009 125.64 208 <0.001 209 <0.001 0.003 0.598 213 <0.001

Hyperthyroidism
from FinnGen

TL 10 0.621 13.12 15.306 0.053 56.025 <0.001 0.009 0.001 120.441 <0.001
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European ethnicity. As a result, the generalizability of our findings

to other populations is uncertain, emphasizing the need for

stratification by various racial groups. Secondly, our MR analysis

was confined to summary-level statistics, with individual-level data

remaining inaccessible. This limitation restricts our ability to

conduct stratified analyses based on specific factors. Thirdly,

information on the subtype and severity of hyperthyroidism was

not available, preventing the estimation of the relationship between

TL and different hyperthyroidism subtypes and severity levels.

Fourthly, there may be unidentified confounders influencing the

associations between TL and hyperthyroidism that require further

investigation. Lastly, it is essential to recognize that telomere length

is determined by a combination of genetics, environmental factors,

lifestyles, and epigenetic modifications. Hence, it is essential to

acknowledge that our findings only partly clarify the causative

impact of TL on hyperthyroidism.
5 Conclusion

The finding that longer telomeres reduce hyperthyroidism risk

highlights the need to validate hyperthyroidism’s impact on

telomere length, offering valuable insights for prevention

and treatment.
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