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Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a congenital anomaly

characterized by agenesis/aplasia of the uterus and upper part of the vagina in

females with normal external genitalia and a normal female karyotype (46,XX).

Patients typically present during adolescence with complaints of primary

amenorrhea where the diagnosis is established with significant implications

including absolute infertility. Most often cases appear isolated with no family

history of MRKH syndrome or related anomalies. However, cumulative reports of

familial recurrence suggest genetic factors to be involved. Early candidate gene

studies had limited success in their search for genetic causes of MRKH syndrome.

More recently, genomic investigations using chromosomal microarray and

genome-wide sequencing have been successful in detecting promising

genetic variants associated with MRKH syndrome, including 17q12 (LHX1,

HNF1B) and 16p11.2 (TBX6) deletions and sequence variations in GREB1L and

PAX8, pointing towards a heterogeneous etiology with various genes involved.

With uterus transplantation as an emerging fertility treatment in MRKH syndrome

and increasing evidence for genetic etiologies, the need for genetic counseling

concerning the recurrence risk in offspring will likely increase. This review

presents the advancements in MRKH syndrome genetics from early familial

occurrences and candidate gene searches to current genomic studies.

Moreover, the review provides suggestions for future genetic investigations

and discusses potential implications for clinical practice.
KEYWORDS

DNA copy number variations, genetics, genitourinary development, infertility, Mayer-
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1 Introduction

In mammals, the Müllerian (paramesonephric) ducts give rise to the female

reproductive tract, which consists of the Fallopian tubes (oviducts), uterus, cervix, and

upper two-thirds of the vagina (1). Abnormalities in Müllerian duct (MD) development in

women may result in congenital uterovaginal anomalies of various severity (2, 3).
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Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome, also

referred to as Müllerian aplasia, is a congenital disorder

characterized by agenesis or aplasia of the uterus and upper part

of the vagina. The patients are characterized by having a normal

female karyotype (46,XX), normal external genitalia, and normal

pubertal development of secondary sex characteristics (thelarche

and pubarche) (4). MRKH syndrome is typically diagnosed during

late adolescence when patients present with primary amenorrhea

(5). The estimated birth prevalence of MRKH syndrome is 1 in

5,000 female live births (5, 6) and it is considered the second most

common cause of primary amenorrhea (7). MRKH syndrome may

present as an isolated anomaly (type I) or in association with

extragenital malformations (type II), typically involving the

kidneys, skeleton, and heart (4). Upon the diagnosis of MRKH

syndrome, patients face life-impacting consequences related to their

sexual identity, fear of coital difficulties, and grief of infertility (8–

12), and it has been associated with a risk of depressive and anxiety

symptoms (13–15). Psychological support and counseling are

therefore crucial in patient care (16–18). Non-surgical and

surgical treatments of vaginal hypoplasia are available to enable

penetrative intercourse with non-surgical dilation considered the

first-line choice (18–20). MRKH syndrome causes absolute uterine

factor infertility (AUFI) but patients may achieve genetic

motherhood through gestational surrogacy (21, 22). In 2014, the

first baby was born following pregnancy after uterus transplantation

(UTx) in Sweden, offering the first fertility treatment of AUFI

achieving both gestational and genetic motherhood (23, 24).

The etiology of MRKH syndrome has long been an

unanswered question in medical research, and both genetic and

non-genetic factors have been considered. Despite substantial

efforts to find explanations for the disorder, our current

understanding of the underlying biology remains limited.

However, discoveries during recent years do provide evidence

for the importance of genetic factors and point towards a

heterogeneous etiology with various genes involved in

uterovaginal development in humans. This review presents the

continuous advancements in our knowledge of genetics in MRKH

syndrome, from early candidate gene studies to genome-wide

gene discoveries, and provides recommendations for further

progress and perspectives on potential clinical implications.
2 Embryology of the female
reproductive tract

The human genitourinary system (including the kidneys,

gonads, and reproductive tracts) develops from the intermediate

mesoderm. At 3 weeks post gestation, the Wolffian (mesonephric)

ducts, which develop into the male reproductive tracts, form and

grow caudally from the primordial kidney (mesonephros) to reach

the cloaca. At 5 weeks post gestation, bilateral invaginations of the

coelomic epithelium of the urogenital ridges begin to form the MDs

which extend caudally, guided by the Wolffian ducts, to reach the

urogenital sinus in the midline (Müllerian tubercle). Here, the

caudal parts of the two MDs start to fuse to form the uterus and

upper vagina starting from week 8. The cranial openings of the
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invaginations remain and give rise to the fimbrial ends of the

oviducts adjacent to the developing ovary (1, 25, 26).

The close relationship between kidney and uterovaginal

development is also reflected by the high prevalence (~30%) of

kidney malformations in MRKH syndrome (5, 27). Other common

extragenital anomalies include the skeleton and heart, which do also

develop from the mesoderm, with the paraxial mesoderm forming

the axial skeleton (28) and the lateral plate mesoderm forming the

heart and appendicular skeleton (29). Therefore, genes involved in

the development of mesoderm and its derived structures are

relevant candidates in the etiology of MRKH syndrome.
3 Evidence for genetic etiologies in
MRKH syndrome

Most cases of MRKH syndrome appear isolated with no clear

indications of a familial/genetic trait (5, 30). In addition, several

reports of discordant monozygotic twin pairs (5, 31–35) and patient-

reported outcomes of most surrogate pregnancies also support non-

Mendelian causes (36). However, it is important to consider that the

disease nature of MRKH syndrome implies absolute infertility,

hindering mother-to-offspring inheritance of a genetic cause, which

may cause an underestimation of the genetic component of MRKH

syndrome from family histories. At this point of knowledge, a single

mode of inheritance to cover all cases cannot be determined and

monogenic, oligogenic, polygenic, multifactorial, and environmental

factors should still be considered. Hypotheses on fetal exposures

disturbing uterovaginal development have included thalidomide,

diethylstilbestrol, organotins, and phthalates (37–40), but there is

no firm evidence for a pathological role in MRKH syndrome.

In 1973, Buchta et al. (41) reported on familial occurrences of

various renal malformations following autosomal dominant

inheritance and coined the term “hereditary renal adysplasia”.

One of the patients, who had eight children, was found to have

left renal agenesis and a bicorn uterus during surgery for cervical

carcinoma in situ. Interestingly, 14 years later, John M. Opitz

(senior author of the first paper) reported that one daughter of

this patient had been diagnosed with MRKH syndrome

emphasizing the close link between uterovaginal malformations

and renal malformations (42). This association was also described

by Schimke & King, who instead proposed the term “hereditary

urogenital adysplasia” (43). This pattern of both renal and MD

anomalies within families, characterized by incomplete penetrance

and variable sex-limited expressivity, has been reported several

times in the literature (reviewed by Herlin et al. (44)). Taken

together this emphasizes the importance of a detailed family

history when investigating the genetics of MRKH syndrome.

Recently, the first case of mother-daughter inheritance of

MRKH syndrome following gestational surrogacy was reported,

when the daughter presented at 14 years old with primary

amenorrhea and was diagnosed with type I MRKH syndrome as

her mother. A 4 Mb deletion of 2q37.1q37.3 of unknown

significance was identified in both patients, but not in the

mother’s parents (22). This case exemplifies the potential risk of

MRKH syndrome recurrence following assisted reproduction and
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with the expected increasing availability of UTx as this field moves

towards clinical care (24), identifying causal variants and providing

genetic counseling regarding recurrence risk and reproductive

choices will become more relevant.
4 Genetic research in
MRKH syndrome

One of the earliest reports describing genetic analysis in the

diagnosis of MRKH syndrome is from Georges Andre Hauser in

1961. Hauser and colleagues described that sex-chromatin analysis

could aid the differentiation of MRKH syndrome from Turner

syndrome and defined MRKH syndrome (at the time termed

‘Mayer-Rokitansky-Küster syndrome’) to include normal female

chromosomes (45, 46). Together with earlier anatomical

descriptions of Mayer, Rokitansky, and Küster, his work led to

the complete definition and its final name (4).

For over 25 years, researchers have searched for genetic

alterations to cause uterovaginal agenesis in karyotypically normal

women. Early studies investigated a wide range of candidate genes

including GALT (47–49), WT1 (50), HNF1B (51, 52), AMH (49,

53), AMHR2 (49, 53), CFTR (54), WNT7A (55), HOXA7-13 genes

(56–58), PBX1 (56, 59), RARG (60), RXRA (60), CTNNB1 (61),

SHOX (62–64), PAX2 (65), LAMC1 (66), DLG1 (66), or ITIH5 (67).

Most of these studies had negative results and provided limited

evidence for genetic factors in MRKH syndrome. This included

investigations of AMH and AMHR2, encoding anti-Müllerian

hormone and its receptor, respectively, involved in physiological

MD regression in males (49, 53). One gene, Wnt4, was reported to

be involved in female development in mammals with mutant female

mice displaying signs of masculinization and absent Müllerian

ducts, hence a relevant candidate gene in MRKH syndrome. In

2004, Biason-Lauber et al. identified aWNT4 variant in an 18-year-

old woman with Müllerian agenesis, renal agenesis, and clinical

signs of hyperandrogenism. Functional analyses supported the

variant pathogenicity and WNT4 was thereby the first identified

gene in uterovaginal agenesis with firm evidence for monogenic

causality (discussed further below).
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The completion of the Human Genome Project in 2003 (68, 69)

together with the concomitant development of genomic

technologies including chromosomal microarray (CMA) and

massively parallel sequencing (also referred to as Next-Generation

Sequencing [NGS]) have allowed for genome-wide (“hypothesis-

free”) searches of genetic variation in MRKH syndrome. CMA,

including comparative genomic hybridization array and single

nucleotide polymorphism (SNP) array, is used to detect copy

number variations (CNVs) in the genome. These applications

have identified various chromosomal imbalances (deletions/

duplications) supporting the identification of candidate genes

such as HNF1B, LHX1, and TBX6 (Table 1) (30, 71, 72, 81, 82).

However, recurrent chromosomal imbalances in MRKH syndrome

still only apply to a minor fraction of patients (around 10%). Optical

genome mapping is a newer cytogenomic method with higher

resolution for the detection of both imbalanced and balanced

structural variation and has recently been applied in a study by

Brakta et al. (73). In more recent years, whole-exome and whole-

genome sequencing analyses have been applied for genome-wide

detection of genetic variation at the nucleotide level (74, 75, 96–

105). Investigations have included both extended familial cases and

larger patient cohorts identifying variants of interesting genes, most

notably GREB1L (99, 101, 102) and PAX8 (75).

The vast majority of studies to date have looked into germline

genetic variation by analyzing DNA from blood samples. Due to the

predominantly sporadic nature of MRKH syndrome and reports of

discordant monozygotic twin pairs suggesting non-inherited

genetic variation, researchers have also searched for somatic/

mosaic gene variation and tissue-specific differential gene

methylation/expression patterns in uterine remnants to explain

the disorder (35, 98, 106–108).
5 Genetic findings in MRKH syndrome
and evidence for causality

In this section, the most significant genetic findings to date and

the current evidence for causality in MRKH syndrome are

discussed. Table 1 summarizes the recurrent (reported in at least
TABLE 1 Recurrenta copy number variations associated with MRKH syndrome.

Locus Imbalance CNVs
reported

Size
range

Region of overlapb Candidate
genes

MRKH
type

Ref.

16p11.2 Deletion 24 0.5-1.0 Mb Chr16:29,638,676-30,188,531 (BP4-
BP5) (70)

TBX6 Type I+II (30, 71–79)

17q12 Deletion 21 1.4-1.9 Mb Chr17:36,458,167-37,854,616 (80) HNF1B, LHX1 Type I+II (30, 71–73, 75, 76,
81–86)

22q11.2 Deletion 7 0.4-5.2 Mb Various regions involved Uncertain Type I+II (60, 71, 81, 85,
87–90)

Duplication 4 0.6-3.5 Mb Various regions involved Uncertain Type I (81, 85, 91, 92)

1q21.1 Deletion 4 0.4-4.6 Mb Chr1:145,779,056-146,019,795 (82) RBM8A Type I+II (30, 82, 85, 93)

2q13q14.1 Deletion 2 9.8-10.8 Mb Chr2:110,791,355-115,043,578 PAX8 Type II (94, 95)
aTwo or more reported CNVs. Non-recurrent candidate variants are listed in Supplementary Table S1.
bCoordinates in the GRCh38/hg38 reference human genome assembly.
BP, breakpoint; Chr, chromosome; CNV, copy number variation; Mb, megabase.
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two cases) copy number variations in MRKH syndrome, whereas

Table 2 lists the genes recurrently reported with sequence variants.

Non-recurrent (only one case) candidate variants are listed in

Supplementary Table S1.
5.1 17q12 deletions, LHX1, and HNF1B

Deletion of 17q12 was first reported in MRKH syndrome by

Cheroki et al. in 2008 (81) and to this date, 21 deletions have been

reported (Table 1) (30, 71–73, 75, 76, 81–86). Ledig et al. reported a

17q12 deletion in one MRKH syndrome patient (85), whose mother

and sister were later reported with the same deletion and other

uterovaginal anomalies (124). Deletions of 17q12 are typically 1.4

Mb in size. They are highly penetrant with variable expressivity and

cause a multisystem disorder which may include kidney disease,

neurocognitive impairment, endocrinological disease including

HNF1B-related maturity-onset diabetes of the young (MODY),

genital malformations, liver disease, and other manifestations

(80). Two candidate genes for MRKH syndrome, LHX1 and

HNF1B, are located at this locus, both of them being involved in

MD development.

Lhx1 , formerly referred to as Lim1 , encoding the

transcription factor LIM homeobox 1, is involved in normal

kidney and MD development (125, 126). Lhx1-null female mice

have normal ovaries but lack their reproductive tract, which

results from a disruption of MD elongation and epithelium

formation (125–127). Besides deletions, six single nucleotide

variants in LHX1 (Table 2) (72, 85, 119, 120) have been

reported including one missense variant with functional

evidence of decreased transcriptional activity (120). Still, LHX1

mutational analysis of larger cohorts did not report any variants,

suggesting that sequence variants of LHX1 are no major cause of

MRKH syndrome (30, 128).

HNF1B has long been a candidate gene for MRKH syndrome

since Lindner et al. already in 1999 reported a Norwegian family

with MODY type 5 and progressive parenchymal kidney disease

following autosomal dominant inheritance caused by a 75 bp in-

frame deletion in exon 2 of HNF1B. Notably, two of four female

variant carriers also had uterovaginal agenesis, supporting MRKH

syndrome as part of the HNF1B disease spectrum (51). Subsequent

studies have reported HNF1B variants associated with various

uterovaginal malformations (52, 121, 129, 130), including a ~59

kb whole-gene deletion of HNF1B found by WES analysis of a 9-

year-old girl presenting with precocious puberty. After the genetic

result, reverse phenotyping by imaging confirmed uterus agenesis

(121). Recently, Thomson et al. (83) investigated the function of

Hnf1b following conditional ablation in mice, which resulted in a

hypoplastic uterus and renal anomalies (including renal agenesis)

similar to an MRKH syndrome type II phenotype. They performed

single-cell RNA sequencing of theHnf1b-ablated embryonic uterine

tissue and found dysregulated gene expression involved in cell

proliferation, patterning, and differentiation. This supports

HNF1B as a causative gene in MRKH syndrome independent of

LHX1 involvement.
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5.2 16p11.2 deletions and TBX6

In 2011, Nik-Zainal et al. (71) reported four cases with recurrent

deletions of 16p11.2 and suggested TBX6, previously implicated in

paraxial mesoderm development (131), as a candidate gene. To

date, a large number of cases have been identified with both

deletions (30, 71–79) and TBX6 sequence variants (72, 75, 103,

105, 111, 112). The 16p11.2/TBX6 locus is also associated with

congenital scoliosis (132). The genetics hereof is complex and does

not follow typical Mendelian inheritance, requiring one TBX6-null

allele and a particular hypomorphic trans allele, as described in the

compound inheritance gene dosage model (132, 133).

Ma et al. reported 16 rare TBX6 variants enriched in a large

MRKH syndrome patient cohort compared to controls. They

performed various functional analyses of 13 missense variants

and found evidence for loss-of-function in 7 variants, which

together do support the role of TBX6 variants. However, in

contrast to null alleles associated with scoliosis, no second risk

alleles were reported in MRKH syndrome (105). As of now, no clear

biological mechanism for monoallelic TBX6 variants causing

MRKH syndrome has been established, which challenges

interpretation and warrants further studies.
5.3 22q11 deletions and duplications

Both deletions (60, 71, 81, 85, 87–90) and duplications (81, 85,

91, 92) of 22q11 have been reported in MRKH syndrome patients

(Table 1). The CNVs vary in size and location with no single

common overlapping region, and therefore no particular candidate

genes at 22q11 have been identified. Of note, 22q11 duplication has

also been associated with other uterovaginal malformations (124).

22q11 deletions are often associated with DiGeorge and

velocardiofacial syndromes. Features hereof are partly thought to

be caused by TBX1 haploinsufficiency, however, some of the

deletions reported with MRKH syndrome do not include this

particular gene. Overall, the evidence for 22q11 imbalances

causing MRKH syndrome remains low.
5.4 1q21.1 and RBM8A

Variable-sized deletions at 1q21.1 have been associated with

MRKH syndrome (30, 82, 85, 93). Duplications of 1q21.1 have also

been identified in an MRKH syndrome patient (81) and one case

with uterus didelphys (82). The overlapping region has been

determined to be GRCh38: chr1:145,779,056-146,019,795 (82)

with RBM8A as the proposed candidate gene in which sequence

variants/polymorphisms also have been identified associated with

MRKH syndrome (112).

Deletions of this region may also cause thrombocytopenia–

absent radius (TAR) syndrome in compound heterozygosity with

certain non-coding polymorphisms on the trans allele (134).

Notably, TAR syndrome has previously been reported in a case

with MRKH syndrome (135, 136). The possible causal role of
frontiersin.org

https://doi.org/10.3389/fendo.2024.1368990
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Herlin 10.3389/fendo.2024.1368990
TABLE 2 Genes reported with recurrenta sequence variation associated with MRKH syndrome.

Gene Chromosomal
location

Zygosity Variants
reported

Variant type MRKH type Other
phenotypes/entities
associated with gene

Ref.

GREB1L 18q11.1-q11.2 Monoallelic 30 Missense (19)
Frameshift (5)
Splice-site (3)
Stop-gain (2)
Deletion (1)

Type II (22)
Type 1 (8)

CAKUT (renal agenesis/renal
hypodysplasia [OMIM #617805]),
hearing loss (OMIM #619274), heart
malformation, other UVMs

(98, 99,
101, 102,
109, 110)

TBX6 16p11.2 Monoallelic/
biallelicb

(111)

21 Missense (16)c

Splice-site (4)
Stop-gain (1)

Type II (13)
Type I (12)

Scoliosis, spondylocostal dysostosis
(OMIM #122600), CAKUT

(72, 75,
103, 105,
111, 112)

PAX8 2q14.1 Monoallelic 11 Missense (6)
Frameshift (2)
Stop-gain (2)
Splice-site (1)

Type I (11) Thyroid hypoplasia/dysgenesis
(OMIM #218700)

(75, 98)

SHOX Xp22.33 Monoallelic 10 Duplication (8)
Missense (2)

Type I (6)
Type II (4)

Leri-Weill dyschondrosteosis
(OMIM #127300)

(62, 64,
103)

WNT9B 17q21.32 Monoallelic/
biallelicb

(113)

9 Missense (7)
Stop-gain (1)
Regulatory (1)

Type I (8) CAKUT, cleft lip/palate, other UVMs (98, 103,
113, 114)

WNT4 1p36.12 Monoallelic 7 Missense (7) Type I (6)
Type II (1)

Müllerian aplasia and
hyperandrogenism (OMIM #158330),
other UVMs

(103,
115–118)

LHX1 17q12 Monoallelic 6 Missense (5)
Frameshift (1)

Type I (2)
Type II (1)
NS (3)

– (72, 85,
119, 120)

LRP10 14q11.2 Monoallelic/
biallelicb

5 Missense (5) Type I (3)
Type II (1)

– (74, 103)

HNF1B 17q12 Monoallelic 4 In-frame deletion (2)
Frameshift (1)
Deletion (1)

Type II Renal cysts and diabetes syndrome/
MODY5 (OMIM #137920)

(51,
52, 121)

LAMC1 1q25.3 Monoallelic 4 Missense (4) Type I (3)
Type II (1)

– (103)

BMP4 14q22.2 Monoallelic 3 Stop-gain (2)
Splice-site (1)

Type I (2)
Type II (1)

Microphthalmia (OMIM #607932, cleft
lift/palate (OMIM #600625)

(75)

CTNNA3 10q21.3 Monoallelic 3 Deletion (3) Type II (2)
Type I (1)

Arrhythmogenic right ventricular
dysplasia (OMIM #615616)

(73)

ESR1 6q25.1-q25.2 Monoallelic 3 Missense (2)
Regulatory (1)

Type I Estrogen resistance (OMIM #615363),
breast cancer

(122)

MMP14 14q11.2 Monoallelic 3 Missense (2)
Duplication (1)

Type I (2)
Type II (1)

– (35, 103)

RARA 17q21.2 Monoallelic/
biallelicb

3 Missense (3) Type I Acute promyelocytic leukemia (103)

BMP7 20q13.31 Monoallelic 2 Frameshift (1)
Splice-site (1)

Type I – (75)

DLG5 10q22.3 Monoallelic 2 Missense (1)
Stop-gain (1)

Type I+II CAKUT (104,
123)

HOXA10 7p15.2 Monoallelic 2 Missense (1)
Frameshift (1)

Type I+II Other UVM (75, 103)

KMT2D 12q13.12 Monoallelic 2 Missense (2) Type I+II Kabuki syndrome (OMIM# 147920) (104)

MKKS 20p12.2 Monoallelic 2 Missense (2) Type 2 Bardet-Biedl syndrome (OMIM
#605231), McKusick-Kaufman
syndrome (OMIM #236700)

(74)

(Continued)
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1q21.1 deletions/RBM8A gene variants in MRKH syndrome is,

however , s t i l l unclear warrant ing further studies to

establish causality.
5.5 2q13q14.1 deletions and PAX8

Pathogenic variants in PAX8 are an established monogenic

cause of congenital hypothyroidism due to thyroid dysgenesis

(CH, OMIM #218700), first described in 1998 by Macchia et al.

(137). In an experimental study, Pax8-deficient female mice were

reported with infertility independently of thyroid replacement

therapy, and a possible role in MD development was

suggested (138).

Years later, Ma et al. reported on the investigation of a 12-year-

old girl with global developmental delay, MD agenesis, and

hypothyroidism, found to carry a large 10.79 Mb deletion of

2q13q14.2 (94). A partially overlapping 2q12.1q14.1 deletion was

reported in another case with CH, atrial septal defect, intellectual

disability, and MD agenesis with anterior displacement of the anus

(95). The two deletions share an overlapping region of 4.3 Mb

spanning PAX8 as the proposed candidate gene for

MRKH syndrome.

Most recently, Chen et al. (75) reported on a mutational burden

analysis of 19 candidate genes based on WES data from 442 cases

and 941 controls. Among cases, they found enrichment for

predicted loss-of-function variants in PAX8. When including

results from a replication cohort (n=150), a CH cohort (n=5),

and missense variants, a total of 11 PAX8 variants were found

associated with MRKH syndrome. In three cases with available

parental DNA, paternal inheritance was confirmed, showing a sex-

limited expressivity of infertility. Functional analysis of the five

missense variants by luciferase reporter assay found evidence for

loss-of-function in two variants. Finally, reverse-phenotyping offive

female CH cases, revealed uterovaginal aplasia in one individual,

emphasizing the pleiotropy of PAX8. This confirms MRKH
Frontiers in Endocrinology 06
syndrome as a part of the PAX8 disease spectrum in females,

which the authors refer to as CH-MRKHS (75).
5.6 GREB1L

In 2017, three unrelated studies identified GREB1L variants as a

new autosomal dominant cause of congenital anomalies of the

kidney and urinary tract (CAKUT, OMIM #617805) (109, 110,

139). Some of the female cases, mainly fetuses affected by bilateral

renal agenesis, were also described with uterovaginal malformations

supporting a possible link to MD development (109, 110).

In 2019, Herlin et al. (101) reported on the investigation of a

three-generational family with four cases of renal agenesis,

including two adult female cousins with MRKH syndrome type II

with unilateral renal agenesis. Whole-exome sequencing analysis in

this family identified a segregating missense variant in GREB1L,

supporting GREB1L variants as a novel monogenic cause of MRKH

syndrome associated with incomplete penetrance and sex-limited

expressivity and a phenotype mirroring the early descriptions of

hereditary renal/urogenital adysplasia (41–43, 140, 141). Jacquinet

et al. (102) identified GREB1L variants in 5 of 63 (7.9%) sporadic

MRKH syndrome patients and segregating variants in four

mult iplex famil ies presenting renal and uterovaginal

malformations. Buchert et al. reported a stop-gain variant in a

monozygotic twin-pair discordant for MRKH syndrome with the

other twin having unilateral renal agenesis (98). Most recently, Jolly

et al. performed an unbiased rare variant enrichment analysis based

on WES data from a large American-European cohort (n=148),

identifying GREB1L as the only gene approaching exome-wide

significance based on seven detected variants. From a replication

cohort of 442 Han Chinese cases, additional variants were found,

including in six cases with type I MRKH syndrome. Of note, besides

kidney and uterovaginal malformations, GREB1L variants have also

been associated with inner ear malformations and deafness as well

as complex congenital heart disease (142, 143).
TABLE 2 Continued

Gene Chromosomal
location

Zygosity Variants
reported

Variant type MRKH type Other
phenotypes/entities
associated with gene

Ref.

MYCBP2 13q22.3 Monoallelic 2 Missense (2) Type I – (97)

PKD1 16p13.3 Monoallelic 2 Missense (1)
Stop-gain (1)

Type I+II Polycystic kidney disease
(OMIM #173900)

(123)

SPECC1L 22q11.23 Monoallelic 2 Missense (2) Type 2 Teebi hypertelorism syndrome
(OMIM #145420)

(74)

TBC1D1 4p14 Monoallelic 2 Missense (1)
Frameshift (1)

Type I+II CAKUT (104)
fron
aTwo or more reported sequence variations in the gene. Non-recurrent candidate variants are listed in Supplementary Table S1.
bTwo variants reported in one case. Phasing was not done to determine trans or cis configuration.
cIncluding two polymorphisms (rs56098093 and rs201231713).
CAKUT, congenital anomalies of the kidneys and urinary tracts; MODY5, maturity-onset diabetes of the young type 5; NS, not stated; OMIM, Online Mendelian Inheritance in Man; UVM,
uterovaginal malformations.
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GREB1L is considered to be involved in retinoic acid signaling,

although its protein remains poorly characterized (109). Greb1l-

knockdown in zebrafish causes abnormal pronephros

morphogenesis (110, 139), and injection of wild-type human

mRNA has been shown to rescue the phenotype (110). Knock-in

mutagenesis of one missense variant in mice has also been shown to

cause renal agenesis (139). Homozygous knock-out of Greb1l in

mice has been shown to cause absence of the kidneys, Wolffian

ducts, and Müllerian ducts (109). However, GREB1L variants

reported in humans are monoallelic and predominantly missense

variants (Table 2), and the pathogenic mechanism of how these

missense variants cause MRKH syndrome is still unknown

requiring further functional analysis.

Taken together, the current evidence with 30 reported

variants (Table 2) including disease-segregating variants in

extended pedigrees, epidemiological evidence of rare variant

enrichment in larger cohorts, and functional evidence from

knock-out mice, suggest GREB1L as a major causative gene in

MRKH syndrome.
5.7 SHOX

Gervasini et al. (62) first reported on the association of partial

SHOX duplications in MRKH syndrome in 2010. They

investigated 30 cases and 53 controls and identified 5 cases with

SHOX duplications including a sib-pair with MRKH syndrome.

No duplications were identified among controls. Guerrier and

Morcel (64) reported similar findings with three SHOX

duplications and one duplication downstream of the gene. In

contrast, Sandbacka et al. found no duplications among 101

Finnish cases questioning the role of SHOX in MD development

(63). More recently, Mikhael et al. reported two missense variants

from an investigation of 72 candidate genes in 111 cases (103).

The functional role of these duplications (including their insertion

sites) and missense variants is unknown and causality has not

been established.
5.8 WNT9B

Wnt9b encodes a protein involved in MD development and

Wnt9b knock-down in mice causes uterovaginal and renal agenesis.

Wnt9b is expressed in the Wolffian duct epithelium providing

signals guiding MD elongation (144). WNT9B has therefore been

considered a candidate gene in MRKH syndrome and has been

investigated in several studies identifying a total of 9 sequence

variants in MRKH syndrome type I, of these 7 missense variants

(Table 2) (98, 103, 113, 114). One patient has been reported with

two variants (114). Other studies found no variants in MRKH

syndrome patients (145, 146). WNT9B variants have also been

reported in other uterovaginal malformations (114, 146). The

functional role of these variants remains to be ascertained.
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5.9 WNT4

As previously described,WNT4 was the first gene identified as a

monogenic cause of MD agenesis in females (OMIM #158330)

(115). Since its discovery, a total of seven missense variants have

been reported (103, 115–118). A missense variant ofWNT4 has also

been reported with another uterovaginal anomaly with renal

agenesis (Herlyn-Werner-Wunderlich syndrome) (147).

Importantly, MD agenesis caused by WNT4 variants is

associated with clinical and biochemical hyperandrogenism,

representing a phenotype distinct from MRKH syndrome in

general as described by Biason-Lauber et al. (116), and is often

considered a separate entity. This is also supported by several

investigations reporting no variants in larger MRKH syndrome

and MD anomaly cohorts (30, 148, 149).
5.10 LRP10

Lrp10 encodes low-density lipoprotein receptor-related protein

10, which has been proposed as a negative regulator of Wnt/b-
catenin signaling (150), a pathway involved in MD development

(151). In 2015, Rall et al. reported on a SNP-array analysis of CNVs

in discordant twin pairs. In one affected twin, a 585 kb duplication

at 14q11.2 spanning LPR10 was identified, not present in the other

twin, and this gene was suggested as a candidate gene for MRKH

syndrome. Two subsequent studies have reported a total of five

missense variants in LRP10, hereof two variants in the same patient

(74, 103). Functional evidence for these variants is lacking and

causality has not been established.
6 Discussion

As described, knowledge of genetic variation in MRKH

syndrome has increased considerably during recent years enabled

by WES/WGS analysis. In the following, thoughts on how to

continue the search for genetic causes are presented and potential

implications for future clinical care are discussed.
6.1 Family history is key

The development of the field shows the importance of detailed

family history in the genetic assessment, as it may include

important information to suggest an underlying genetic trait or

perhaps provide information on the genetic nature of the family’s

trait. The early descriptions of hereditary urogenital adysplasia

families, reported long before molecular genetic testing became

available, is a good example hereof suggesting an autosomal

dominant trait with sex-limited expressivity (41–43, 140, 141). In

recent years, GREB1L variants have been identified as a major cause

of MRKH syndrome, particularly in families with a hereditary

urogenital adysplasia-like presentations (101, 102).
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Family histories should not only include incidents of MRKH

syndrome but also associated extragenital malformations and other

uterovaginal malformations in family members. The subtle nature

of many renal and uterovaginal malformations is, however,

important to consider, as these may not yet have been revealed in

asymptomatic relatives, requiring radiological imaging. The

relevance of other uterovaginal malformations in the genetic

assessment of MRKH syndrome patients is highlighted by the

many genes reported in both phenotypes, including 17q12

deletion (85, 124), EMX2 (75, 152), GREB1L (102, 109, 110),

HNF1B (52, 129, 130), HOXA10 (58, 75, 153), SPECC1L (74, 154,

155), WNT4 (115, 147), and WNT9B (114). This could suggest a

spectrum of uterovaginal anomalies with shared causes.
6.2 Future genetic studies

Exome and genome sequencing have proven useful in the

discovery of new genes during recent years, including GREB1L

(99, 101, 102) and PAX8 (75). With the continuously developing

field of genomic sequencing technologies and multi-omics analyses,

there is reason to believe that additional genetic causes remain to be

identified. Recently, the first complete telomere-to-telomere

genome reference was published, which will support even better

detection of genetic variation in future genetic studies (156). Also,

our understanding of the role of non-coding parts in the genome

such as topologically associated domains and long non-coding

RNAs is increasing (157, 158). Genome sequencing today is

typically based on short-read sequencing due to its cost-

effectiveness and accuracy. Long-read sequencing has increased in

use and provides some advantages in terms of de novo assembly,

read-mapping, detection of structural variants, phasing of variants,

and transcript isoform identification (159). Another technology for

improved analysis of structural variation is optical genome

mapping, which has been applied by Brakta et al. (73). All along

the technical developments, it will still be relevant to revisit

sequencing data of unsolved cases, as new knowledge emerges

supporting variant interpretation. Sequenced MRKH syndrome

cohorts will increase in size, as will available genomic data

resources, which will improve rare variant discovery from

association analyses.

It is also relevant to look for somatic variation or differential

gene expression in affected tissues as previously performed on

surgically-removed uterine remnants (35, 98, 106–108). This may

also be helpful in functional analyses of candidate variants of

unknown significance to provide evidence for pathogenicity.

However, it should be considered that organogenesis in the

embryo is an accurately orchestrated process with precise

spatiotemporal control of gene expression (160). Therefore, gene

expression in adult uterine remnants may not be representative of

the gene expression occurring during embryonic development,

which in that case would require mouse modeling. As the causal

effect of many gene variants remains unknown, functional analyses

will be important for further progress.
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Finally, it will be important to investigate candidate variants in

extended pedigrees to understand the mode of inheritance and

disease segregation, also considering more complex mechanisms in

developmental genomics as proposed in the compound inheritance

gene dosage model (161).
6.3 Importance of a genetic diagnosis –
possible implications for clinical practice

Identifying genetic causes of MRKH syndrome is of immense

importance including both academic pursuits towards

improving our understanding of genetic factors underlying

human uterovaginal development as well as establishing the

necessary evidence to provide informed care and counseling

for the individual patient and their families in clinical settings.

Rare disease patients often undergo lengthy diagnostic odysseys

from the first suspicion until the time of (genetic) diagnosis.

Although the diagnostics in MRKH syndrome primarily involve

finding the gynecological cause for primary amenorrhea,

questions of “why did this happen?” remain and feelings of

guilt and responsibility are prevalent among patients and their

parents (11, 12). Identifying the underlying cause of

malformation syndromes may reduce the burden for patients

and famil ies , even if i t does not lead to changes in

treatment (162).

Genetic counseling and management following the

identification of a gene variant depends on the ‘clinical

actionability’ of the variant, which requires both a valid gene-

condition association and sufficient evidence for pathogenicity

(163). As evidence for genetic causes in MRKH syndrome

continues to increase, it may contribute to better disease

classification in the future based on molecular causes instead of

the current clinical distinction of type I and II. It can also be

expected to guide future patient management such as examinations

for associated diseases and anomalies specific to the particular gene.

Clinically actionable variants may lead to genetic testing of family

members at risk, and variant carriers may then be referred to

relevant specialists for further examination. Finally, genetic

counseling may address the recurrence risk if patients/couples

with an identified genetic cause wish to pursue genetic

parenthood either through gestational surrogacy or UTx. The

possibility of recurrence in offspring was demonstrated in a recent

report, describing the first case of mother-to-daughter inheritance

following surrogacy (22). As UTx approaches clinical

implementation (24) and the evidence for genetic causes

increases, questions about offspring recurrence risk and

reproductive choices will likely become more prevalent and so

will requests for preimplantation genetic testing as part of the in

vitro fertilization preceding the UTx procedure.

However, in the current state of knowledge, many reported

variants associated with MRKH syndrome are still to be considered

as variants of uncertain significance, which warrant cautious

interpretations and counseling in clinical care.
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7 Conclusion

In conclusion, recent advancements provide evidence for genetic

causes of MRKH syndrome. The combined evidence points towards a

heterogeneous etiology with various genes implicated. With the

identification of monogenic causes in MRKH syndrome and

increasing fertility options allowing couples to pursue genetic

parenthood, the need for genetic counseling will likely increase.
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