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Diabetic nephropathy (DN) represents a significantmicrovascular complication in

diabetes, entailing intricate molecular pathways andmechanisms associated with

cardiorenal vascular diseases. Prolonged hyperglycemia induces renal

endothelial dysfunction and damage via metabolic abnormalities, inflammation,

and oxidative stress, thereby compromising hemodynamics. Concurrently,

fibrotic and sclerotic alterations exacerbate glomerular and tubular injuries. At

a macro level, reciprocal communication between the renal microvasculature

and systemic circulation establishes a pernicious cycle propelling disease

progression. The current management approach emphasizes rigorous control

of glycemic levels and blood pressure, with renin-angiotensin system blockade

conferring renoprotection. Novel antidiabetic agents exhibit renoprotective

effects, potentially mediated through endothelial modulation. Nonetheless,

emerging therapies present novel avenues for enhancing patient outcomes

and alleviating the disease burden. A precision-based approach, coupled with a

comprehensive strategy addressing global vascular risk, will be pivotal in

mitigating the cardiorenal burden associated with diabetes.
KEYWORDS

diabetic nephropathy, panvascular disease, endothelial dysfunction, renin-angiotensin
system, novel antidiabetic drugs, individualized therapy
Introduction

According to the International Diabetes Federation’s report, over 530 million people

worldwide have diabetes (1). About one-third of diabetic patients develop diabetic

nephropathy (DN) after the incubation period, which may last several years (2). Diabetic

nephropathy, as a common complication of diabetes, has drawn widespread attention
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globally. With the increasing number of diabetes patients and

lifestyle changes, DN is rising. DN is characterized by structural

and functional kidney damage due to prolonged high blood glucose

levels, resulting in a gradual decline in glomerular filtration rate,

proteinuria, and progressive renal function impairment (3). It is one

of the leading causes of chronic kidney disease (CKD) and a major

contributing factor to end-stage renal disease (ESRD) (4).

Additionally, diabetes patients often risk panvascular diseases (5),

which involve the entire vascular system, including atherosclerosis,

cardiovascular diseases, and cerebrovascular disorders. Due to

alterations in the vascular wall structure and function in diabetes

patients, they are more prone to developing atherosclerosis. Factors

such as endothelial dysfunction, inflammation, oxidative stress, and

platelet activation play important roles in promoting the progression

of atherosclerosis in diabetes patients (6). The treatment strategies for

DN and panvascular diseases include controlling blood glucose levels,

managing blood pressure, restricting protein intake, and using renal

protective agents. Furthermore, addressing atherosclerosis and

cardiovascular diseases is crucial, involving lipid management,

antiplatelet therapy, and cardiovascular protection measures (7, 8).

DN often has varying degrees of systemic vascular damage,

making DN’s development more complex and severe. On the one

hand, panvascular diseases accelerate the progression of DN, leading

to a further decline in glomerular filtration rate, worsening

proteinuria, and impaired renal function. On the other hand, DN is

an independent risk factor for panvascular diseases, increasing the risk

of cardiovascular events and all-cause mortality. The connection

between DN and panvascular diseases is significant for preventing,

diagnosing, and treating these conditions. While investigating the

relationship between DN and panvascular diseases, several key

questions deserve further exploration. Firstly, it is important to

understand the common pathological mechanisms between DN and

panvascular diseases. Factors such as high blood glucose,

inflammation, and oxidative stress play crucial roles in both

diseases. Secondly, it is necessary to explore how panvascular

diseases affect the development and prognosis of DN. Further

understanding the interplay between the two conditions can aid in

developing more precise treatment strategies and preventivemeasures.

While further investigating the connection between DN and

panvascular diseases, this perspective article addresses the following

key questions:
Common pathological mechanisms

High blood glucose, inflammation, and oxidative stress are

important in DN and panvascular diseases. It is crucial to delve

into these shared pathological mechanisms and explore how they

interact to exacerbate disease progression.
Impact of panvascular diseases on DN

How do panvascular diseases affect the development and

prognosis of DN? Does it increase the risk of cardiovascular

events and all-cause mortality? Exploring these key questions can
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enhance our understanding of the overall risk in DN patients and

guide relevant interventions.
Treatment strategies

More precise treatment strategies can be developed based on a

thorough understanding of the connection between DN and

panvascular diseases. Identifying common treatment targets and

developing targeted therapeutic drugs may improve patients’

prognosis and quality of life.
Molecular pathogenesis of DN:
insights from panvascular

DN is one of the most common vascular complications of

diabetes (9). In the early stages, abnormalities in the glomerular

filtration membrane arise, characterized by thickening of the

glomerular basement membrane and proliferation of mesangial

cells, resulting in altered glomerular filtration rate (GFR).

Concurrently, endothelial cell injury within the glomerulus and

dysfunction of tubular epithelial cells manifest. The progression of

disease leads to glomerulosclerosis, which is marked by substantial

glomerular injury and proteinuria (10). Glomerulosclerosis and

mesangial proliferation further exacerbate the decline in GFR.

The advancement of DN may also induce interstitial fibrosis and

tubular atrophy, impairing tubular function, including urine

concentration ability and acid-base balance. In the late stages of

DN, a gradual reduction in GFR ensues, intensifying glomerular

dysfunction and aggravating glomerulosclerosis. Consequently,

interstitial fibrosis, arterial sclerosis, and renal artery lesions may

manifest in the kidney (11). The pathogenesis involves multiple

molecular and cellular abnormalities. High blood glucose levels

represent a primary risk factor for DN development in diabetic

patients. Direct injury of renal vascular endothelial cells and

podocytes by hyperglycemia plays a pivotal role in DN

progression (12). Inflammation and oxidative stress significantly

affect DN by activating inflammatory signaling pathways and

induction of cellular apoptosis, thereby contributing to renal

pathological changes (13). Additionally, aberrant activation of the

renal renin-angiotensin system (RAS) and other signaling cascades

promotes DN advancement (14). At the cellular level, prolonged

hyperglycemic exposure elicits mitochondrial dysfunction, cellular

metabolic derangements and oxidative stress in renal cells. This

triggers the emission of damage-associated molecular patterns that

stimulate innate immune cascades, leading to glomerular and

tubulointerstitial inflammation (15). Pro-inflammatory cytokines

such as interleukin-1b (IL-1b) and tumor necrosis factor-a
(TNF-a) exacerbate podocyte and endothelial injuries via

multiple mechanisms involving caspases, SMAD pathways and

Rho-associated protein kinase. Concomitantly, hyperglycemia-

induced advanced glycation end products (AGEs) formation and

their engagement with renal receptors for AGEs amplify

inflammation and fibrosis through diverse intracellular signaling

molecules including protein kinase C, transforming growth factor-b
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and nuclear factor-kB (NF-kB) (16, 17). The intrarenal RAS is

concurrently activated through Ang II and further propagates

oxidative stress, inflammation, and extracellular matrix

accumulation in DN progression via hemodynamic and non-

hemodynamic effects (18, 19). These multi-factorial and inter-

related pathophysiological processes synergistically promote renal

structural and functional impairments characteristic of DN.

Here, we discuss the key pathophysiological processes at the

cellular and molecular levels based on current evidence:
Formation of advanced glycation end
products and renal injury

The formation of advanced glycation end products (AGEs) is a

complex process in hyperglycemia. Under hyperglycemia, non-

enzymatic glycation of proteins/lipids leads to excessive AGEs

accumulation, a hallmark of diabetic dysmetabolism (20). The

binding of AGEs to receptors such as RAGE on renal endothelial

cells activates pro-oxidative and pro-inflammatory pathways

including NADPH oxidase, MAPK and NF-kB, inducing

oxidative stress and inflammation (21, 22). Several studies have

demonstrated the detrimental effects of AGEs and RAGE activation

in the pathogenesis of diabetic nephropathy (23). For example,

blocking RAGE activation has been shown to alleviate renal injury

and reduce inflammation in experimental models of diabetes (24).

Additionally, inhibition of the NADPH oxidase system, which is

upregulated by RAGE signaling, has been found to attenuate

oxidative stress and improve renal function in DN (25).

Furthermore, inhibition of MAPK and NF-kB pathways has

shown promising results in reducing inflammation and fibrosis in

diabetic kidney disease (26, 27).
Increased oxidative stress
and inflammation

Mitochondrial dysfunction driven by persistent hyperglycemia

plays a pivotal role in diabetes-induced oxidative stress and kidney

inflammation. Sustained hyperglycemia leads to impaired ATP

generation in renal cells by disrupting mitochondrial function

(28). It has been shown that hyperglycemia decreases

mitochondrial electron transport chain complexes I and IV

activities, compromising the balance between superoxide

production and dismutation in renal cells (29, 30). This triggers

an overproduction of reactive oxygen species (ROS), such as

superoxide anions.

Concurrently, hyperglycemia activates inflammatory pathways

by upregulating proinflammatory mediators and accumulating

immune cells in the kidneys. Hyperglycemia stimulates NF-kB
and MAPK signaling pathways, leading to increased expression of

cytokines, including IL-1b, TNF-a, and MCP-1 (31, 32). These

inflammatory cytokines amplify local inflammation by recruiting

monocytes that differentiate into resident proinflammatory M1

macrophages in the renal interstitium (33). Renal tubular
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epithelial cells also secrete chemokines that perpetuate

inflammation (34).

Elevated ROS production results in oxidative damage to lipids

and proteins, impairing cell membrane integrity and function (35).

Inflammatory cytokines can activate hormonal systems to induce

renal tubular cell apoptosis (36). Abnormal extracellular matrix

remodeling involving increased collagen deposition and

osteopontin contributes to renal interstitial fibrosis (37). In

summary, mitochondrial dysfunction-induced oxidative stress and

inflammation form a vicious cycle that cooperatively drives the

pathogenesis of diabetic kidney disease.
Endothelial dysfunction and
increased permeability

Hyperglycemia elicits direct damage to endothelial cells lining

the renal vasculature and glomeruli, manifesting as impaired

endothelium-dependent vasorelaxation (38, 39), weakened

homeostatic control of vascular tone and permeability (40, 41),

and deregulated integrity of the glomerular filtration barrier (42).

Chronic hyperglycemic conditions trigger excessive production of

reactive oxygen species and proinflammatory signaling, which

promote endothelial activation and a proinflammatory phenotype.

Activated endothelial cells exhibit disturbances in barrier

function, increasing vascular permeability at the glomerular (43)

and tubular (44) vascular beds. This allows plasma proteins such

as albumin to leak into the urine, presenting clinically as

proteinuria - a hallmark of DN (45). At the molecular level,

hyperglycemia enhances endothelial expression of adhesion

molecules that recruit leukocytes (46), decreasing the synthesis

of antiproteinuric factors (47). The combined effects of direct

hyperglycemic toxicity, oxidative stress and chronic low-grade

inflammation thus converge to induce endothelial dysfunction in

the renal vasculature. Figure 1 shows the relevant mechanisms and

possible approaches.
The common relationship between
DN and panvascular disease

The common pathological processes of DN and panvascular

disease include vascular injury, inflammatory response, oxidative

stress and fibrosis (48). At the same time, patients with DN are at

risk for systemic vasculopathy. It has been found that diabetic

patients are often accompanied by systemic vascular lesions such as

abnormal vascular function, atherosclerosis, and platelet activation

(49). These vasculopathies are somewhat similar to the

development of DN, in which vascular endothelial cell injury,

inflammatory response and oxidative stress are common

pathological features (50, 51). Thus, DN and panvascular disease

may share common molecular mechanisms that further exacerbate

the development of DN.

Inflammatory response and oxidative stress are important

common links. The inflammatory response is activated in both
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diseases, leading to increased production of inflammatory

cytokines (52). These cytokines include tumor necrosis factor-a
(TNF-a) (53), interleukin-1b (IL-1b) (54), and interleukin-6 (IL-

6) (55), among others, which are involved in the inflammatory

response of the vascular wall and damage to vascular endothelial

cells (56). The increase in inflammatory cytokines further activates

the NF-kB signaling pathway, promoting the inflammatory

response’s continuation.

Under a hyperglycemic state, excessive glucose metabolism

generates many oxygen free radicals, disrupting the intracellular

redox balance. In addition, oxidative stress in diabetic patients can

be caused by mitochondrial dysfunction and accumulation of

glycosylation end products. Excessive production of oxygen free

radicals and imbalance of the antioxidant system leads to increased

intracellular oxidative stress, further damaging renal and vascular

cells (57).

In addition to inflammatory responses and oxidative stress,

several important molecular pathways and signaling molecules are

involved in developing DN and panvascular disease (58). For

example, transforming growth factor-b (TGF-b) (59) is important

in both diseases. TGF-b is involved in thickening and fibrosis of the

glomerular basement membrane, disrupting the glomerular

filtration barrier. In addition, angiotensin II (Ang II) has been

implicated as a co-regulatory molecule in DN and panvascular

disease, exacerbating the progression of both diseases through

mechanisms that promote vasoconstriction and increase

inflammatory responses and oxidative stress (60, 61).

A close interaction exists between renal vascular abnormalities

in DN and systemic vascular complications. Persistent

hyperglycemia can exacerbate systemic vascular injuries through

renal endothelial dysfunction, inflammation and the spill over of

vascular reactive species and cytokines. Meanwhile, panvascular

diseases such as atherosclerosis can directly impair renal

hemodynamics by narrowing intrarenal arterioles and

compromising renal blood supply and pressure profiles,
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undermining glomerular filtration function. Furthermore,

advanced glycation end products and platelet hyperreactivity

may precipitate thrombotic occlusions obstructing renal

microcirculation, augmenting ischemic injuries to the glomeruli.

These reciprocal effects between renal and systemic vessels

collectively form a vicious cycle that reinforces the progression of

DN and panvascular comorbidities in diabetes.
Treatment strategies for DN

Tight glycemic and blood pressure control are recognized as

cornerstone therapies for DN (62). Mounting evidence suggests that

stringent control of hyperglycemia effectively mitigates renal

complications (63). Clinical studies (64, 65) have validated that

achieving near-normal glycemia through a combinatorial

pharmacotherapy approach, dietary modification and exercise

substantially delays DN progression and lowers risks of renal

adverse outcomes. Hypertension is also a key driver of DN

pathogenesis (66, 67). Effectively managing blood pressure

alleviates hemodynamic overload on the kidneys and hampers

disease progression, as corroborated by numerous trials (68, 69).

Given individual variations in disease severity and responses,

glycemic and blood pressure control treatment targets should be

personalized. Close monitoring with timely adjustments is pivotal

to minimizing clinical deterioration and organ damage over the

long term. With a treatment paradigm centered around intensive

management of the two metabolic abnormalities, multidisciplinary

care integrating medical, lifestyle and educational elements can help

optimize renal protection in this high-risk population. Achieving

recommended targets demands relentless efforts from patients and

healthcare providers alike.

Chronic inflammation and oxidative stress play pivotal roles in

the pathogenesis and progression of DN. Targeting these

pathogenic processes represents a promising therapeutic strategy.
FIGURE 1

The relevant mechanisms and possible approaches for DN. The figure illustrates the critical mechanisms involved in renal injury in diabetes mellitus.
Increased oxidative stress and inflammation, mitochondrial dysfunction driven by persistent hyperglycemia, and the formation of advanced glycation
end products (AGEs) contribute to renal damage. Additionally, endothelial dysfunction and increased permeability further exacerbate the
pathogenesis of diabetic nephropathy.
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Preclinical evidence (70) suggests anti-inflammatory interventions,

including non-steroidal anti-inflammatory drugs, glucocorticoids,

and anti-cytokine therapies, may attenuate renal inflammation and

fibrosis in DN to a certain extent (71). Based on the 2024 latest

research finding (72) by the American Diabetes Association

Professional Practice Committee, cardiovascular event risk

reduction in DN patients is recommended through finerenone, a

non-steroidal selective mineralocorticoid receptor antagonist. This

medication has been clinically proven to reduce cardiovascular

events and the progression of chronic kidney disease (73).

Recently, guidelines (74–77) reflect growing recognition of

finerenone’s clinical benefits and increasingly emphasize the need

for earlier intervention strategies that concurrently target

cardiorenal protection in patients with coexisting diabetes, kidney

disease and cardiovascular illness.

Similarly, antioxidative agents such as vitamins E and C and

glutathione have demonstrated renoprotective effects by

ameliorating oxidative insults and preserving renal and vascular

cellular integrity from radical-mediated damage (78–80).

Pentoxifylline (PTF) is a methylxanthine derivative and a

phosphodiesterase inhibitor that can inhibit the production of

pro-inflammatory cytokines such as tumor necrosis factor-alpha

and interleukin-1 beta. It reduces inflammation and has a

significant therapeutic effect on DN (81). PTF exerts its anti-

proteinuric effects through various mechanisms, including

improving renal microcirculation, inhibiting oxidative stress, and

reducing collagen deposition (82). Clinical studies (83, 84) have

shown that PTF can significantly decrease proteinuria in DN

patients and improve CRP and TNF-a. Therefore, PTF has

become an important adjunctive therapy for DN. However, larger

and longer clinical outcome trials are still warranted to definitively

establish the efficacy and safety profile of anti-inflammatory and

antioxidative therapies in DN management. Unresolved questions

around optimal drug selection, dosing regimen, duration of

intervention and long-term benefits need to be addressed to

inform clinical recommendations. Nonetheless, given their

mechanistic rationale targeting the underlying chronic pro-

oxidative and pro-inflammatory milieu driving DN progression,

further exploring these therapeutic avenues through well-designed

studies remains an active area of research interest. Combinatorial

regimens harnessing multiple protective mechanisms may also

hold promise.

The renin-angiotensin-aldosterone system (RAAS) axis plays a

pivotal role in the pathogenesis of DN. RAAS blockade with ACE

inhibitors (ACEi) and angiotensin receptor blockers (ARB) are

well-established therapeutic interventions for DN. Angiotensin II

receptor antagonist losartan can effectively reduce the progression

of nephropathy in patients with type 2 diabetes. Compared to

conventional antihypertensive treatment, losartan can lower the

risk of renal function deterioration, end-stage renal disease, and

death (85). These agents retard DN progression by lowering

intraglomerular pressure and mitigating renal inflammation.

However, their use requires close monitoring due to potential

adverse effects such as worsening kidney function and
Frontiers in Endocrinology 05
hyperkalemia in some patients. Sodium-glucose cotransporter 2

(SGLT2) inhibitors are emerging antidiabetic agents. They promote

glucosuria and lower blood glucose levels by inhibiting SGLT2-

mediated glucose reabsorption in proximal tubules (86). Recent

clinical trials (87, 88) demonstrated their renoprotective benefits in

DN, including reductions in proteinuria and slower eGFR decline.

They also confer cardiovascular protection.

Glucagon-like peptide-1 (GLP-1) receptor agonists stimulate

insulin secretion and inhibit intestinal glucose absorption.

Emerging evidence (89, 90) indicates their treatment may confer

renal benefits in DN, such as decreasing proteinuria, improving

glomerular filtration rates and attenuating fibrosis.

In summary, while RAAS blockade forms the mainstay of

pharmacotherapy for DN, SGLT2 inhibitors and GLP-1RAs hold

promise as adjunctive therapies given their additional reno- and

cardio-protective effects observed in recent landmark outcome

trials. Their integration into routine clinical care warrants

further investigation.
Emerging treatments and
future perspectives

Epigenetics and metabolic memory

Individualized therapy and precision medicine also hold great

potential in managing DN. Recent findings (91, 92) have elucidated

the roles of epigenetics and metabolic memory in linking genetic

and environmental risk factors. Mechanisms, including DNA

methylation, histone modification, and non-coding RNA

regulation, are involved, promoting the development of metabolic

memory and leading to a poor prognosis in DN (93, 94). Long non-

coding RNAs (lncRNAs) help regulate these epigenetic changes and

drive gene expression changes in DN pathogenesis. While our

mechanistic understanding has progressed, effective therapies still

need to be improved. A precision medicine approach integrating

multi-omics profiling with clinical characteristics holds promise to

precisely tailor individualized treatment for DN. Targeting disease-

relevant lncRNAs may uncover new opportunities for genomic

medicine to treat DN.
NETosis and neutrophil extracellular traps

NETosis, the formation of neutrophil extracellular traps

(NETs), plays a significant role in the pathogenesis of DN (95).

While inflammation and oxidative stress are known contributors to

DN, the involvement of neutrophils has been largely overlooked.

Elevated glucose levels increase PKC activity, NADPH-oxidase

overstimulation, and oxidative burst, irrespective of diabetes type

(96). This oxidative burst is crucial for NET formation.

Inflammatory cytokines and free fatty acids hinder insulin

signaling, activating inflammatory pathway mediators such as

IKKb and JNK1. This results in the translocation of NFkb to the
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nucleus, triggering the activation of proinflammatory genes

necessary for priming. Additionally, high extracellular glucose

promotes a proinflammatory M1 phenotype in macrophages. The

interaction between NETs and M1 macrophages exacerbates the

proinflammatory response, leading to apoptosis and the release of

extracellular DNA. This NET-mediated process contributes to an

increased burden of free DNA and disease progression in DN.

Understanding the complex pathomechanisms of DN highlights the

notable role of NETosis, presenting an opportunity to target

NETosis as an emerging therapeutic approach for DN.
Natural products and
therapeutic approaches

Natural products have gained increasing attention as potential

therapeutic agents for DN. Recent studies (97–99) have identified

comprehensive therapeutic approaches, including natural products,

that may provide potential treatment strategies for DN. One

example of a natural product with therapeutic potential is

colchicine. A recent clinical (100) investigation explored the

beneficial effects of low-dose colchicine on neutrophil-related

chronic inflammation in DN patients. The findings demonstrated

that low-dose colchicine effectively and safely attenuated

neutrophil-related chronic inflammation in DN patients with

concomitant microalbuminuria in type 2 diabetes. Plant-derived

compounds, such as resveratrol (101), curcumin (102), and

quercetin (103, 104), have exhibited anti-inflammatory,

antioxidant, and renoprotective effects, potentially mitigating the

development and progression of DN. Further research is needed to

elucidate the underlying mechanisms of action and optimize the

therapeutic potential of these natural products. This includes

investigating their effects on key molecular pathways involved in

DN, such as oxidative stress, inflammation, apoptosis, and fibrosis.

Additionally, studies exploring the synergistic effects of natural

product combinations or their interaction with conventional

therapies could provide valuable insights into their clinical utility.
Timely focus on the risk of
DN complications

Studies (105, 106) have shown a higher risk of urinary tract

infections (UTIs) events in individuals with DN, supported by

ample epidemiological evidence. Regional studies (107) indicate a

UTI prevalence of 25.3% among individuals with diabetes, with

females accounting for 41.1% of cases. Elevated blood glucose

levels create a favorable environment for bacterial growth,

increasing susceptibility to infection by promoting colonization

of uropathogens and compromising the immune system.

Untreated UTIs in T2DM are closely associated with the risk of

DN. They can worsen the pro-inflammatory state by releasing

cytokines and inflammatory mediators that damage the kidneys

and promote DN progression (108). Numerous studies (109, 110)

have explored the potential of uromodulin (UMOD) in
Frontiers in Endocrinology 06
preventing UTIs and preserving kidney function. UMOD, also

known as Tamm-Horsfall protein, is predominantly produced by

cells in the kidney’s thick ascending limb of the loop of Henle

(111). It is the most abundant protein in urine and exhibits

antibacterial properties. UMOD is believed to play a vital role in

UTI defense by acting as a barrier. It binds to bacterial pathogens

in the urinary tract, impeding their adherence to the urothelium

and subsequent colonization (110). This mechanism reduces the

risk of UTIs and restricts infection spread to the kidneys. Given

UMOD’s antibacterial effects and potential protective role, it

presents an appealing therapeutic target for preventing UTIs

and preserving kidney function in individuals with DN. Future

research can focus on elucidating the underlying mechanisms of

UMOD in UTI prevention, exploring its potential as a diagnostic

or prognostic marker for UTIs in DN, and developing

interventions to enhance UMOD expression or function. In

addition, since UTIs are associated with the possibility of

affecting fetal development (112), the resulting targeting of

content related to urinary tract infections emphasizes attention

to the risk of DN complications.
Conclusion

In conclusion, DN often co-occurs with cardiovascular

complications including hypertension, coronary artery disease

and cerebrovascular diseases (113). A comprehensive approach

integrating the management of these comorbidities is imperative.

Tackling the global vascular burden may lower mortality and

enhance quality of life. Future research should further elucidate

DN pathogenesis and discover novel treatment paradigms.

Targeting inflammation, oxidative stress and vascular dysfunction

with drugs and interventions represents major opportunities.

Advancing individualized and precision approaches through

technological evolution will transform DN care. Promoting an

integrated vascular risk reduction strategy also benefits long-term

outcomes. In summary, DN management is evolving towards

personalized, precise, holistic models. Novel mechanism-based

therapies, especially those targeting pathogenic pathways,

combined with individualized/precision regimens and

comprehensive comorbidity control, will optimize therapeutic

strategies for better patient outcomes.
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