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Optimizing thyroid AUS
nodules malignancy prediction:
a comprehensive study of
logistic regression and
machine learning models
Yuan Cao1†, Yixian Yang1†, Yunchao Chen2, Mengqi Luan1,
Yan Hu1, Lu Zhang1*, Weiwei Zhan1* and Wei Zhou1*

1Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai, China, 2Department of Ultrasound, Zhongshan Hospital (Xiamen Branch), Fudan University,
Xiamen, Fujian, China
Background: The accurate diagnosis of thyroid nodules with indeterminate

cytology, particularly in the atypia of undetermined significance (AUS)

category, remains challenging. This study aims to predict the risk of

malignancy in AUS nodules by comparing two machine learning (ML) and three

conventional logistic regression (LR) models.

Methods: A retrospective study on 356 AUS nodules in 342 individuals from 6728

patients who underwent thyroid surgery in 2021. All the clinical,

ultrasonographic, and molecular data were collected and randomly separated

into training and validation cohorts at a ratio of 7: 3. ML (random forest and

XGBoost) and LR (lasso regression, best subset selection, and backward stepwise

regression) models were constructed and evaluated using area under the curve

(AUC), calibration, and clinical utility metrics.

Results: Approximately 90% (321/356) of the AUS nodules were malignant,

predominantly papillary thyroid carcinoma with 68.6% BRAF V600E mutations.

The final LR prediction model based on backward stepwise regression exhibited

superior discrimination with AUC values of 0.83 (95% CI: 0.73-0.92) and 0.80

(95% CI: 0.67-0.94) in training and validation, respectively. Well calibration, and

clinical utility were also confirmed. The ML models showed moderate

performance. A nomogram was developed on the final LR model.

Conclusions: The LR model developed using the backward stepwise regression,

outperformed ML models in predicting malignancy in AUS thyroid nodules. The

corresponding nomogram based on this model provides a valuable and practical

tool for personalized risk assessment, potentially reducing unnecessary surgeries

and enhancing clinical decision-making.
KEYWORDS

thyroid nodules, risk of malignancy, atypia of undetermined significance (AUS), machine
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1 Introduction

The optimal management of thyroid nodules with indeterminate

cytology, as classified under the 2023 Bethesda System for Reporting

Thyroid Cytopathology (TBSRTC), poses a challenge in clinical

practice (1). These indeterminate nodules encompass categories

such as atypia of undetermined significance (AUS), follicular

neoplasm (FN), and suspicious for malignancy (SUSP), each

carrying a variable risk of malignancy from 6% to 94.2%, often

influenced by institutional variations or calculation methods (2–6).

Despite advancements in high resolution ultrasonography, molecular

testing, and other modern diagnostic techniques, no consensus has

been reached on the management of AUS nodules. Therefore,

efficient risk assessment and intervention strategies are calling for.

Molecular testing has gained prominence in diagnosing

indeterminate thyroid nodules and two molecular profiles have been

identified: BRAF V600E-like and RAS-like (7, 8). Its applications

extend from determining the presence of malignancy to offering

prognostic insights and guiding therapeutic decisions (9–11). The

BRAF V600E mutation, with its relatively high prevalence and

specificity in papillary thyroid carcinoma (PTC), holds particular

significance, especially in East Asian populations (12, 13). In China,

it has been adopted as a routine element in pre-operative liquid-based

biopsy following FNA in the majority of clinical centers. However, the

diagnostic efficacy of BRAF V600E mutation alone in AUS nodules is

not superior, possibly resulting from variant histopathology,

particularly in nodules without the BRAF V600E mutation, where

ruling out malignancy is challenging. The combination of demography,

imaging, and molecular testing is likely to improve diagnostic accuracy.

Therefore, adjunct preoperative assessments are still highly desirable.

To the best of our knowledge, studies published to date specifically

focusing on predicting the malignancy risk for category III nodules

remain limited.

Recently, artificial intelligence (AI) has undergone rapid

transformation in the medical field, with deep learning and

machine learning emerging as the main algorithms. Numerous

studies have been conducted to assess the nature of thyroid

nodules and nodule classification using deep learning with

ultrasonographic images as input (14, 15). Machine learning is

another strategy for diagnosing or predicting thyroid nodules, given

its distinctive discrimination efficiency (16). It harnesses data and

algorithms tomimic the way that humans learn andmake predictions

or classifications (17, 18). Moreover, machine learning algorithms

have emerged as an alternative to conventional logistic regression

analysis for clinical risk prediction models. Despite the extensive

exploration of AI in thyroid domain, there is scarce literature

addressing the most challenging cohort, the AUS thyroid nodules

(16). To date, no reported study has undertaken a comparison of the

prediction performance between conventional logistic regression

(LR) models and machine learning models (ML) in AUS

thyroid nodules.

This study aims to investigate the potential of a multi-faceted

approach, incorporating US findings, clinical data, biological

features, and genetic information, to predict the risk of

malignancy in AUS thyroid nodules. Through a comparative

analysis of prediction performance between conventional logistic
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regression models and machine learning models, our goal is to

develop a comprehensive prediction model. The final model will be

presented in the form of a nomogram, providing clinicians with a

practical tool for assessing AUS thyroid nodules following

ultrasound-guided fine needle aspiration (US-FNA).
2 Methods

2.1 Study design and participants

This retrospective, single-center study involved consecutive

patients who underwent thyroidectomy or thyroid lobectomy at

Ruijin Hospital of Shanghai Jiao Tong University between January

and December of 2021. The study protocol received approval from

the Ethics Committee of Ruijin Hospital. All eligible patients were

informed about the use of their data for study and had the option to

decline to participate. Informed consent was obtained through a

signed agreement before undergoing US-FNA and surgery.

Inclusion criteria were: i) age> 18 years; ii) thyroid nodule

classified as AUS following FNA cytology; iii) patients who

underwent pre-operative US and molecular tests; iv) patients with

documented surgery records and final pathology. Exclusion criteria

comprised: i) refusal to participate; ii) patients who had undergone

thyroid nodule ablation, radioactive iodine, or any other

interventional procedure before surgery. The data meeting

inclusion criteria were randomly separated into training and

validation cohorts at a ratio of 7: 3. Both conventional LR and

ML algorithms were applied to create the prediction models in the

training dataset, followed by validation in the validation dataset.

The final prediction model was chosen based on their performance,

complexity, generalization capabilities, and practicality. Various

metrics, including discrimination, calibration, and the clinical

utility and value of the final prediction, were used for a

comprehensive view. Additionally, a nomogram was developed

for a graphical computation of the final prediction model. This

study adhered to the Transparent Reporting of a multiple prediction

model for Individual Prognosis or Diagnosis (TRIPOD) guidelines

(19). The workflow of this study is depicted in Figure 1.
2.2 Ultrasonography

Preoperative neck US was performed in all patients using

commercial diagnostic US equipment from various manufacturers

(Mindray, Philips, GE Healthcare, Siemens, and HITACHI) with a

high-frequency (5-14 MHz) linear array transducer. Settings such as

depth, gain, and others were standardized as much as possible

across all gray-scale and Color Doppler US examinations. Imaging

of the neck, including transverse and longitudinal scanning of the

thyroid glands, nodules, and bilateral lymph nodes, was all digitally

stored in our hospital’s picture archiving and communication

system. Two radiologists reviewed and documented all

sonographic characteristics of thyroid nodules using the

terminology outlined in the I-TIRADS (20). Additionally, specific

details such as size, echotexture, ultrasonography of thyroid
frontiersin.org
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parenchyma suggesting Hashimoto’s thyroiditis (US-HT), and

suspected cervical lymph nodes on US (US-LN) were also

recorded. Any disagreements were resolved by discussion or by

consultation with a third radiologist.
2.3 Cytological assessment and molecular
testing following US-FNA

Nodules classified as C-TIRADS 4a or higher grades, or those

exhibiting signs of suspected lymph nodes, were recommended for

FNA (21). The targeted nodule underwent re-evaluation to determine

its location, nearby vessels, and establish a proper needle path before
Frontiers in Endocrinology 03
aspiration. Following the guidelines (22), a 23 G needle was inserted

through the skin into the nodule, guided by real-time US. Once the

needle tip was positioned within the nodule, suction was applied to

the needle, which rapidly moved back and forth within the nodule to

obtain multiple samples of cells. The collected specimen was smeared

and preserved in the liquid-based cytology preservative solution

(Hangzhou HealthSky Biotechnology Co., Ltd).

Cytologists examined and analyzed the cells and cellular

structures referring to the second edition of the Bethesda System

for Reporting Thyroid Cytopathology (23). Molecular testing was

done to provide more precise information about the nature of these

thyroid nodules. Several molecular tests were available in our

institution, including BRAF V600E, Ras, and TERT.
FIGURE 1

Flow diagram of study design. HT, Hashimoto’s thyroiditis; US-LN, suspected cervical lymph nodes on the US; MTC, medullary thyroid carcinoma;
FTC, follicular carcinoma.
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2.4 Prediction model establishment
and evaluation

For the conventional LR model, several variable selection

methods were applied to the training dataset for the best predictor

features, including least absolute shrinkage and selection operator

regression (LASSO), best subset selection, and backward stepwise

regression, with all potential variables as input. Additionally, two

popular machine learning algorithms, namely Random Forest (RF)

and Extreme Gradient Boosting (XGBoost), were constructed to

create a predictive model. To assess the discrimination capabilities

of LR andMLmodels, the receiver operating characteristic area under

the curve (ROC AUC) was used on both datasets. The forest plot was

introduced to display the estimated coefficients (odds ratios) and their

confidence intervals for various predictor variables in the LR model.

The reliability and accuracy of the model were evaluated through a

calibration curve, which compares the model’s predicted outcomes or

probabilities to the actual observed outcomes. This curve provides

valuable insights into the model’s calibration performance. The

decision curve analysis (DCA) curve was utilized to evaluate the

clinical utility and value of the model, offering a more comprehensive

assessment of model performance than traditional metrics like

sensitivity and specificity (24). DCA helped identify the most

appropriate threshold probability for the model, considering user

preferences for minimizing false positives or false negatives in the

decision-making process and optimizing model application in

practical scenarios. Finally, a nomogram was developed based on

the final predictive model. This graphical tool simplifies the

estimation of individual risk or probabilities based on the model’s

predictor variables (25).
2.5 Statistical analysis

All analyses were conducted in R, version 4.3.0 (R Project for

Statistical Computing). The population characteristics were

described using frequencies and proportions for categorical

variables, and medians and interquartile ranges (IQR) for

continuous variables. The chi-square test and Fisher’s exact test

were employed to compare categorical variables between the

training and validation datasets. Sixteen features concerning

patient demographics (age, gender), ultrasonography, and

molecular testing (BRAF V600E) were recorded as potential

variables to predict pathology outcomes. The “glmnet”, “leaps”,

and “MASS” packages in R was used to select predictors by LASSO,

best subset selection, and backward stepwise regression in the

training dataset, respectively. Select the optimal model with the

minimum criterion value (minimum AIC, BIC, or maximum

adjusted R-squared). The “ROSE” package in R was applied to aid

the task of binary classification in the presence of rare classes in ML

establishment with over-sampling based on a bootstrap technique.

The “caret” package in R was introduced to define optimal

hyperparameters in the RF model using 5-fold cross-validation.

The XGBoost model was fine-tuned by incorporating regularization

parameters like gamma, lambda (L2 regularization term), and
Frontiers in Endocrinology 04
alpha (L1 regularization term) into a grid search to identify the

optimal hyperparameters. For all tests, P<0.05 was considered

statistically significant.
3 Results

3.1 Analysis of baseline information

From January to December 2021, a total of 6728 patients

underwent thyroid surgery, and 399 thyroid nodules were

diagnosed as AUS following US-FNA. Among them, 342

individuals (279 female and 77 male) with 356 AUS nodules and

complete records were enrolled in this study. Approximately 90%

(321/356) of the nodules were malignant, with the majority being

PTC (315/321), along with a few cases of medullary thyroid

carcinoma (5/321) and follicular carcinoma (1/321). Within the

PTC cases, 68.6% (216/315) had BRAF V600E mutations. The

remaining 10% (35/356) were benign lesions. The median age was

43.5 years (IQR 35.0-53.0), and the median nodule size was 5.1mm

(IQR 3.98-7.93). Five medullary and one follicular carcinoma were

excluded during predictors selection. As described in Table 1, these

baseline features showed significant similarity in the training

(n=244) and validation (n=106) cohorts (p>0.05).
3.2 Machine learning model

Figures 2A, B illustrate the relative importance of potential

features in the RF and XGBoost models based on the training

cohort. The performance of the random forest and XGBoost models

were evaluated using AUC values on the validation set, resulting in

values of 0.74 (95% CI: 0.62-0.87) for random forest (Figure 2C)

and 0.74 (95% CI: 0.57-0.90) for XGBoost (Figure 2D). The RF

model was figured with 100 trees (ntree = 150) and considered two

random features at each split (mtry = 4). This configuration was

fine-tuned based on testing and adjustments, ultimately resulting in

the lowest estimation error rate of out-of-bag samples

(OBB=9.02%). The XGBoost model was constructed with specific

hyperparameters in terms of minimizing log loss.
3.3 Logistic regression model

In the training set, independent predictors of the LR prediction

model were selected from 16 potential variables through lasso

regression (Figures 3A, B), best subset selection (Figures 3C, D), and

backward stepwise regression. The final predictable variables were

diameter, Hashimoto’s thyroiditis, BARF V600E, ill-defined margin,

echogenic foci, and US-LN as described in the forest plot (Figure 3E).

The AUC values of the model based on backward stepwise regression

in the training cohort were 0.83 (95% CI: 0.73-0.92) (Figure 4A), and

0.80 (95% CI: 0.67-0.94) in the validation cohort (Figure 4B),

respectively. As illustrated in Figures 4C, D, this model demonstrated

superior calibration performance in both cohorts.
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TABLE 1 Baseline characteristics of patients with AUS thyroid nodules in training and validation cohorts.

Variables Total N=350 Training N=244 (70%) ValidationN=106 (n=30%) P value

Age (median [IQR]) 44.0 [35.0, 53.0] 44.0 [36.0, 54.0] 43.5 [34.25, 52.0] 0.683

Diameter (median [IQR]) 5.1 [3.9, 7.6] 5.1 [4.1, 7.5] 5.3 [3.9, 8.47] 0.679

Gender (%)

Female 277 (79.1) 191 (78.3) 86 (81.1) 0.645

Male 73 (20.9) 53 (21.7) 20 (18.9)

Direction of growth (%)

Wider-than-tall 94 (26.9) 68 (27.9) 26 (24.5) 0.605

Taller-than-wide 256 (73.1) 176 (72.1) 80 (75.5)

Irregular margin (%)

No 33 (9.4) 22 (9.0) 11 (10.4) 0.840

Yes 317 (90.6) 222 (91.0) 95 (89.6)

Ill-defined margin (%)

No 244 (69.7) 171 (70.1) 73 (68.9) 0.920

Yes 106 (30.3) 73 (29.9) 33 (31.1)

Composition (%)

Solid 329 (94.0) 229 (93.9) 100 (94.3) 1.00

Predominately solid 21 (6.0) 15 (6.1) 6 (5.7)

Echogenicity (%)

Markedly hypoechoic 34 (9.7) 25 (10.2) 9 (8.5) 0.799

Mildly hypoechoic 307 (87.7) 212 (86.9) 95 (89.6)

Isoechoic 9 (2.6) 7 (2.9) 2 (1.9)

Echotexture (%)

Homogeneous 247 (70.6) 175 (71.7) 72 (67.9) 0.556

Heterogeneous 103 (29.4) 69 (28.3) 34 (32.1)

Echogenic foci (%)

No echogenic foci 198 (56.6) 142 (58.2) 56 (52.8) 0.793

Microcalcifications 104 (29.7) 70 (28.7) 34 (32.1)

Macrocalcifications 22 (6.3) 15 (6.1) 7 (6.6)

Micro-macro foci 26 (7.4) 17 (7.0) 9 (8.5)

Color Doppler Flow Imaging (%)

None 3 (0.9) 2 (0.8) 1 (0.9) 0.773

Slight 312 (89.1) 215 (88.1) 97 (91.5)

Moderate 16 (4.6) 13 (5.3) 3 (2.8)

Abundant 19 (5.4) 14 (5.7) 5 (4.7)

Capsule contact (%)

No 132 (37.7) 92 (37.7) 40 (37.7) 1.00

Yes 218 (62.3) 152 (62.3) 66 (62.3)

(Continued)
F
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TABLE 1 Continued

Variables Total N=350 Training N=244 (70%) ValidationN=106 (n=30%) P value

US-HT (%)

No 255 (72.9) 182 (74.6) 73 (68.9) 0.329

Yes 95 (27.1) 62 (25.4) 33 (31.1)

US-LN (%)

No 278 (79.4) 195 (79.9) 83 (78.3) 0.842

Yes 72 (20.6) 49 (20.1) 23 (21.7)

Pathology

Benign 35 (10.0) 24 (9.8) 11 (10.4) 1.00

Malignant 315 (90) 220 (90.2) 95 (89.6)

Hashimoto thyroiditis (%)

No 287 (82.0) 202 (82.8) 85 (80.2) 0.667

Yes 63 (18.0) 42 (17.2) 21 (19.8)

BRAF V600E mutation (%)

No 125 (35.7) 85 (34.8) 40 (37.7) 0.690

Yes 225 (64.3) 159 (65.2) 66 (62.3)
F
rontiers in Endocrinology
 06
AUS, atypia of undetermined significance; US-HT, ultrasonographic of thyroid parenchyma suggesting Hashimoto’s thyroiditis; US-LN, suspected cervical lymph nodes on US.
FIGURE 2

The relative contribution of predictor variables and the area under the receiver operating characteristic curve (AUC) in two Machine learning models.
(A) Variable importance ranking plot for random forest model. (B) Out-of-bag variable importance ranking for the XGBoost model. (C) ROC curve for
the random forest model in the validation cohort. (D) ROC curve for the XGBoost model in the validation cohort.
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3.4 Model selection

Both the RF and XGBoost models showed moderate AUC

values on the validation set, indicating their ability to

discriminate between malignancy and benignity, but without

exceptionally high discrimination performance compared with LR

models. Considering aspects such as model performance,

complexity, generalization capabilities, and practicality, the LR

based on backward stepwise regression prediction model was

chosen finally. The forest plot depicted that certain variables with

P-values exceeding 0.05, such as Hashimoto’s thyroiditis, ill-defined

margin, and US-LN, were retained in this logistic regression, as a

result of their clinical significance in daily medical practice, and to

allow for the interpretation of their sizes.
Frontiers in Endocrinology 07
3.5 Comprehensive assessment of the
final model

In both the training and internal validation set, the AUROC

curve analysis yielded sensitivity values of 0.82 and 0.83, as well as

specificity values of 0.75 and 0.64, respectively. The mean absolute

error (MAE) for both data sets was 0.022 and 0.04 after performing

bootstrapping 1000 times in the calibration plot, indicating that the

model’s predicted probabilities closely align with the actual

outcomes across different samples (Figures 4C, D). The DCA

curve was applied to both data sets to evaluate the clinical utility

and value of the model. As Figure 4E revealed, the utilization of this

prediction model within the threshold probability range of 20-95%

in the training cohort demonstrated a higher net benefit compared
FIGURE 3

Conventional logistic regression (LR) models. (A) Variable screening via the LASSO binary logistic regression model is depicted, showing the
coefficient profiles of 22 variables in the training cohort. (B) The 10-fold cross-validation process is visualized for the selection of the tuning
parameter (l) in the LASSO model. Vertical dotted lines denote the points of minimum mean square error (l=0.015) and the standard error of the
minimum distance (l=0.067). (C) The process of variable selection with best subset selection regression on Adjusted R-Squared (adjr2). Seven
variables were selected when the adjr2 was maximized, achieving the balance between explanatory power and model simplicity. (D) Best subset
selection on the Bayesian Information Criteria (BIC). The same seven variables as selected based on adjr2 were chosen, as the BIC suggests a more
efficient model in terms of explanatory power and complexity. (E) The forest plot shows the independent predictors in backward stepwise
regression. Each square represents the point estimate of the effect size (e.g., odds ratio), the horizontal line indicates the 95% confidence interval,
and the vertical dotted line represents the line of no effect, where the odds ratio equals 1.
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to both the screen-none and screen-all strategies. In the validation

cohort, a threshold probability within 55-95% showed a

favorable outcome.
3.6 Nomogram development

To depict this mathematical model vividly, a nomogram was

created by assigning a weighted score to each of the predictors, as

shown in Figure 4F. The total scores could be calculated as a

summary of each predictor’s scores, identified by drawing lines to

the points axis. Refer to the risk line, the probability of malignant in

AUS thyroid nodules was estimated. (For example, if a patient had

Hashimoto ’s thyroiditis, a 20mm thyroid nodule with

characteristics such as microcalcification and ill-defined margin,

and the cervical lymph nodes were normal and AUS without BRAF

V600E mutation after US-FNA, they would score 110 points,

indicating a 72% estimated malignancy risk).
Frontiers in Endocrinology 08
4 Discussion

Thyroid nodules, particularly those categorized as Bethesda III

following US-FNA, remain a clinical challenge. Despite the

TBSRTC 2023 reclassification of AUS/FLUS as AUS only, along

with revised management recommendations, the accurate

differentiation between benign and malignant nodules is still

crucial for clinical decision-making (1). Therefore, we constructed

a model to predict malignancy in AUS nodules, aiming to provide a

reference for patients and physicians. Although several studies have

been conducted to address this challenge, many have been limited

by small sample sizes and a lack of comprehensive postoperative

pathology results and other essential features (26–30). In our study,

we take a more extensive approach by analyzing a large dataset of

AUS nodules, incorporating comprehensive clinical, ultrasound,

genetic, and pathological data. The nodules were randomly divided

into training and validation cohorts to ensure the robustness of

our analysis.
FIGURE 4

The final model (LR based on backward stepwise regression) evaluation and display. (A) ROC curve for final prediction model in the training cohort.
(B) ROC curve in the validation cohort. (C) Calibration plot for this model in the training cohort. (D) The calibration plot in the validation cohort.
(E) Decision curve analysis (DCA) for the model in both training (solid line) and validation cohorts (dashed line). (F) A nomogram was developed
based on the final prediction model to estimate the risk of malignancy for AUS thyroid nodules. HT (0: without Hashimoto’s thyroiditis, 1: the
presence of Hashimoto’s thyroiditis; BRAF V600E (0: wild type, 1: mutation); ill-defined margin (0: clear margin, 1: ill-defined margin); Echogenic foci
(0: no echogenic foci; 1: micro-calcification; 2: macro-calcification; 3: both micro & macro calcification); US-LN (0: nonsuspicious lymph-node, 1:
suspicious lymph node).
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To develop more reliable predictive models for AUS nodules

assessment, we considered several key variables selected through

various methods, including LR with LASSO, backward stepwise

regression, and best subset selection, as well as ML like RF and

XGBoost, following a rigorous comparison. Despite the increasing

popularity of ML-based models in predictive modeling, our study

revealed that the LR-based nomogram exhibited superior

performance in predicting malignancy of AUS thyroid nodules in

terms of AUC, calibration, and clinical utility. This finding is in line

with the claim that ML may not consistently outperform LR for

prediction modeling (31, 32). We attempted to rectify the

imbalanced training dataset in ML through oversampling and

parameter adjustments, but it yielded few improvements.

Furthermore, Silke Janitza and Roman Hornung suggest that

OOB error may overestimate the true prediction error and raise

uncertainty about its use for tuning random forest parameters,

which could affect model performance (33). It remains difficult to

predict whether LR would consistently outperform random forest

on all future data, as we used OOB error for parameter selection.

Notably, in this study, we integrated a broad spectrum of

features beyond typical ultrasound parameters outlined in I-

TIRADS, recognizing the multifactorial nature of AUS nodules

assessment, where clinical, imaging and genetic factors interplay

intricately. The independent variables in our final predicting model

encompassed diameter, Hashimoto’s thyroiditis, BRAF V600E

mutation status, ill-defined margin, echogenic foci, and the

suspicion of cervical lymph node metastasis based on US.

With an odds ratio of 0.87 for the nodule diameter, larger AUS

nodules following US-FNA seem to have a lower likelihood of

malignancy compared to smaller ones. Yoon et al. introduced a

nomogram incorporating clinical and ultrasound features to predict

malignancy among AUS/FLUS nodules (26). Our study expands

beyond typical ultrasound and clinical features, suggesting that the

presence of Hashimoto’s thyroiditis (odds ratio = 0.31) might

contribute to the malignancy prediction model. In our predictive

model, AUS nodules in the context of HT were assigned lower

points compared to those without HT. Ultrasonography may be

challenging for PTC in the context of HT due to its increased or

decreased parenchyma echogenicity and coarsened echotexture with

nodular margins. The association of HT and PTC has been a topic of

controversy. On one hand, some studies have indicated that HT may

elevate the risk of thyroid malignancy (34, 35). Several mechanisms

have been proposed that TSH stimulation, proto-oncogenes such as

BRAF mutations, and RET/PTC rearrangements may promote cancer

development or growth. Chronic lymphocytic thyroiditis in HT may

induce inflammation factors fueling cancer cell proliferation, while

neoplastic cells could trigger a chronic inflammatory response as well

(36). On the other hand, conflicting findings exist, with some reports

confirming that the presence of Hashimoto’s thyroiditis does not affect

the risk of malignancy in thyroid nodules of category III (37). These

differing findings reveal the complexity of thyroid nodule assessment

coexisting with HT.

Simultaneously, the BRAF V600E mutation plays a vital role in

assisting malignancy prediction. As the most extensively studied

mutation in thyroid cancer, it has been reported to possess an

approximate specificity of 100% in PTC (diagnostic role), leading
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to a significant reduction in unnecessary thyroid surgeries (7, 38).

However, the isolated presence of BRAF V600E mutation is unlikely

to discover the full picture of thyroid carcinogenesis due to its poor

sensitivity. A meta-analysis revealed that its value as a single

screening test alone in AUS is limited, with approximately 40%

sensitivity in indeterminate nodules (39). Possible reasons for this

limitation include the reported histopathology of carcinomas in AUS,

which encompasses classic and tall cell variants of PTC, follicular

thyroid carcinoma, Hurthle cell carcinoma, squamous cell,

lymphoma, and others. Genetic mutations involved in these

nodules also include BRAF K601E, RET-PTC, PAX8/PPARg, RAS,
etc. Incorporating a wider range of molecular markers could improve

the predictive power of the models and provide deeper insights into

the underlying biological mechanisms. Słowińska-Klencka et al.

emphasized the importance of a holistic approach in managing

category III nodules, highlighting the potential of combining

miRNAs, BRAF V600E mutation, and EU-TIRADS (European

Thyroid Imaging and Reporting Data System) to support clinical

decision-making (40). Zhao et al. have also reported a 10.1% false-

positive and a 7.1% false-negative rate of BRAF V600E mutations in

thyroid FNA specimens, with a great improvement in diagnostic

performance when combined with FNA cytology (41).

The nomogram, serving as a clear and intuitive visual tool,

allows clinicians to easily understand and estimate probabilities

without performing complex calculations. It was constructed based

on the prediction model for assessing thyroid nodules. In cases

where thyroid nodules are confirmed as indeterminate by US-FNA,

this nomogram can be utilized as a reference for prediction.

Our models were developed with a wide range of data, including

US findings, clinical data, biological features, and genetic information,

and involved a thorough comparative analysis of prediction

performance between conventional logistic regression models and

machine learning models for a comprehensive prediction model.

However, the interobserver variability and the evolving nature of

medical guidelines remain inherent challenges, especially in

ultrasonographic features collected. Nevertheless, many artificial

intelligence (AI) technologies have emerged and are increasingly

being applied to medical imaging (42, 43). Various deep learning-

based AI models have demonstrated strong performance in feature

extraction, serving as valuable aids for thyroid management (44). In

our study, we specifically focused on patients with AUS nodules after

FNA, who were initially assessed by ultrasonography and subsequently

managed through surgery rather than active surveillance. All the

ultrasonographic features were reported baesd on the established

guidelines and clinical experience. Although LR based on backward

stepwise regression was chosen finally, it is of great importance to

continue research and refinement of the prediction models as new

knowledge and guidelines emerge.

While this prediction model was established to reduce the need

for unnecessary surgeries and alleviate patient anxiety associated

with indeterminate nodules, several limitations should be

considered. Firstly, although we analyzed a larger dataset of AUS

nodules compared to many previous studies, a larger sample size

could further enhance the generalizability of our findings. Secondly,

due to a single-center, retrospective study, our results may be

subject to selection bias. The availability of data, as well as
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potential missing or incomplete information could have have

influenced our results. Variations in clinical practices among

institutions and regions may also play a role. The high

malignancy rate in our cohort might have influenced the

developments of the prediction model. Prospective multi-center

investigations are needed to establish stronger causal relationships

and external validity. Additionally, our focus on the BRAF V600E

mutation, limited exploration of other prevalent molecular factors

in thyroid cancer, and the observed discrepancies regarding HT and

thyroid cancer risk highlight the need for more extensive molecular

and mechanism research in this field. Future studies should aim to

incorporate these additional mutations to improve the

comprehensive and accuracy of the prediction models. Lastly, the

potential for interobserver variability in ultrasound feature

interpretation and the evolving nature of medical guidelines

emphasize the need for ongoing research in this dynamic area.
5 Conclusion

In conclusion, our predictive model, incorporating US features,

clinical data, and genetic information, offers a practical tool for

assessing AUS thyroid nodules. Moreover, the model demonstrated

promising performance and outperformed the machine learning

algorithm. While this research represents a significant advancement

in personalized medicine, reducing the ambiguity associated with

indeterminate nodules and ultimately improving patient care, it

highlights the need for larger-scale studies and further molecular

investigations in this domain.
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40. Słowińska-Klencka D, Popowicz B, Kulczycka-Wojdala D, Szymańska B, Duda-
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