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Background: The Thr92Ala-DIO2 polymorphism has been associated with clinical

outcomes in hospitalized patients with COVID-19 and neuropsychiatric diseases.

This study examines the impact of the Thr92Ala-DIO2 polymorphism on

neuropsychological symptoms, particularly depressive symptoms, in patients who

have had moderate to severe SARS-CoV-2 infection and were later discharged.

Methods: Our prospective cohort study, conducted from June to August 2020,

collected data from273 patients hospitalizedwith COVID-19. This included thyroid

function tests, inflammatory markers, hematologic indices, and genotyping of the

Thr92Ala-DIO2 polymorphism. Post-discharge, we followed up with 68 patients

over 30 to 45 days, dividing them into depressive (29 patients) and non-depressive

(39 patients) groups based on their Beck Depression Inventory scores.

Results:We categorized 68 patients into three groups based on their genotypes:

Thr/Thr (22 patients), Thr/Ala (41 patients), and Ala/Ala (5 patients). Depressive

symptoms were less frequent in the Thr/Ala group (29.3%) compared to the Thr/

Thr (59.1%) and Ala/Ala (60%) groups (p = 0.048). The Thr/Ala heterozygous

genotype correlated with a lower risk of post-COVID-19 depression, as shown by

univariate and multivariate logistic regression analyses. These analyses, adjusted

for various factors, indicated a 70% to 81% reduction in risk.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2024.1366500/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1366500/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1366500/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1366500/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1366500/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2024.1366500&domain=pdf&date_stamp=2024-06-07
mailto:ramoshelton@gmail.com
https://doi.org/10.3389/fendo.2024.1366500
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2024.1366500
https://www.frontiersin.org/journals/endocrinology


Beltrão et al. 10.3389/fendo.2024.1366500

Frontiers in Endocrinology
Conclusion: Our findings appear to be the first to show that heterozygosity for

Thr92Ala-DIO2 in patients with COVID-19 may protect against post-COVID-19

depression symptoms up to 2 months after the illness.
KEYWORDS

post-COVID-19, Thr92Ala-DIO2 polymorphism, thyroid function, biomarkers,
depression
1 Introduction

Since the onset of the COVID-19 pandemic on 11 March 2020,

concerns about the increased risk of neuropsychiatric disorders among

survivors have risen. Long-termCOVID, involving post-acute sequelae

after SARS-CoV-2 infection, can lead to various dysfunctions of

extrapulmonary organs, including neuroinflammation, which may

contribute to the development of depression (1, 2).

The peripheral cytokines may potentially affect brain function

through direct action or via afferent pathways. Individuals with

autoimmune diseases and severe infections are more likely to

experience depression, and therapeutic cytokines can trigger

depressive symptoms. The cytokines under extensive study

include interleukin (IL) (IL-1b, IL-5, IL-6, IL-12, and IL-17),

tumor necrosis factor (TNF), and interferons (IFNs), representing

the inflammatory aspect, and IL-10, associated with resolution (3).

Depression is a complex polygenic disorder influenced by

environment. Depending on various studies, its heritability ranges

from 30% to 50%, with stress and imbalances in the HPA axis being

notable contributing factors. Genetic studies often neglect stress

effects, contributing to inconsistent results (4, 5).

There is a statistically significant association between thyroid

dysfunction and the development of mental distress, mood

disorders, and depression (5, 6). A comprehensive meta-analysis

of 12,315 individuals indicated that patients with subclinical

hypothyroidism have a higher risk of depression compared to

euthyroid controls (relative risk of 2.35, 95% CI: 1.84 to 3.02, p <

0.001) (7). Depression-related thyroid hormone (TH) level changes

include increased reversed triiodothyronine (rT3) (8, 9) and

decreased circulating T3 and TSH levels (10, 11).

The DIO2 gene encodes type 2 deiodinase (D2), a crucial enzyme

in converting the pro-hormone T4 into its active form, T3. The

Thr92Ala-DIO2 polymorphism is found in approximately half of the

global population and has been linked to chronic diseases such as type

2 diabetes mellitus (12, 13), obesity (14), arterial hypertension (15),

osteoporosis (16), mental distress (17, 18), and depression (19, 20).

Lately, we investigated 220 consecutive patients with moderate to

severe COVID-19 that showed a protective role of the heterozygous

state of the polymorphic variant DIO2 (Thr92Ala) in mortality and

severity from COVID-19. The heterozygous genotype (Thr/Ala) was

associated with a 47%–62% reduced in-hospital risk. The protective

role of Thr92Ala’s heterozygous advantage was supported in a meta-
02
analysis of 21 studies in more than 20,000 patients with diseases such

as diabetes, obesity, ischemic stroke, myocardial infarction, and left

ventricular hypertrophy (21).

This study aims to investigate the potential correlation between

the Thr92Ala-DIO2 polymorphism and depressive symptoms 2

months after COVID-19 hospital discharge. Additionally, it aims to

explore various metabolic and hormonal biomarkers alongside

tomographic measurements evaluated upon hospital admission.

The results of this study could help stratify patients and enable

early identification of neuropsychiatric disorders in COVID-19

survivors, facilitating future interventions.
2 Materials and methods

This research was a branch of a broader prospective,

longitudinal cohort study, designed to assess thyroid dysfunction

in patients with moderate to severe COVID-19 requiring intensive

or semi-intensive care. We evaluated 273 consecutive patients

hospitalized with COVID-19 between June and August 2020 at

the Hospital Metropolitano Dom José Maria Pires (a tertiary

referral hospital for COVID-19) in João Pessoa, Paraıb́a, Brazil.

Following discharge, 78 patients were assessed as outpatients for

neuropsychiatric issues (Figure 1). Ethical approval was granted by

the Hospital Universitário Lauro Wanderley’s Ethics Committee for

Human Research (CAAE:31562720.9.0000.5183).

Inclusion criteria involved patients who tested positive for

SARS-CoV-2 through quantitative real-time reverse transcription

polymerase chain reaction (rRT-qPCR—Biomol OneStep/COVID-

19, IBMP, Paraná, Brazil) with respiratory tract samples. In cases of

negative rRT-qPCR, eligibility was determined based on clinical,

radiological, and serological parameters (positive IgG for SARS-

CoV-2). Exclusion criteria comprised patients with a history of

thyroid disease or the use of drugs affecting thyroid metabolism,

pregnancy, personal neuropsychiatric disorders, and the use of

neuropsychiatric medications.

The primary outcomes were long-term depression

symptomatology in previously hospitalized COVID-19 survivors

according to the Thr92Ala-DIO2 polymorphism. Secondary

outcomes were blood biochemistry, thyroid function tests, length of

stay, comorbidities, complications, and severity scores according to

Thr92Ala-DIO2 polymorphism and depressive symptomatology.
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The research physicians gathered detailed clinical information

on each patient within 48 h of admission using a standard

questionnaire and severity scales (qSOFA and NEWS2). After

discharge, patients were contacted and invited (30–45 days after

discharge) by telephone for a medical consultation at the HULW, to

evaluate post-COVID-19 symptoms and signs, including

depression symptoms through Beck Depression Inventory (BDI).

The BDI is a self-assessment instrument composed of 21 items with

scores ranging from 0 to 63. The cutoff scores for the BDI were ≤9

(without depression) and >10 (with depression) (22).

Blood samples (50 mL) were collected within the first 48 h of

hospital admission (before any interventions or therapy, including

steroids and heparin). Laboratory tests performed included

interleukin 6, D-dimer, alanine aminotransferase (ALT), aspartate

aminotransferase (AST), creatinine, high-sensitivity C-reactive

protein (hs-PCR), and lactate dehydrogenase (LDH). The method

used in all examinations was automated chemiluminescence

(MAGLUMI-2000-PLUS; Shenzhen New Industries Biomedical

Engineering Co., Shenzhen, China). The complete blood cell

count with differential was performed on a MEK-7300

hematological analyzer (Nihon Kohden®, Tokyo, Japan).
Frontiers in Endocrinology 03
Patients underwent chest CT to diagnose suspected SARS-CoV-

2 pneumonia (ground-glass opacity, mosaic attenuation, and

consolidation). A semiquantitative CT severity score proposed by

Pan et al. was used in all cases (23).

Genomic DNA was extracted from peripheral blood leukocytes

using standard techniques. In this study the polymorphism was

determined by the TaqMan® SNP Genotyping method (7500 Real-

Time PCR Systems, Applied Biosystems, Foster City, CA, USA), using

the assay for genotyping with TaqMan® probes and primers, in a

combination of hybridization and DNA polymerase activity, associated

with fluorescence detection (24). We used the software Sequence

Detection, version 1.3 (Applied Biosystems, CA) to analyze the data.

Statistical analysis: To determine the requisite sample size, we

employed GPower 3.1.9.7 software, setting the significance level of a =

0.05, the desired statistical power of 0.95, and the effect size (F2) of 0.10.

The outcome indicated a minimum sample size of 158 patients from

the initial 273. Using the Cochran formula with finite population

correction (population size n = 273) and aiming for a 95% confidence

level and a margin of error within ±10% for prevalence estimation, the

analysis required a minimum of 53 patients. Thus, our study group of

68 patients was sufficiently large for a comprehensive analysis.
FIGURE 1

Flowchart of the study.
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The data were represented as the median ± interquartile range

(IQR). Non-parametric tests were used for quantitative analysis,

including the Mann–Whitney test for two-variable comparisons,

and the Kruskal–Wallis test with Dunn’s post hoc test for multiple

comparisons. Chi-square or Fisher’s exact test was used for

qualitative analyses. Spearman’s rank correlation coefficient

assessed the linear association between variables. Univariate and

multivariate logistic regression analyses evaluated the risk of post-

hospital discharge depressive symptoms among patients.
3 Results

Of the 274 adult patients admitted with COVID-19 to a referral

hospital, 183 were initially selected for post-discharge assessment.

Eligibility assessment led to the exclusion of 109 individuals: 2 due

to post-hospitalization death, 34 were unreachable, and 73 declined
Frontiers in Endocrinology 04
participation. Furthermore, six patients were excluded due to

incomplete genotype data, resulting in a final cohort of 68

patients (Figure 1).

The group of 68 patients was stratified into three subgroups

based on genotype: Thr/Thr (n = 22), Thr/Ala (n = 41), and Ala/Ala

(n = 5) (Figure 1). The Thr allele frequency was 0.62 and the Ala

allele frequency was 0.37, with a distribution that was in Hardy–

Weinberg equilibrium (p = 0.07; chi-square test). Baseline

sociodemographic and clinical characteristics are summarized in

Table 1. During follow-up, the median age of patients was 54.5 (45–

67) years, 27 patients were over 60 years old (39.7%), and 48

patients (70.6%) were men. The median length of stay of patients in

the hospital was 6 days (4.2–8), and seven patients (10.3%) were

admitted to the ICU (Table 1).

Risk factors for post-discharge depressive symptoms were

analyzed using Mann–Whitney and Fisher’s tests. There was no

significant difference between the risk factors (hypertension,
TABLE 1 Demographic and clinical characteristics of the patient cohort and their association with Thr92Ala-DIO2 polymorphism and depressive
symptomatology (n = 68).

Variables
Total Thr/Ala

Thr/Thr +
Ala/Ala p-value

Non-depression Depression
p-value

(n = 68) (n = 41) (n = 27) (n = 40) (n = 28)

Age (years), median (IQR)
54.5

(45–67)
53 (42–65) 59 (50–68) 0.192 52 (42–59) 65.5 (53–72) 0.004

Age > 60 years, n (%) 27 (39.7) 15 (36.6) 12 (44.4) 0.516 10 (25) 17 (60.7) 0.0052

BMI (kg/m²)
32 (27–36) 29.8

(26–35)
32.8 (30–38) 0.068 30.7 (28–35) 32.7 (26–38) 0.455

Gender male, n (%) 48 (70.6) 31 (75.6) 32.8 (30–38) 0.262 34 (85) 14 (50) 0.0028

Day to symptom (days) 9 (7–11) 10 (7–11) 9 (7–10) 0.295 9 (7–10.7) 10 (6.2–11) 0.805

Associated morbidities

Hypertension, n (%) 43 (63.2) 25 (61) 18 (66.7) 0.633 22 (55) 21 (75) 0.126

Diabetes, n (%) 29 (42.6) 16 (39) 13 (48.1) 0.456 15 (37.5) 14 (50) 0.330

Obesity, n (%) 40 (58.8) 19 (46.3) 21 (77.8) 0.01 22 (55) 18 (64.3) 0.466

Cardiopathy, n (%) 7 (10.3) 3 (7.3) 4 (14.8) 0.319 2 (5) 5 (17.9) 0.115

Chronic pneumopathy (%) 3 (4.4) 1 (2.4) 2 (7.4) 0.329 0 (0) 3 (10.7) 0.065

Complications

Use of vasoactive drugs, n (%) 2 (2.9) 1 (2.4) 1 (3.7) 0.762 0 (0) 2 (7.1) 0.165

Length of hospital stay
(days), (IQR)

6 (4.2–8) 6 (4.5–8) 5 (4–10) 0.636 6 (4.2–8) 6 (4.2–9.5) 0.839

ICU admission, n (%) 7 (10.3) 4 (9.7) 3 (11.1) 0.857 2 (5) 5 (17.9) 0.115

Scores systems

BDI score, median (IQR) 8 (3.2–14) 7 (3–10) 10 (5–22) 0.032 4.5 (2.2–7) 16 (11.2–26) <0.0001

NEWS2 score, median (IQR) 5.5 (5–7) 6 (5–7.5) 5 (5–6) 0.544 6 (5–7) 5 (5–7) 0.478

q-SOFA score, median (IQR) 1 (0–1) 1 (0–1) 1 (1–1) 0.672 1 (0.25–1) 1 (0–1) 0.423

CT COVID score, median (IQR) 20 (15–20) 20 (15–20) 20 (15–20) 0.958 20 (15–20) 20 (15–20) 0.323
fro
Mann–Whitney test was performed for continuous variables (age, NEWS2, qSOFA, and TC COVID Score) while Fisher’s exact test was performed for all other variables.
BDI, Beck’s Depression Inventory; BMI, body mass index; ICU, intensive care unit; IQR, interquartile range; NEWS2, National Early Warning Score 2; NTIS, Non-thyroidal Illness Syndrome; q-
SOFA, quick sepsis related organ failure; CT COVID, Chest computed tomography score in COVID-19 patients.
The bold values correspond to the results assessed with significant p-values (P < 0.01).
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diabetes mellitus, obesity, and heart disease), complications (use of

vasoactive drugs, admission to the ICU, and hospital stay), and

severity scores (NEWS2, q-SOFA, and CT-COVID). A higher

percentage of non-depressed patients were younger than 60 (75%)

and were men (85%) (Table 1).

Spearman correlation analysis (Figure 2A) revealed a direct

correlation of BDI scores with age (r = 0.34, p = 0.005) and D-dimer

(r = 0.35, p = 0.003). The strongest correlation was between D-

dimer versus age (r = 0.45, p < 0.0001) and D-dimer versus IL-6 (r =

0.30, p < 0.01). The BDI scores, THs, and IL-6 showed no significant

difference (Figure 2A).

Regarding the BDI score, heterozygous patients (Thr92Ala) had

lower scores than homozygous patients (p = 0.032) (Table 1

and Figure 2B).

The overall prevalence of depressive symptoms post-discharge

was 41.2% (28 patients). Depressive symptoms were less common

in Ala/Thr patients (29.3%) compared to Thr/Thr patients (59.1%)

or Ala/Ala patients (60%) (p = 0.048) (Figure 3). Logistic regression

analysis, adjusted for 15 comorbidities and other covariates,

indicated that the Thr/Ala allele was associated with a reduced

risk of depressive symptoms compared to the combined Thr/Thr +

Ala/Ala genotype (overdominant model) (Table 2).

Thyroid function tests, markers of inflammation, tissue damage,

and hemochromocytometric parameters are shown in Table 2.

There was no significant difference between laboratory parameters

of the patient genotypes (Table 3). The only laboratory variable

significantly different in patients with depressive symptoms was D-

dimer levels, which were higher in these patients (p < 0.01).
Frontiers in Endocrinology 05
4 Discussion

To our knowledge, this study is the first of its kind to

prospectively analyze the relationship between the Thr92Ala-

DIO2 polymorphism and post-COVID-19 depression in

hospitalized patients. Our findings indicate that the Thr/Ala

genotype correlates with a significantly reduced risk of post-

discharge depression, with risk reduction ranging between 70%

and 81% as per univariate and multivariate logistic regression

analyses adjusted for various covariates.

DIO2, essential for physiological function in the CNS, brown

adipose tissue (25), and muscle (26), plays a pivotal role in local

triiodothyronine (T3) production, influencing neurological

development and function. Active T3 is produced within the

brain by DIO2, predominantly by astrocytes, affecting genes

associated with neuronal development, myelination, and synaptic

transmission (27, 28). Notably, studies on mice that lack DIO2

revealed reduced brain T3 content with mild neurological effects,

such as altered emotional behaviors and memory processing.

Upregulation of DIO2 has been observed in various neurological

disorders, influencing gene expression associated with

inflammation and cell death.

The Thr92Ala D2 polymorphism has been associated with

decreased TH activity in various end-organ targets. Research

conducted in vitro and ex vivo suggests that the Ala allele is

linked to enzyme dysfunction, impacting neurodegenerative

mechanisms and oxidative stress within the central nervous

system (29). Additionally, this polymorphism has been correlated
A B

FIGURE 2

(A) Spearman correlation between laboratory variables of 68 hospitalized patients with COVID-19 collected within the first 48 h of admission and
BDI scale scores after 30 to 45 days post-hospital discharge (* indicates p < 0.01). The numbers represent the correlation coefficient (r values). (B)
Bar chart demonstrating higher BDI scores in homozygous patients (Thr/Thr + Ala/Ala) compared to heterozygous individuals (Thr/Ala) (p = 0.032).
BDI, Beck Depression Inventory; TSH, thyroid-stimulating hormone; fT4, free tetraiodothyronine; fT3, free triiodothyronine; rT3: reverse
triiodothyronine; IL-6, interleukin-6; NLR, neutrophil–lymphocyte ratio; RDW, red cell distribution width.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1366500
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Beltrão et al. 10.3389/fendo.2024.1366500
FIGURE 3

Correlation between DIO2 Thr92Ala polymorphism and depressive symptomatology (chi-square test). CI, confidence interval; OR, odds ratio.
TABLE 2 Blood biochemistry in patients with COVID-19 and their association with Thr92Ala-DIO2 polymorphism and depressive symptomatology (n = 68).

Variables
(normal range)

Total
Thr/Ala Thr/Thr +

Ala/Ala p-value

Non-
depression Depression

p-value

(n = 68) (n = 41) (n = 27) (n = 40) (n = 28)

TSH (0.4–5.8 μIU/mL) 1.0 (0.65–2.25) 1.0 (0.58–2.05) 1.0 (0.82–3) 0.239 1.0 (0.65–1.89) 1.0 (0.64–3.1) 0.401

fT3 (2.0–4.2 pg/mL) 3.0 (2.6–3.6) 3.1 (2.6–3.7) 2.91 (2.3–3.2) 0.184 3.0 (2.59–3.7) 3.0 (2.65–3.47) 0.894

fT4 (0.89–1.72 ng/dL)
1.24

(0.99–1.62) 1.21 (0.98–1.6) 1.28 (1.06–1.58) 0.642 1.25 (0.99–1.62) 1.24 (0.97–1.62) 0.698

rT3 (0.1–0.35 ng/mL)
0.54

(0.31–0.65)
0.58

(0.29–0.68) 0.51 (0.35–0.62) 0.701 0.51 (0.29–0.61) 0.58 (0.35–0.73) 0.144

IL-6 (<3.4 pg/mL)
38.2

(19.4–75.1)
48.3 (18.6–69) 32.8 (19.1–83)

0.943
36.7 (17.8–67) 52.3 (27.2–77.7) 0.215

CRP (<5.0 mg/dL) 82.2 (48–177) 94.4 (51–179) 79.4 (45–146) 0.499 88.9 (48.7–170) 63.3 (45–177) 0.760

Neutrophil (1.9–6.7 10³
cells/μL)

6.74
(5.16–10.5)

7.09
(5.39–12.1)

6.64 (4.95–9.01) 0.445 7.46 (5.35–12.2) 6.68 (4.99–8.16) 0.447

D-dimer (<500 ng/mL)
699

(468–1,422)
696

(470–1,446)
702 (462–1,441) 0.970 643 (384–835)

1,106
(615–2,824)

0.0016

LDH (207–414 U/L)
812

(617–1,033)
807 (617–984) 815 (611–1,115) 0.644 758 (616–896) 911 (617–1,122) 0.258

Albumin (3.5–5.5 g/dL) 3.3 (3–3.6) 3.3 (2.9–3.6) 3.3 (3–3.6) 0.327 3.4 (3.0–3.7) 3.2 (2.9–3.6) 0.106

HbA1c (4%–5.6%) 7.2 (6.6–8.8) 7.4 (6.6–8.8) 7.2 (6.5–9.3) 0.986 7.1 (6.4–8.6) 7.4 (7.0–9.6) 0.111

MCV (82–100 fL) 89.8 (86–92) 89.4 (86–92) 90 (86–92) 0.426 89.7 (86–92) 90 (87–92) 0.889

N/L ratio (1–3) 9.16 (6.4–14) 9.11 (6.2–14.1) 9.4 (6.5–12.3) 0.815 9.3 (6.1–14) 9 (6.6–13.8) 0.894

Creatinine (mg/dL)
1.06

(0.87–1.35)
1.13

(0.89–1.37)
1.00 (0.82–1.27) 0.261 1.06 (0.89–1.3) 0.98 (0.78–1.4) 0.342
F
rontiers in Endocrinology
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Mann–Whitney test was performed for continuous variables. CI, confidence interval; CRP, C-reactive protein; fT3, free triiodothyronine; HbA1c, hemoglobin A1c; IL-6, interleukin 6; IQR,
interquartile range; LDH, lactate dehydrogenase; MCV, mean corpuscular volume; N/L ratio, neutrophil–lymphocyte ratio; OR, odds ratio; rT3, reverse triiodothyronine; TSH, thyroid-
stimulating hormone.
The bold values correspond to the results assessed with significant p-values (P < 0.01).
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with various neuropsychiatric conditions, including autism

(Marcondes et al., 2021), schizophrenia (30), depression (19, 20),

and cognitive impairment (31).

A Lithuanian study involving 168 participants investigated the

link between 10 single-nucleotide polymorphisms (SNPs) in DIO1,

DIO2, DIO3, and transmembrane TH transporters, specifically the

organic anion transporter polypeptide 1C1 (OATP1C1), in relation

to post-stroke depressive symptoms and anxiety. Among these

SNPs, only the wild-type OATP1C1-rs974453 genotype (GG)

showed a significant association with an increased likelihood for

depression symptoms (OR = 2.73; 95% CI: 1.04–7.12; p = 0.041). In

contrast, the Thr92Ala polymorphism did not demonstrate a

statistically significant difference, even though it was more

prevalent in the Thr/Thr genotype in patients with depression

(20). Conversely, a study in Poland indicated that the Ala–Ala

genotype of the Thr92Ala polymorphism was more common in

healthy individuals compared to those with recurrent depression

(7.2% vs. 0.6%, p = 0.03, respectively), suggesting its potential as a

marker for reduced risk of recurrent depressive disorder (32).
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This protection may be explained by the association of

Thr92Ala-DIO2 gene expression with endoplasmic reticulum

(ER) stress, inflammation, oxidative stress, apoptosis, and

mitochondrial dysfunction (33). Disruption of ER homeostasis

can lead to the accumulation of misfolded or unfolded proteins in

the ER lumen, a condition referred to as ER stress. ER stress is

associated with obesity, insulin resistance, type 2 diabetes (34),

endothelial dysfunction (35), and low-grade chronic inflammation

(36). These conditions have been associated with higher risk and

worse prognosis of COVID-19 (37) and depression (38, 39).

Clinical studies have found associations between decreased

levels of brain-derived neurotrophic factor (BDNF) and increased

inflammatory markers, which are linked to the onset of depressive

symptoms and various psychiatric disorders (40). In individuals

with depression, one study revealed a correlation between elevated

TSH levels, decreased serum BDNF levels, and a lower rise in BDNF

during antidepressant treatment (41). A more recent study

examining 50 patients undergoing their first episode of psychosis

showed that high TSH levels were associated with low peripheral
TABLE 3 Multivariable regression analyses between D2 Thr92Ala polymorphism (Thr/Thr, Thr/Ala, Ala/Ala, and overdominant model) and
depressive symptomatology.

Ala/Thr vs. Ala/Ala + Thr/Thr
(Overdominant model)

Depression

OR 95% CI p

Model 5
Model 4

Model 1

Depression 0.28 0.10–0.77 0.015

Age > 60 years 0.27 0.08–0.79 0.019

Gender (male) 0.29 0.09–0.87 0.030

Diabetes 029 0.10–0.80 0.018

SAH 0.28 0.10 - 0.79 0.018

Obesity 0.29 0.10– 0.79 0.017

Model 1 0.28 0.08–0.91 0.039

Model 2

TSH 0.30 0.10–0.82 0.022

Free T3 0.27 0.09–0.75 0.014

Free T4 0.27 0.09–0.75 0.013

Reverse T3 0.25 0.08–0.70 0.010

Model 2 0.22 0.07–0.66 0.009

Model 3

IL-6 0.27 0.09–0.75 0.013

CRP 0.29 0.09–0.88 0.031

D-dimer 0.26 0.08–0.74 0.014

LDH 0.24 0.08–0.69 0.009

Albumin 0.30 0.11–0.84 0.024

Hemoglobin 0.22 0.06–0.66 0.009

Model 3 0.19 0.05–0.71 0.018
front
Multivariable regression analyses: Model 1—adjusted for age > 60 years, diabetes, SAH, Systemic Arterial Hypertension, and obesity; Model 2—adjusted for TSH, fT3, fT4, and rT3; Model 3 -
adjusted for IL6, CRP, Ddimer, Lactate dehydrogenase (LDH), albumin, and hemoglobin. Model 4—adjusted for Models 1 and 3; Model 5—adjusted for all of the above variables.
The bold values correspond to the results assessed with significant p-values (P < 0.01).
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BDNF and reduced hippocampal volume, suggesting a potential

neuroprotective effect of THs on the hippocampus (42).

Animal studies also contribute to our understanding by

showing that BDNF has a protective effect against ER stress-

induced cell death in brain neurons. This mechanism, which

depends on PI3-K activation and inhibits caspase-12, highlights

the importance of BDNF in maintaining neuronal integrity under

stress (43). The connection between the Thr92Ala-DIO2 gene, ER

stress, and BDNF regulation provides a comprehensive perspective

on the biological mechanisms that protect against pathological

conditions and depressive symptoms.

Research indicates a substantial genetic factor in depression,

estimated to contribute approximately 30%–40% to its heritability

(44, 45). A recent study found a significant link between the SIRT1

rs12415800 polymorphism, a gene associated with longevity,

cellular defense against oxidative stress, and depressive symptoms

in university students (46). This association was evident in both

codominant (p = 0.0437) and overdominant (p = 0.0147) genetic

models, demonstrating the heterozygous advantage (similar to our

study) of this polymorphism against depressive symptoms (47).

Microglial cells, specific types of macrophages in the central

nervous system, play a crucial role in neuroinflammation and are

increasingly linked to the development of depression. Recent findings

suggest a potential link between depression onset and viral infections

like SARS-CoV-2, BoDV-1, ZIKV, HIV, and HHV6, which impact

various glial cells, including astrocytes, oligodendrocytes, and microglia

(48). Transcriptomic analysis [Gene Set Enrichment Analysis (GSEA)]

of mice with the Thr92Ala polymorphism revealed increased gene

expression related to neuroplasticity, cognition, apoptosis, and

neuroinflammation. These results strongly suggest an association

between Thr92Ala and neuroinflammation, involving astrocytes as

the primary cell type expressing DIO2 in the central nervous

system (49).

There are some limitations in this study. Our sample size was

relatively small, and the observation time was short; we did not

collect healthy people as controls, which may have some influence

on the study results; we used mostly self-assessment scales, which

may introduce recall bias; and we were unable to measure serum

BDNF levels in our patients.

In this prospective study, we present evidence suggesting that

possessing heterozygosity of Thr92Ala-DIO2 may have a protective

role in preventing the occurrence of depressive symptoms after

being discharged from the hospital. Additional research is needed to

confirm these findings.
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28. Salas-Lucia F, Fekete C, Sinkó R, Egri P, Rada K, Ruska Y, et al. Axonal T3 uptake
and transport can trigger thyroid hormone signaling in the brain. Elife. (2023) 12:
e82683. doi: 10.7554/ELIFE.82683

29. Butler PW, Smith SM, Linderman JD, Brychta RJ, Alberobello AT, Dubaz OM,
et al. The thr92Ala 5′ Type 2 deiodinase gene polymorphism is associated with a delayed
triiodothyronine secretion in response to the thyrotropin-releasing hormone–stimulation
test: A pharmacogenomic study. Thyroid. (2010) 20:1407. doi: 10.1089/THY.2010.0244

30. Colak A, Akan G, Oncu F, Yanbay H, Acar S, Yesilbursa D, et al. 1508– Association
study of the dio2 gene as a susceptibility candidate for schizophrenia in the turkish
population; a case-control study. Eur Psychiatry. (2013) 28:1. doi: 10.1016/S0924-9338(13)
76526-X

31. Wouters HJCM, Van Loon HCM, van der Klauw MM, Elderson MF, Slagter SN,
Kobold AM, et al. No effect of the thr92Ala polymorphism of deiodinase-2 on thyroid
hormone parameters, health-related quality of life, and cognitive functioning in a large
population-based cohort study. Thyroid. (2017) 27:147–55. doi: 10.1089/THY.2016.0199

32. Gałecka E, Talarowska M, Orzechowska A, Górski P, Szemraj J. Polymorphisms
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