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Cardiovascular disease (CVD) is the leading cause of human mortality worldwide.

Despite Western medicine having made encouraging results in the clinical

management of CVD, the morbidity, mortality, and disability rates of the

disease remain high. Modern pharmacology has confirmed that traditional

Chinese medicine (TCM), characterized by its multi-component, multi-target,

and integrity, plays a positive and important role in the prevention and treatment

of various CVDs in China, which has notable advantages in stabilizing disease,

improving heart function, and enhancing the quality of life. Importantly, TCM is

gradually being accepted by the international community due to its low cost,

high safety, versatile bioactivity, and low toxicity. Unfortunately, comprehensive

studies on the therapeutic effect of TCM on CVD and its mechanisms are very

limited, which may restrict the clinical application of TCM in CVD. Therefore, this

review is performed to analyze the pathogenesis of CVD, including inflammatory

response, oxidative stress, mitochondrial dysfunction, pyroptosis, ferroptosis,

dysbiosis of gut microbiota, etc.Moreover, we summarized the latest progress of

TCM (formulas, extracts, and compounds) in curing CVD according to published

literature from 2018 to 2023, as well as its mechanisms and clinical evidence. In

conclusion, this review is expected to provide useful information and reference

for the clinical application of TCM in the prevention and treatment of CVD and

further drug development of CVD.
KEYWORDS

cardiovascular disease, traditional Chinese medicine, heart function, therapeutic
mechanisms, gut microbiota
1 Introduction

Cardiovascular disease (CVD) is the diseases of the circulatory system, including

disorders of the heart and blood vessels. As a chronic progressive condition, CVD is

characterized by high morbidity, mortality, hospitalization, and disability rates, causing a

huge economic and health burden worldwide (1, 2). According to the World Health
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Organization, CVD was the leading cause of the highest number of

deaths in 2019 (3), and about 23 million CVD-related deaths in

2030 (4). Meanwhile, CVD remains the predominant cause of

human mortality in China (5) and Western countries (6). Recent

studies have confirmed that the occurrence and progression of CVD

are the results of the interaction of genetic and environmental

factors, and common risk factors include age, obesity, tobacco use,

alcohol consumption, dyslipidemia, hypertension, diabetes (7–12),

etc. Meanwhile, other studies have found that air pollution and

circadian syndrome as contributing factors to CVD (13, 14). In

addition, numerous studies have demonstrated that oxidative stress,

inflammatory response, programmed cell death (such as apoptosis

and autophagy, pyroptosis, and ferroptosis), and intestinal flora

disorders were associated with the abnormalities of structural and

functional in the cardiovascular system (15–17). Currently, surgery

and drugs are commonly used in the clinical management of

various CVDs, but surgical procedures are both risky and

expensive. Besides, the effectiveness of cardiovascular drugs

decreases with prolonged use and is accompanied by adverse side

effects, which has become a major problem that needs to be urgently

addressed in the Western medical treatment of CVD. Therefore, the

pathogenesis of CVD needs to be further explored and effective

prevention and treatment strategies need to be developed.

Traditional Chinese medicine (TCM) is an accumulation of the

Chinese Nation’s clinical experience for thousands of years,

characterized by comprehensive resources and low cost, and has

been widely used for treating various diseases in clinical practice

(18, 19). TCM was an important source of modern drug

development for more than 2,000 years. More interestingly, TCM

has become increasingly popular in many developed countries (20),

such as Australia and the United States, because of its unique

advantages including low adverse effects, stable efficacy, and a wide

range of targets. Modern medical studies have demonstrated that

TCM (including formulas, extracts, and compounds) possessed

significant effects on the treatment of CVD, and TCM treatments

are well tolerated by patients with CVD (21). Currently, the

“compound Dan-Shen dropping pill”, which consists of three

TCMs for the treatment of coronary heart disease and angina

pectoris, was the first TCM formula in the world to complete a

phase III randomized, double-blind, and international multicenter

clinical trial approved by the U.S. Food and Drug Administration

(NCT00797953) and this drug was widely used in Australia after

being approved by the Australian Therapeutic Goods

Administration. Meanwhile, the standard of Panax notoginseng

extracts has been incorporated into the German Drug Code for the

benefit of patients with CVD. Functionally, TCM can exert

cardioprotective effects through multiple targets on oxidative

s t r e s s , inflammat ion , au tophagy , l ip id metabo l i sm,

cardiomyocyte/vascular endothelial cell function, and gut

microbiota (22–24), which compensates for the lack of a single

drug model for the treatment of CVD in clinical. Several studies

have confirmed that TCM combined with Western drugs can more

effectively alleviate clinical symptoms and disease progression in

patients with CVD (25, 26). Importantly, with the development of

omics technologies such as transcriptome, proteome, metabolome,

and bioinformatics, the detailed mechanisms of TCM in the
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prevention and treatment of CVD have been systematically and

comprehensively expanded to multiple levels such as RNA, protein,

and metabolites, and also extend to the single-cell microscopic level

from the perspective of time and space (27). This suggests that TCM

provides new perspectives and strategies to combat various CVDs in

modern society.

Currently, there are few reviews on TCM for the prevention and

treatment of various CVDs. In this review, the current pathogenesis

of CVD was comprehensively overviewed. Moreover, the current

research on TCM (including TCM formulas, extracts, and

compounds) protection against CVD was summarized and

discussed based on the published literature from 2018-2023

through global and local databases including PubMed, Web of

Science, and China National Knowledge Infrastructure, as well as its

mechanisms and clinical efficacy, which may provide a reference for

the clinical application of TCM in the treatment of CVD and a

theoretical basis for the development of new drugs to combat CVD.
2 The pathogenesis of CVDs

The development and progression of CVD were associated with

genetic mutations, obesity, environmental factors, and poor lifestyle

(28, 29). Increasing evidence has demonstrated that the possible

pathogenesis of CVD includes inflammation, oxidative stress,

mitochondrial dysfunction, cell death (e.g., apoptosis, ferroptosis,

and pyroptosis), and gut microbiota imbalance, which would lead to

cardiomyocyte injury, inflammatory response, and vascular lesions

(15, 30, 31), etc.
2.1 Inflammation

Inflammation plays an important role in the pathogenesis of

various CVDs (32), and anti-inflammatory therapies have proven

beneficial in several recent clinical trials (33, 34). Increased incidence

of cardiovascular events has also been shown in patients with chronic

inflammatory diseases such as rheumatoid arthritis, systemic lupus

erythematosus, psoriasis, inflammatory myopathies, and

inflammatory bowel disease (35). Evidence suggested that the

upregulation of circulating C reactive protein resulted in a greater

risk of incident acute myocardial infarction (36) or cerebrovascular

events (37). Previous studies have shown that atherosclerosis is a low-

grade and aseptic inflammatory disease (38). For example, Mai et al.

(39) demonstrated that nucleotide-binding oligomerization domain-

like receptor family pyrin domain-containing 3 (NLRP3)

inflammasome was a key driver of atherosclerosis. Meanwhile, the

inflammatory response was considered to be a trigger for the

developmental process of atrial fibrillation (40). Over-activation of

NLRP3 inflammasome was directly associated with hospitalization

rates in patients with cardiac insufficiency and dilated

cardiomyopathy, accompanied by cellular scorching of

cardiomyocytes (41). In addition, it has also been demonstrated

that inhibition of the inflammatory response or NLRP3 gene

de le t ion improved card iac remodel ing and reduced

proinflammatory cytokines secretion and fibrotic processes (42, 43),
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as well as attenuated angiotensin II (Ang II)-induced hypertension

(44). Taken together, inflammation was involved in the pathogenesis

of several CVDs (Figure 1), which also provides new strategies for the

prevention and management of CVD.
2.2 Oxidative stress

Oxidative stress is a pathological state of reactive oxygen species

(ROS) accumulation caused by excessive production of oxygen free

radicals or impaired intracellular antioxidant defense systems (45).

Normal physiological state of ROS levels contributes to the

maintenance of cardiovascular homeostasis (46), while excessive

and/or sustained increases in ROS production play an important

role in the pathological statute of CVD (Figure 2), such as

atherosclerosis, hypertension, myocardial ischemia-reperfusion

injury, arrhythmia, heart failure, and acute myocardial infarction

(47). Of note, oxidative stress has emerged as a new target for the

prevention and treatment of CVD (48). It has also been found that

common CVD risk factors contribute to a sustained increase in ROS

production in the vascular wall (49). Functionally, oxidative stress

not only promotes lipid peroxidation, protein and enzyme

denaturation, DNA damage, and severe functional impairment of

vascular endothelial cells and cardiomyocytes, but also participates

in the pathogenesis of hypertension, myocardial ischemia-

reperfusion injury, atherosclerosis, and other CVDs by regulating

inflammation and stimulating vascular smooth muscle cell

proliferation (50). In addition, endogenous antioxidant enzymes
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(e.g., superoxide dismutase, glutathione peroxidase, catalase,

glutathione S-transferase, and peroxidase) and exogenous

antioxidants may act by scavenging free radicals and exerting

anti-CVD activities. For example, overexpression of glutathione

peroxidase 4 (GPX4) inhibited atherosclerosis progression in

apolipoprotein E-deficient (ApoE-/-) mice (51). Giam et al. (52)

showed that the antioxidant NAC attenuated cardiac injury and

prevented cardiac fibrosis which improved cardiac function in mice

with heart failure.
2.3 Mitochondrial dysfunction

Mitochondria, a key site of cellular metabolism for ATP

production, provides enough energy for the contraction and

diastole of human cardiomyocytes, but mitochondrial dysfunction

accelerates the occurrence and progression of CVD (Figure 3). For

example, mitochondrial dysfunction in macrophages contributes to

inducing inflammation and inhibiting repair after myocardial

infarction, but mitochondrial-targeted ROS scavenging alleviates

these phenomena and reduces death after myocardial infarction in

mice (53). Currently, mitochondrial dysfunction, mitochondrial

DNA and nuclear DNA gene mutation, and the presence of

mutant proteins associated with mitochondria are considered to

be non-negligible causes of CVD pathogenesis (54). For instance,

four mitochondrial DNA mutation genes (e.g., MT-RNR1, MT-

TL1, MT-TL2, and MT-CYB) have been reported to be connected

with atherosclerosis progression (55). Functionally, mutations in
FIGURE 1

Role of inflammation in the pathogenesis of cardiovascular diseases. ANP, Atrial natriuretic peptide; Bak, Bcl-2 antagonist/killer; COX2,
Cyclooxygenase 2; ECM, Extracellular matrix; HG, High glucose; LDL, Low-density lipoprotein; LPS, Lipopolysaccharide; MCP1, Monocyte
chemotactic protein 1; NLRP3, Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3; ROS, Reactive oxygen
species; TGFb, Transforming growth factor beta; TLRs, Toll-like receptors; TRAF6, Tumor necrosis factor receptor-associated factor 6; VCAM1,
Vascular cell adhesion molecule 1; bMHC, Beta-myosin heavy chain.
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the mitochondrial genome and nuclear genome may disrupt

mitochondrial homeostasis, leading to excessive ROS production

and reducing oxidative phosphorylation capacity, which are risk

factors for CVD (56). For example, specific targeted antioxidant

treatments that reduced ROS production and enhanced ROS

scavenging have been shown to alleviate impaired mitochondrial-

induced oxidative stress (57). Jacinto et al. (58) showed that the

overproduction of mitochondrial ROS promoted atherosclerosis

progression by triggering DNA fragmentation and cell apoptosis.

Moreover, mitophagy plays an important regulatory role in

maintaining cellular homeostasis, whereas mitophagy damage

predisposes to cause abnormal function of cardiovascular-derived

cells (59). Notably, several intervention strategies ameliorate CVD

by improving four important characteristics of mitochondria, such

as scavenging mitochondrial ROS (60), mitochondrial DNA editing

or mitochondrial replacement therapy (61), increased oxidative

phosphorylation (62), and enhanced mitophagy (63). Therefore,

maintaining normal mitochondrial function has the potential to be

used as an effective therapeutic strategy for CVDs.
2.4 Pyroptosis

Pyroptosis, a form of programmed cell death, is closely related

to the inflammatory response, mediated by the Gasdermin protein,

and dependent on caspase activity (64). Pyroptosis is typically

characterized by the swelling and rupture of cell membranes, the
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release of pro-inflammatory factors, and cell contents from the

plasma membrane to the extracellular environment (65), which

aggravates inflammatory response. Recent studies have shown that

pyroptosis was involved in the development and progression of

several CVDs (Figure 4), including atherosclerosis, diabetic

cardiomyopathy, myocardial infarction, myocardial ischemia-

reperfusion injury, myocarditis (66), etc. Mechanistically, NLRP3

inflammasome activated caspase-1 and triggered an inflammatory

cascade, which plays an important role in pyroptosis (67). For

example, NLRP3 inhibitor MCC950 has the potential to prevent

NLRP3-related diseases, such as cardiac hypertrophy (68),

hypertension (69), atherosclerosis (70), and myocardial injury

(71). Jin et al. (72) showed that caspase-1 inhibitor VX765

ameliorated mitochondrial damage induced by the NLRP3

inflammasome activation and inhibition of vascular inflammation

in both low-density lipoprotein receptor-deficient (Ldlr-/-) and

ApoE-/- mice. These results suggested that inhibition of

pyroptosis may provide a new avenue for the treatment and

management of CVDs.
2.5 Ferroptosis

Ferroptosis is a new type of cellular iron-dependent

programmed cell death, and the process mainly involves the

accumulation of lipid peroxidation products and lethal ROS (73).

Increasing evidence has demonstrated that ferroptosis was
FIGURE 2

Role of oxidative stress in the pathogenesis of cardiovascular diseases. NO: one of the members of reactive nitrogen, damages cardiomyocytes
through direct cytotoxicity or generates ONOO− with O2− to cause cardiomyocyte damage. CVD, Cardiovascular diseases; ER, Endoplasmic
reticulum; MAPK, Mitogen-activated protein kinase; MI/RI, Myocardial ischemia/reperfusion injury; NF-kB, Nuclear transcription factor-kB; NLRP3,
Nucleotide-binding oligomerization domain-like receptor protein 3.
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morphologically, biochemically, and genetically distinct from cell

apoptosis, necrosis, and autophagy (74), which was mainly

characterized by impaired cell membrane integrity, mitochondrial

atrophy, normal nuclei, and a significant decrease in the levels of

GPX4, glutamate-cystine antiporter system components (SLC3A2

and SLC7A11), and coenzyme II. Available studies have shown that

ferroptosis was closely associated with the development of various

CVDs including cardiomyopathy, myocardial ischemia-reperfusion

injury, heart failure, myocardial infarction, vascular injury, and

atherosclerosis (75). For example, Wang et al. (76) reported that

increased levels of lipid peroxidation and reduced SLC7A11 levels

were observed in the development of diabetic cardiomyopathy. Bai

et al. (77) found that ferrostatin-1 (Fer-1, ferroptosis inhibitor)

alleviated atherosclerotic lesions by reducing iron accumulation and

lipid peroxidation, and enhancing the expression of GPX4 and

SLC7A11 in a high-fat diet (HFD)-fed ApoE-/- mice. Another study

showed that the inactivation of the Nrf2/GPX4 pathway could

aggravate doxorubicin-induced cardiomyopathy by promoting

cardiomyocyte ferroptosis (78). Importantly, three types of iron

chelators (e.g., deferiprone, deferoxamine, deferasirox) have been

used in clinical practice for the treatment of iron overload

cardiomyopathy (79). Although many preclinical studies suggest

that pharmacological regulation of ferroptosis and genetic

inhibition of iron uptake are promising treatment strategies for

CVD (Figure 5), the underlying mechanism and regulatory

networks need to be fully investigated during the pathological
Frontiers in Endocrinology 05
process of CVD, which will provide new ideas and strategies for

the prevention and treatment of CVD.
2.6 Gut microbiota and metabolomics

Gut microbiota refers to the large number of commensal

microorganisms living in the human intestinal tract, which

mainly consists of Firmicutes, Bacteroidetes, Proteobacteria,

Fusobacteria, and Actinobacteria at the phylum level, but its

balance is easily disturbed by food intake, lifestyle, and

environment (80). Functionally, the gut microbiota can form the

intestinal epithelial barrier, regulate intestinal immunity, and

prevent the invasion of pathogenic bacteria and metabolic

abnormalities (81), which are essential for human health.

Numerous studies have demonstrated that dysbiosis of intestinal

bacteria and its metabolites, such as Trimethylamine oxide

(TMAO), lipopolysaccharides (LPS), short-chain fatty acids

(SCFAs), and bile acids, were closely associated with the

development of CVD (82), and targeting the gut microbiota was

expected to be a potential new target for the treatment of CVD

(Figure 6). For example, Jie et al. (83) reported that patients with

atherosclerotic cardiovascular disease (ACVD) possessed an

increased relative abundance of Enterobacteriaceae and

Streptococcus spp., which contributed to aggravating ACVD as

well as other diseases. In another survey, high levels of Prevotella,
FIGURE 3

Role of mitochondrial dysfunction in the pathogenesis of cardiovascular diseases. ECM, Extracellular matrix; HG, High glucose; IR, ischemia/
reperfusion; Keap1, Kelch-like ECH-associated protein 1; LDL, Low-density lipoprotein; mPTP, Mitochondrial permeability transition pore; Nrf2,
Nuclear factor erythroid 2-related factor 2.
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Hungatella, and Succinclasticum and low levels of Lachnospiraceae

family and Faecalibacterium were observed in patients with heart

failure (84). Meanwhile, elevated plasma levels of TMAO were

positively associated with stroke (85), hypertension (86), and

atherosclerosis (87), as well as increased cardiovascular events

(88), suggesting that reducing intake of dietary TMAO precursors

was an effective strategy to decrease the risk of CVD. The above

studies suggest that gut microbiota serves as a “microbial organ”

that affects cardiovascular health and the “gut-heart” axis is a

potential avenue in the prevention and treatment of CVD.
2.7 Others

Except for the pathogenesis mentioned above, researchers

believe that CVD is associated with endoplasmic reticulum stress

(ERS) (89), autophagy deficiency (90), diabetes (91), metabolic

syndrome (92), etc. Moreover, searching for biomarkers used to

determine the occurrence and progression of CVDs and revealing

their mechanisms are of great clinical significance for the early

diagnosis and treatment of CVD. Meanwhile, the exploration of

assessment tools for the early identification of people at high risk of

CVD is an important guarantee to reduce cardiovascular mortality.

However, the drugs developed to address this pathogenesis can only

alleviate the symptoms of CVD, but cannot inhibit or reverse CVD

progression. Therefore, elucidating the pathogenesis of CVD

remains a key clinical problem that needs to be addressed. Of

note, understanding the pathogenesis of CVD may provide effective
Frontiers in Endocrinology 06
biomarkers and pathways for subsequent therapeutic and new

drug development.
3 TCM in the treatment of CVD

With in-depth research on the pathogenesis of CVD, TCM has

shown unique therapeutic advantages in CVD by virtue of its multi-

component, multi-target, and integrity (93). More and more studies

have demonstrated that TCM (including formulas, extracts, and

compounds) exhibited a protective effect on cardiovascular (21),

and mechanisms of action of TCM in preventing CVD are shown in

Figure 7 and Tables 1–3. Meanwhile, the majority of Chinese

patients with CVD have been treated with TCM during the

diagnosis and treatment process (94). Herein, we summarized the

research progress of TCM in the treatment of various CVDs to

provide a reference for the research on the complex mechanism of

TCM in combating CVD.
3.1 TCM formulas for CVD

Chinese herbal compounding (fu fang or prescription in

Chinese) is the main form of TCM for the prevention and

treatment of various diseases, which is the simultaneous

application of multiple herbs to regulate the body as a whole for

therapeutic purposes in clinical practice. A meta-analysis showed

that the efficacy of Bushen Huoxue decoction in treating coronary
FIGURE 4

Role of pyroptosis in the pathogenesis of cardiovascular diseases.
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FIGURE 5

Role of ferroptosis in the pathogenesis of cardiovascular diseases. AA, Arachidonic acid; ACSL4, Long-chain fatty acyl-CoA synthase 4; AdA, Adrenal
acid; DMT1, Divalent metal transporter 1; FfR1, Transferrin receptor 1; GCL, Glutamate-cysteine ligase; GPX4, Glutathione peroxidase 4; GSH,
Glutathione; GSS, Glutathione synthase; HO-1, Heme oxygenase 1; LPCAT3, Lysolecithin acyltransferase 3; LOXs, Lipoxygenases; NCOA4, Nuclear
receptor coactivator 4; POR, Cytochrome P450 oxidoreductase; PUFAs, Polyunsaturated fatty acids; SLC7A11, Solute carrier family 7 member 11;
xCT, System Xc-.
FIGURE 6

Role of gut microbiota in the pathogenesis of cardiovascular diseases. SCFAs, Short chain fatty acids; LPS, Lipopolysaccharides; TGR5, Takeda G-
protein-coupled receptor 5; FXR, farnesoid X receptor; TMAO, trimethylamine-N-oxide; TMA, trimethylamine.
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heart disease was superior to conventional Western medicine (95).

Bi and his colleagues (96) confirmed that Qingre Huatan formulae

for the phlegm-heat-stasis syndrome pattern of coronary heart

disease was safe and can effectively improve vascular endothelial

function. In a randomized, multicenter, double-blind, non-

inferiority trial, the results showed that treatment with the

Songling Xuemaikang capsule had a well-tolerated and improved

total hypertension symptom score and total cholesterol in patients

with essential hypertension (97). In addition, TCM prescriptions

have been shown to improve sleep disorders in patients with CVD

(98). Mechanistically, the Qing-Xue-Xiao-Zhi formula can alleviate

the development of atherosclerosis by blocking the TLR4/MyD88/

NF-kB pathway to promote lipid efflux, reducing atherosclerotic

plaques in the aorta and aortic root and serum TMAO levels, and

inhibiting macrophage-mediated inflammation (99). Wu et al.

(100) observed that the QiShenYiQi dripping pill can inhibit

myocardial ischemia-induced ferroptosis in cardiomyocytes by

reducing mitochondrial ROS levels and restoring mitochondrial

function (e.g., biogenesis and dynamic homeostasis). Chen et al.

(101) demonstrated that Qishen granule administration exhibited

cardioprotective effects by inactivation of NF-kB/NLRP3/GSDMD

pathway in myocardial infarction, as evidenced by improving

cardiac function, reducing inflammatory cell infiltration and
Frontiers in Endocrinology 08
collagen deposition, as well as inhibiting NLRP3 inflammasome

activation and pyroptosis. Qing-Xin-Jie-Yu granule treatment

contributed to the alleviation of atherosclerosis development by

regulating gut microbiota composition (that is, the relative

abundance of Turicibacter and Roseburia was enhanced),

increasing bile acids production, and reducing metaflammation

induced by HFD (102). Zhou et al. (103) showed by a

comprehensive network analysis that Shenfu injection can be

used to treat coronavirus disease 2019 (COVID-19) combined

with heart failure. Except for the above-mentioned TCM

prescriptions, there are still numerous studies reported on the use

of some classical TCM formulas for the prevention and treatment of

CVD according to ancient works and the modern clinical. Herein,

we summarized the pharmacological effects and molecular

mechanisms of TCM prescriptions on CVD based on published

studies from 2018 to 2023 and listed in Table 1.
3.2 TCM extracts for CVD

Increasing evidence has proved that single TCM extracts also

possessed a protective effect against CVD except for TCM

preparations mentioned above (Table 2). For example, a network
FIGURE 7

Therapeutic effects of TCM on cardiovascular diseases and its mechanism.
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TABLE 1 Summary of traditional Chinese medicine formulas in the prevention and treatment of various cardiovascular diseases from 2018-2023.

Prescription Composition (In Chinese) Evaluation model
Effects and
action mechanism

Ref.

Atherosclerosis

Buyang huanwu decoction
Huangqi, Chishao, Chuanxiong, Danggui,
Dilong, Taoren, and Honghua in a ratio
of 120:6:4:5:3:3:3

HFD-induced ApoE-/- mice
Levels of TC, TG, LDL-c↓and HDL-c↑
Levels of TNF-a, IL-1b, IL-6, iNOS↓
NF-kB pathway↓

(196)

Huang-Lian-Jie-Du decoction
Huanglian, Huangqin, Huangbo, and
Zhizi in a weight ratio of 3:2:2:3

HFD-induced ApoE-/- mice
ox-LDL-induced RAW264.7 cells

Carotid lesion plaques stability↑
Levels of IL-1b, IL-6, TNF-a↓
Foam cell formation↓and
M2 polarization↑

(197)

Guanxinkang decoction
Huangqi, Yimucao, Danshen, Xiebai,
Banxia, and Gualou in a weight ratio
of 10:10:4:4:4:5

HFD-induced LDLR-/- mice
ox-LDL-induced RAW264.7 cells

Body weight and levels of TC, TG, LDL-
c↓
Atherosclerotic plaques↓and a-SMA
level↑
Levels of IL-1b, IL-6, TNF-a, LOX-1,
MCP-1↓
MAPKs/NF-kB pathway↓

(198)

Qing-Xin-Jie-Yu granule
Huangqi, Danshen, Chuanxiong,
Guanghuoxiang, and Huanglian in a ratio
of 3:3:2:2:1

HFD-induced ApoE-/- mice

Body weight and levels of TC, TG, and
LDL-c↓
Levels of HDL-c↑and IL-1b, IL-6↓
The abundance of Turicibacter and
Roseburia↑
The abundance of Alistripes,
Rikenella, Blautia↓

(102)

Qing-Xin-Jie-Yu granule
Huangqi, Danshen, Chuanxiong,
Guanghuoxiang, and Huanglian in a ratio
of 3:3:2:2:1

HFD-induced ApoE-/- mice
TC, TG, LDL-c levels, and ferroptosis↓
Levels of IL-6, IL-1b, TNF-a, Fe2+, ROS↓
Expression of GPX4/xCT in aorta tissues↑

(199)

Yiqihuoxue decoction
Chuanxiong, Chishao, and Xiyangshen in
a ratio of 40:20:1

HFD-induced ApoE-/- mice
Blood glucose and levels of TNF-a and
IL-6↓
Aortic arch plaque area↓

(200)

Wu-Zhu-Yu decoction
Wuzhuyu, Shengjiang, Renshen, and
Dazao in a ratio of 1:2:1:1

HFD-induced ApoE-/- mice
Aortic lesion areas↓
Levels of TC, TG, LDL-c↓and HDL-c↑

(201)

Tongqiaohuoxue decoction

Shaoyao, Chuanxiong, Taoren, Honghua,
Onion, Wuchizao, Ginger, and
Yunmuxiang in a ratio
of 16:16:48:48:12:8:48:20

HFD-induced ApoE-/- mice
ox-LDL-induced THP-1 cells
ox-LDL-induced HUVECs

Lipid deposition, plaque formation, lipid
uptake↓
Levels of ICAM-1, VCAM-1, and
MCP-1↓

(202)

Si-Miao-Yong-An decoction
Rendong, Xuanshen, Danggui, and
Gancao in a ratio of 3:3:2:1

HFD-induced ApoE-/- mice
lipid accumulation↓and Autophagy↑
NF-kB pathway↓

(203)

Tao Hong decoction
Taoren, Honghua, Chuanxiong, Danggui,
and Weilingxian in a ratio of 9:9:9:9:9

HFD-induced ApoE-/- mice
Plaque area and Levels of inflammatory
cytokines↓
PI3K/Akt/p38 pathway↓

(204)

Bunao-Fuyuan decoction
Huangqi, Baizhi, Chishao, Chuanxiong,
Honghua, and Taoren in a ratio
of 120:6:5:3:3:3

ox-LDL-induced VMSCs
a-SMA protein and cell proliferation↓
Cell invasion and migration↓
RHOA/ROCK pathway↓

(205)

Huanglian Jiedu decoction
Huanglian, Huangqi, Huangbo, and Zhizi
in a ratio of 9:6:6:9

HFD-induced ApoE-/- mice
Levels of TC, TG, LDL-c↓and HDL-c↑
Expression of CRP, IL-6, TNF-a↓

(206)

Liuwei Dihuang formula
Dihuang, Shanzhuyu, Chinese Yam,
Zexie, Diaozhilan, and Fuling in a ratio
of 32:16:16:12:12:12

HFD-induced ApoE-/- mice
Hcy-induced HUVECs

HUVEC apoptosis↓
The ratio of SAM/SAH and
plaque formation↓

(207)

Liuwei Dihuang soft capsule
Dihuang, Shanzhuyu, Chinese Yam,
Zexie, Diaozhilan, and Fuling in a ratio
of 32:16:16:12:12:12

HFD-induced ApoE-/- mice
PDGF-BB-induced VSMCs

Lipid deposition and levels of TG, TC,
LDL-c↓
Expression of ERa, ERb, SRC3↑
CyclinD expression and cell migration↓

(208)

Danggui Buxue decoction Danggui and Huangqi in a ratio of 1:5
hyperplasia/neointima
mice model

Levels of IL-1b, TNF-a, MCP-1↓
PI3K/Akt pathway↓

(209)
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TABLE 1 Continued

Prescription Composition (In Chinese) Evaluation model
Effects and
action mechanism

Ref.

Atherosclerosis

Qingre Huoxue decoction
Huangqin, Chishao, Chuanxiong,
Maodongqing, Honghua, Jiangxiang, and
Danshen in a ratio of 3:3:2:6:2:2:6

HFD-induced ApoE-/- mice
LPS-induced RAW264.7 cells

Body weight and levels of TC, TG, LDL-
c↓
Plaque area↓and M2 polarization↑
NF-kB pathway↓

(210)

Liuwei Dihuang formula
Shudihuang, Shanzhuyu, Shanyao, Zexie,
Mudanpi, and Fuling in a ratio
of 8:4:4:3:3:3

Ang II-induced VSMCs
VSMC proliferation and migration↓
Expression of a-SMA and OPN↓

(211)

Chaihu-Shugan-San formula
Chaihu, Chenpi, Chuanxiong, Baishao,
Xiangfu, Zhike, and Gancao in a ratio
of 4:4:3:3:3:3:1.

HFD-induced ApoE-/- mice
LPS-induced HUVECs

Atherosclerotic plaque areas↓
Levels of TC, TG, LDL-c, TNF-a, IL-1b,
IL-6↓
Expression of BDNF and TrkB↑

(212)

Guanmaitong granule

Huangqi, Danshen, Gualou, Huanglian,
Sanqi, Xuanshen, Zhebeimu, Huzhang,
Shuizhi, and Muli in a ratio
of 6:3:3:1.5:3:4.5:3:2:1:0.5

HFD-induced ApoE-/- mice

Levels of TG, TC, LDL-c, TNF-a, IL-6,
IL-1b↓
Plaque lipid deposition↓
Plaque collagen content↓
TLR4/MyD88/NF-kB pathway↓

(213)

Myocardial ischemia-reperfusion injury

Tongmai Yangxin pill

Dihuang, Jixueteng, Maidong,
Zhiheshouwu, Ejiao, Gancao, Wuweizi,
Dangshen, Cuguijia, Dazao, and Guizhi in
a ratio of 10:10:6:6:6:6:6:6:4:4:2

I/R-induced myocardial injury

LVEF and LVFS↑and CK and CK-MB
levels↓
MDA content and inflammatory cell
infiltration↓
Cardiomyocyte apoptosis↓and
PI3K/Akt pathway↑

(214)

Tongmai Yangxin pill

Dihuang, Jixueteng, Maidong,
Zhiheshouwu, Ejiao, Gancao, Wuweizi,
Dangshen, Cuguijia, Dazao, and Guizhi in
a ratio of 10:10:6:6:6:6:6:6:4:4:2

I/R-induced myocardial injury

LVDd and LVDs↓
Inflammatory cell number↓
Activities of CK, LDH, MDA↓and NO
activity↑
cAMP/PKA and NO/cGMP pathways↑

(215)

QishenYiqi dripping pill
Huangqi, Danshen, Sanqi, and Jiangxiang
in a ratio of 20:65:1:33

I/R-induced myocardial injury

Myocardial infarct size, LVDd, NLRP3
expression↓
LVEF and LVFS↑and PI3K/Akt-
mTOR pathway↑

(216)

Yiqi Huoxue formula

Huangqi, Danshen, Sanqi, Chuanxiong,
Danggui, Yiyiren, Baizhu, Fuling, Banxia,
Juhong, Dilong, and Shuizhi in a ratio
of 30:15:10:10:10:15:15:15:15:10:10:3

I/R-induced myocardial injury
H/R-induced H9c2 cell injury

Myocardial infarct size↓
Levels of CK and LDH↓
MDA content↓and SOD level↑
H9c2 cell proliferation↑

(217)

Huoxue Jiedu formula
Shaoyao, Chuanxiong, and Huanglian in a
ratio of 1:1:1

I/R-induced myocardial injury
H/R-induced H9c2 cell injury

Infarcted area, CK-MB and cTnT levels↓
Beclin-1 and LC3-II↓and Bcl-2, p62↑
PI3K/AKT/mTOR pathway↑

(218)

Dried ginger-aconite decoction Wutou and Ginger in a ratio of 1:1
I/R-induced myocardial injury
H/R-induced H9c2 cell injury

SOD level↑and MDA content↓
H9c2 cell apoptosis and myocardial
infarct size↓
PI3K/AKT/GSK-3b pathway↑

(219)

Tongmai formula
Danshen, Gegen, and Chuanxiong in a
ratio of 1:1:1

I/R-induced myocardial injury
H/R-induced neonatal rat
ventricular myocyte injury

Myocardial infarct size and cell
apoptosis↓
cTnT, CK, LDH levels, and MDA
content↓
GSH and SOD activities↑and
ROS content↓

(220)

Xin-Ji-Er-Kang formula

Renshen, Yuzhu, Sanqi, Xiebai, Danggui,
Maidong, Wuweizi, Danshen, Kushen,
Gancao, Huangqi, Yinyanghuo, Jinsilian,
and Bingpian in a ratio of
11.71:7.03:3.09:7.80:7.80:7.80:3.93:
7.80:7.80:7.80:11.69:7.80:7.8:0.15

I/R-induced myocardial injury
H/R-induced cardiomyocyte-like
cell injury

Myocardial infarct size and LVDd↓
LVEF and LVFS↑
Apoptosis of cardiomyocytes↓
JAK2/STAT3 pathway↑

(221)
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Prescription Composition (In Chinese) Evaluation model
Effects and
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Ref.

Myocardial ischemia-reperfusion injury

Si-Miao-Yong-An decoction
Jinyinhua, Xuanshen, Danggui, and
Gancao in a ratio of 5:5:3:3

I/R-induced myocardial injury
Myocardial infarct size↓and LVEF, LVFS↑
Levels of CK, LDH, TNF-a, IL-6, IL-1b↓
TLR4/NF-kB pathway↓

(222)

Heart failure

Qishen granule
Huangqi, Danshen, Jinyinhua, Xuanshen,
Fuzi, and Gancao in a ratio
of 30:15:10:10:9:6

TAC-induced heart failure model
TGF-b-stimulated
cardiac fibroblasts

LVDd and LVDs↓and LVEF and LVFS↑
Collagen deposition↓
TGF-b/SMADs and PI3K/GSK-
3b pathways↓

(223)

Si-Miao-Yong-An decoction
Rendong, Xuanshen, Danggui, and
Gancao in ratio of 3:3:2:1

ISO-induced heart failure model
ISO-induced H9c2 cell injury

LVEF and LVFS↑and LVDd and LVDs↓
Expression of fibronectin, collagen I, a-
SMA↓
PDE5A-Akt and TLR4-NOX4 pathways↓

(224)

Lingguizhugan decoction
Fuling, Guizhi, Baizhu, and Gancao in a
ratio of 4:3:3:3

TAC-induced heart failure model

LVEF and LVFS↑and LVDd and LVDs↓
Heart weight, ANP, BNP, a-MHC,
cardiac fibrosis↓
Akt-GSK3b/mTOR/P70S6K pathway↓

(225)

XinLi formula
Cheqiancao, Huangqi, Hongshen, Ezhu,
and Shanzhuyu in a ratio of 30:40:10:9:12

LAD-induced heart failure model
Ang II-induced H9c2 cell injury

LVEF↑and levels of NT-proBNP, cTnT,
CK-MB↓
Content of ALD, AGTR1, TGF-b1, HYP↓
Expression of NLRP3, caspase-1, IL-1b,
IL-18↓

(226)

Zhenwu decoction
Wutou, Shaoyao, Baishu, Fuling, and
Ginger in a ratio of 3:3:2:3:3

DOX-induced heart
failure model

LVDd and LVDs↓and LVFS and LVEF↑
Levels of CK-MB, BNP, and NT-
proBNP↓
Fibrosis area, collagen I↓and SOD
activity↑
Expression of IL-1b, TNF-a, IL-6↓
NF-kB pathway↓and PI3K/Akt pathway↑

(227)

Linggui Zhugan decoction
Fuling, Guizhi, Baizhu, and Gancao in a
ratio of 4:3:3:2

LAD-induced heart failure model

LVEF and LVFS↑and LVDs and LVDd↓
MDA production and NT-proBNP levels↓
SOD activity and SIRT1/AMPK/
PGC1a pathway↑

(228)

Shenqi Lixin decoction

Renshen, Huangqi, Rougui, Yinyanghuo,
Luhui, Shuweicao, Fuling, Baishu,
Longyacao, Yimucao, and Gancao in a
ratio of 4:4:2:4:3:3:4:3:6:3:2

Adriamycin-induced heart
failure model

LVEF and LVFS↑and LVDs and LVDd↓
Myocardial fibrosis↓
NT-proBNP level↓and ATP level↑
Expression of Bax and caspase-3↓

(229)

Jijiu Huiyang decoction
Fuzi, Ginger, Danshen, Baizhu, Taoren,
Honghua, and Zhigancao in a ratio
of 5:3:9:9:6:6:5

DOX-induced heart
failure model

LVEF and LVFS↑
LVDs and LVDd↓
PPARa pathway↓

(230)

Xinfuli granule
Huangqi, Renshen, Danshen, Fuling, and
Maidong in a ratio of 9:6:3:3:2

LAD-induced heart failure model
Hypoxia/ischemia-induced H9c2
cell injury

LVEF and LVFS↑and LVDs and LVDd↓
Levels of ADP, AMP, LA, LDH, FFA↓
RHOA/ROCK pathway↓

(231)

Qishen granule
Huangqi, Danshen, Rendong, Xuanshen,
Wutou, and Gancao in a ratio
of 30:15:10:10:9:6

LAD-induced heart failure model
LPS-induced RAW264.7 cells

LVEF and LVFS↑and LVDs and LVDd↓
Levels of CK-MB and LDH↓
TLR4/MyD88/NF-kB pathway↓

(232)

BAOXIN granule

Huangqi, Danshen, Zelan, Gancao,
Maidong, Fuling, Danggui, Zhike,
Dihuang, Jiegeng, Dahuang, and
Mahuang in a ratio
of 20:13:10:10:10:10:7:7:7:4:4:4

TAC-induced heart failure model

Heart weight and cardiac fibrosis↓
LVEF and LVFS↑and LVDs and LVDd↓
Expression of ANP, BNP, b-MHC, IL-1b,
IL-6↓
Expression of TGF-b and collagen I/III↓

(233)

Guanxining injection Danshen and Chuanxiong in a ratio of 1:1 TAC-induced heart failure model

LVEF and pro-BNP level↑
Collagen volume fraction↓
Expression of SLC7A11,
GPX4↑and FTH1↓

(234)
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Heart failure

YiQiFuMai powder
Renshen, Maidong, and Wuweizi in a
ratio of 1:3:1.5

LAD-induced heart failure model
LVEF and LVFS↑and LVDs and LVDd↓
Cardiac fibrosis and p38 MAPK/ERK1/

2 pathway↓
(235)

Guanxinning injection Danshen and Chuanxiong TAC-induced heart failure model
SBP, DBP, LVDs, LVDd↓
LVEF and LVFS↑and p38/c-Fos/
Mmp1 pathway↓

(236)

Qiangxin recipe

Huangqi, Chuanxiong, Fuzi, Fuling,
Cheqianzi, Dangshen, Guizhi, Nvzhenzi,
Tinglizi, Taoren, Taizishen, and Zhuling
in a ratio of 10:5:5:5:5:5:3:5:10:5:5:5

DOX-induced heart failure
model
DOX-induced H9c2 cell injury

Cell viability and glucose metabolism↑
Levels of BNP and cTnl↓
LVEF↑

(237)

Xinshuitong capsule
Huangqi, Danshen, Guizhi, Zexie, and
Yumixu in a ratio of 6:4:4:3:3

DOX-induced heart
failure model

LVEF and LVFS↑and LVDs and LVDd↓
Levels of BNP, BUN, AST, ALT↓

(238)

WuShen decoction
Renshen, Danshen, Xuanshen,
Beishashen, and Kushen in a ratio
of 1:3:2:2:1

LAD-induced heart failure model
LVEF and LVFS↑and LVDs and LVDd↓
Cardiac fibrosis and infarct size↓
TGF-b1/Smad2/3 pathway↓

(239)

Hypertension

Qingda granule
Tianma, Gouteng, Huangqin, and
Lianzixin in a ratio of 12:10:6:5

Spontaneously hypertensive rats
Ang II-stimulated
cardiac fibroblasts

SBP, DBP, MAP↓and LVEF and LVFS↑
a-SMA, collagen III, cardia fibrosis↓
TGF-b1/Smad2/3 pathway↓

(240)

Danzhi Xiaoyao powder
Chaihu, Baishao, Danggui, Fuling, Baizhu,
Mudanpi, Zhizi, and Gancao ina ratio
of 2:2:2:2:2:1:1:1

Spontaneously hypertensive rats
SBP, DBP, MAP↓
Anxiety-like behavior↓

(241)

Guizhi decoction
Guizhi, Baishao, and Gancao in a ratio
of 3:2:2

HFD-induced
hypertension model

Blood pressure and collagen content↓
Expression of IL-6, IL-1b,
MMP2, MMP9↓

(242)

Qingda granule
Tianma, Gouteng, Huangqin, and
Lianzixin in a ratio of 12:10:5:6

Ang II-hypertension model
Ang II-stimulated VSMCs

SBP, DBP, MAP, Cell viability↓
MAPK and PI3K/Akt pathways↓

(243)

Gedan Jiangya decoction
Gouteng, Danshen, Gegen, Duzhong,
Xiakucao, and Niuxi in a ratio
of 2:5:6:3:3:4

Spontaneously hypertensive rats
SBP and DBP↓
Expression of collagen I/III, a-SMA, IL-
1b, IL-6↓NF-kB pathway↓

(244)

Zhengganxifeng decoction

Niuxi, Ludou, Longgu, Mulike, Guike,
Baishao, Xuanshen, Tiandong,
Chuanxiong, Maiya, Yinchenhao, and
Gancao in a ratio
of 30:30:15:15:15:15:15:15:6:6:6:4.5

Spontaneously hypertensive rats
SBP, DBP, MAP↓
Firmicutes to Bacteroidetes ratio↓
SCFA production↑

(245)

Qing Gan Zi Shen Tang formula
Guizhencao, Weimao, Huanglian,
Nvzhen, Shanzhuyu, and Xuanshen in a
ratio of 10:5:1:4:4:5

HFD-induced
hypertension model

SBP, DBP, MAP↓
Levels of TG, LDL-c↓and HDL-c↑

(246)

Zi Shen Huo Luo formula
Xuanshen, Niuxi, Huanglian, Mudan,
Yimucao, and Rougui in a ratio
of 20:15:12:12:20:3

Spontaneously hypertensive rats
Aldosterone-induced H9c2 cells
and cardiac fibroblasts

SBP, DBP, MAP↓and LVSP, ± dp/dt
max↑
Cardiac fibrosis↓and cell proliferation↑
EGFR/ERK pathway↓

(247)

Myocardial infarction

Buyang Huanwu decoction
Huangqi, Danggui, Chisao, Chuanxiong,
Taoren, Honghua, and Dilong in a ratio
of 120:10:10:10:10:10:4.5

Ligature-induced myocardial
infarction model

Angiogenesis↑
PI3K/Akt/GSK3b pathway↑

(248)

Taohong siwu decoction
Shudihuang, Chuanxiong, Chishao,
Danggui, Honghua, and Taoren in a ratio
of 3:2:2:3:3:4

Ligature-induced myocardial
infarction model
TGF-b1-induced
cardiac fibroblasts

Myocardial fibrosis↓
Cell proliferation and collagen
expression↓
TGFBR1/Smad2/3 pathway↓

(249)

Xuefu Zhuyu decoction
Danggui, Dihuang, Taoren, Honghua,
Chisao, Zhiqiao, Gancao, Chaihu,

Ligature-induced myocardial
infarction model

Mitochondria damage↓
Number of autophagosomes and

(250)
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Myocardial infarction

Chuanxiong, Jiegeng, and Niuxi in a ratio
of 9:9:12:9:6:6:6:3:4.5:4.5:9

lysosomes↓
Expression of LC3-B and P62↓

Yiqihuoxue decoction
Huangqi, Danggui, Renshen, Chuanxiong,
and Sanqi

Ligature-induced myocardial
infarction model

LVEF and LVFS↑and levels of LDH, CK-
MB↓
JNK/MAPK pathway↑

(251)

Qingre Huoxue decoction
Huangqin, Shaoyao, Chuanxiong,
Maodongqing, Honghua, Jiangxiang, and
Danshen in a ratio of 3:3:2:6:2:2:6

Ligature-induced myocardial
infarction model

LVEF and LVFS↑
MCP-1, IL-17A, TNF-a and IL-1b levels↓
LC3B, Beclin-1, ATG5, ATG7↑and p62
level↓
PI3K/Akt pathway↓

(252)

Qingyi decoction
Dahuang, Baishao, Chaihu, Zhizi,
Yanhusuo, Muxiang, and Huangqin, in a
ratio of 3:3:3:3:2:2:2

Severe acute pancreatitis-induced
myocardial infarction model

LVEF and LVFS↑
Levels of IL-1b, IL-6, TNF-a↓
STIM1/Orai1-SOCE pathway↓

(253)

Shuangxinfang
Danshen, Chuanxiong, Baihe, and Dazao
in a ratio of 20:12:30:30

Ligature-induced myocardial
infarction model

LVEF and LVFS↑and LVDs and LVDd↓
Myocardial fibrosis and levels of IL-1b,
TNF-a↓
TLR4/NF-kB pathway↓

(254)

Qishen granule
Huangqi, Danshen, Rendong, Xuanshen,
Wutou, and Gancao in a ratio
of 30:15:10:10:9:6

Ligature-induced myocardial
infarction model
OGD/R, ISO, Ang II and LPS-
ATP-induced H9c2 cell injury

LVEF and LVFS↑and LVDs and LVDd↓
Levels of LDH, CK-MB, NLRP3, IL-1b,
IL-18↓
Cell apoptosis, ROS level, NF-
kB pathway↓

(101)

Others

Jia-Wei-Si-Miao-Yong-
An decoction

Jinyinhua, Lianqiao, Xuanshen, Rougui,
Danggui, Danshen, Gancao, and Huzhang
in a ratio of 15:15:15:9:15:15:15:9

Acute coronary syndrome model
(acute coronary syndrome)

Levels of CK-MB, cTnl, IL-2, TNF-a↓
The abundance of Bacteroides and
Rikenellaceae RC9 gut group↑
The abundance of Clostridium sensu
stricto 1, Prevotella, unclassified o
Bacteroidales, and Ruminococcus
gauvreauii group↓

(255)

Zhen-Wu decoction
Fuzi, Shaoyao, Fuling, Baizhu, and
Shengjiang in a ratio of 3:3:3:2:3

Uremia-induced cardiac
endothelial injury
Npx-induced cardiovascular
endothelial injury
(uremic cardiomyopathy)

LVEF↑and fibrosis area, MDA level↓
Expression of IL-1b and IL-6↓
Cell death and ROS level↓
Nrf2/keap1 pathway↑

(256)

Qingda granule
Tianma, Gouteng, Huangqin, Hehua in a
ratio of 12:10:6:5

Obesity-induced hypertension
and cardiac dysfunction
(hypertension and
cardiac dysfunction)

SBP, DBP, MAP↓and LVEF, LVFS↑
Levels of TG, TC↓and HDL-c,
Akt pathway↓

(257)

Si-Miao-Yong-An decoction
Jinyinhua, Xuanshen, Danggui, and
Gancao in a ratio of 3:3:2:1

TAC-induced heart failure model
(heart failure)

LVEF↑and fibrosis area and collagen
content↓
TGFb1/TAK1/p38/Smad pathway↓

(258)

Huoxin pill

Lingzhi, Linshe, Xiongzhang, Niudanfen,
Zhenzhufen, Renshen, Ganchan,
Chuanwutou, Bingpian, and Honghua in
a ratio of 20:1.2:2.4:1.2:2.4:18:1.8:9:1.2:2

ISO-induced cardiac fibrosis
model
(myocardial fibrosis)

Expression of a-SMA and collagen I/III↓
Cell viability and migration↓
TGF-b1/Smad pathway↓

(259)

Yunpi-Huoxue-Sanjie formula
Baizhu, Zhiqiao, Tianhuafen, Muli, and
Tubiechong in a ratio of 5:2:3:10:2

HFD/streptozotocin-induced
diabetic cardiomyopathy
High glucose-induced H9c2 cells
(diabetic cardiomyopathy)

Levels of FFA, TG, MDA↓and CAT
activity↑
LVDs and LVDd↑and LVEF and LVFS↓
Expression of Atg7, Beclin1, LC3 II/
LC3 I↑

(260)

Fufang Xueshuantong formula
Sanqi, Danshen, Huangqi, and Xuanshen
in a ratio of 25:8:5:8

Streptozotocin-induced diabetic
cardiomyopathy
(diabetic cardiomyopathy)

LVEF and LVFS↑and collagen I/III and
TGF-b1↓
Wnt/b-Catenin pathway↓

(261)
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pharmacology study showed that Schisandra extracts have the

potential for therapeutic effects on atherosclerosis by regulating

immune inflammation and oxidative stress (104). Recently, the key

mechanisms of TCM extracts in CVD may be associated with

immunomodulation, antioxidant, anti-cell death, anti-

inflammatory, and gut microbiota regulation. For example,

Quince extract exhibited hypolipidemic, antioxidant, anti-

inflammatory, anti-thrombotic, and vascular endothelium

protective effects on HFD-induced atherosclerosis (105). Plantago

asiatica L. seeds extracts prevented isoproterenol-induced cardiac

hypertrophy by restoration of autophagy and inhibition of

cardiomyocyte apoptosis (106). The ethyl acetate extracts of

Cinnamomi Ramulus protect rats from myocardial ischemia-

reperfusion injury by suppression of NLRP3 inflammasome

activation and pyroptosis (107). In doxorubicin-induced chronic

heart failure, the combination of aqueous extracts of Aconiti

Lateralis Radix Praeparata and Zingiberis Rhizoma has a better

therapeutic effect than their single aqueous extracts, which may be

associated with improving left ventricular function and promoting

mitochondrial energy metabolism through activation of the

PPARa/PGC-1a/Sirt3 pathway (108). Treatment with bay leaf

extracts exhibited an anti-inflammatory effect in the rat model of

myocardial infarction (109), reflected by reducing the levels of C-

reactive protein and myeloperoxidase. Another study showed that

aqueous extracts of Ligustrum robustum attenuated atherosclerosis

development by modulating gut microbiota composition and

metabolism, as evidenced by increased relative abundance of

genus Bifidobacterium, and reduced serum TMAO and bile acid,

as well as decreased cholesterol absorption (110). In addition, single

TCM extracts used for the treatment of CVD have been shown to

regulate mitochondrial homeostasis and maintain normal

autophagy function, as well as have anti-ERS and anti-contractile

effects. For instance, Vilella et al. (111) reported that green tea

extracts ameliorated cardiomyopathy progression by improving

mitochondrial function. In streptozotocin-induced diabetic

atherosclerosis, Ginkgo biloba leaf extracts reduced plaque lipid

deposition and serum inflammatory cytokines secretion via

inhibiting ERS and mTOR-mediated autophagy (112). Granado

et al. (113) proved that Marjoram extracts prevented inflammatory
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response, apoptosis, and oxidative stress of cardiomyocytes induced

by coronary ischemia-reperfusion, as well as possessed anti-

contractile effects in aorta segments. Taken together, the

cardioprotective effects of single TCM extracts on various CVDs

were confirmed, but its underlying mechanisms and safety need to

be further explored before clinical practice.
3.3 Compounds isolated from TCM
for CVD

With the development of pharmaceutical chemistry and

pharmacology, many scholars have conducted studies on the

bioactive components of TCM in recent years. It has been found

that a large number of effective compounds extracted from TCM,

such as phenolic acids, flavonoids, stilbenes, anthraquinones,

saponins, terpenoids, alkaloids, polysaccharides, etc., all of which

possessed therapeutic effects on various CVDs (Table 3).

3.3.1 Phenolic acids
Phenolic acids are a subclass of plant phenolics that can be

isolated and extracted from many traditional Chinese herbs such as

Angelica sinensis, Salvia miltiorrhiza, Cinnamomi ramulus,

Lonicera japonica, Radix Paeoniae Rubra, Ligusticum wallichii,

etc. Modern pharmacological studies have confirmed that

phenolic acids have a variety of biological activities, including

antioxidant, anti-inflammation, anti-coagulant, and hypolipidemic

(114). Of note, numerous studies have demonstrated that phenolic

acids have been shown to have a therapeutic effect on CVD (115,

116). Vanillic acid, a phenolic compound extracted from Angelica

sinensis, could alleviate hypoxia/reoxygenation-induced H9c2

cardiomyocyte injury by inhibiting cell apoptosis and oxidative

stress (117). Cinnamic acid is an active phenolic acid extracted from

Cinnamomi ramulus that has a cardioprotective effect against

myocardial ischemia-reperfusion injury by inhibiting NLRP3

inflammasome-mediated inflammation and cardiomyocyte

pyroptosis (118). Shen et al. (119) showed that Salvianolic acid B

can effectively inhibit ferroptosis and mitochondrial oxidative stress

by activation of the Nrf2 pathway, thereby attenuating myocardial
TABLE 1 Continued

Prescription Composition (In Chinese) Evaluation model
Effects and
action mechanism

Ref.

Others

Danzhi Jiangtang capsule
Taizishen, Dihuang, Mudanpi, Xieze,
Tusizi, and Shuizhi in a ratio of 6:5:4:4:3:3

HFD/streptozotocin-induced
diabetic cardiomyopathy
High glucose-induced H9c2 cells
(diabetic cardiomyopathy)

LVEF and LVFS↑
Cell apoptosis and levels of IL-1b and IL-
6↓
TLR4/MyD88/NF-kB pathway↓

(262)
frontier
ABCA1, ATP-binding cassette transporter A1; ACSL4, Acyl-CoA synthetase long-chain family member 4; ApoE-/-, Apolipoprotein-E deficient; BA, Bile acid; CK-MB, Creatine kinase MB;
COX2, Cyclooxygenase-2; cTnT, Cardiac troponin T; DBP, Diastolic blood pressure; FTH1, Ferritin heavy chain 1; GPX4, Glutathione peroxidase 4; GSH, Glutathione; HDL-c, High-density
lipoprotein-cholesterol; HFD, High-fat diet; H/R, Hypoxia/reoxygenation; HUVECs, Human umbilical vein endothelial cells; ICAM-1, Intercellular adhesion molecule-1; ISO, Isoproterenol; I/R,
Ischemia/reperfusion; iNOS, Inducible nitric oxide synthase; LAD, left anterior descending ligation; LDH, Lactate dehydrogenase; LDLR-/-, LDL receptor deficient; LDL-c, Low-density
lipoprotein cholesterol; LOX-1, Lectin-like oxidized low-density lipoprotein receptor-1; LVDd, Left ventricular diastolic diameter; LVDs, Left ventricular systolic diameter; LVDP, Left ventricular
diastolic pressure; LVEF, Left ventricular ejection fraction; LVFS, Left ventricular shortening fraction; LVSP, Left ventricular systolic pressure; LV Vol, Left ventricle volume; MAP, Mean arterial
pressure; MCP-1, Monocyte chemoattractant protein-1; MDA, Malondialdehyde; OGD/R, Oxygen-glucose deprivation/reoxygenation; PDGF, Platelet-derived growth factor; PDE5A,
Phosphodiesterase 5A; PKG I, cGMP-dependent protein kinase 1; PPARg, Peroxisome proliferator-activated receptor gamma; SAM, S-Adenosyl methionine; SAH, S-Adenosyl
homocysteine; SBP, Systolic blood pressure; SRA1, scavenger receptor A1; TAC, Transverse abdominal aortic constriction; TC, Total cholesterol; TG, Triglyceride; VCAM-1, Vascular cell
adhesion molecule-1; VSMCs, Vascular smooth muscle cell.
↑ upregulated, ↓ downregulated.
sin.org

https://doi.org/10.3389/fendo.2024.1366285
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Dai et al. 10.3389/fendo.2024.1366285
TABLE 2 Summary of traditional Chinese medicine extracts in the prevention and treatment of various cardiovascular diseases from 2018-2023.

Extracts Evaluation model Effects and action mechanism Ref.

Atherosclerosis

Aqueous extracts of Tribulus terrestris
HFD-induced ApoE-/- mice
ox-LDL/FBS-induced VSMCs

Liver weight and atherosclerotic plaque size↓
VSMC proliferation and migration↓
Akt/MEK/ERK pathway↓

(263)

Aqueous extracts of Dendrobium catenatum

High-cholesterol diet-induced zebrafish
atherosclerosis model
Low shear stress-induced endothelial cell
dysfunction model

Atherosclerotic plaque size and macrophage
infiltration↓
Levels of TC and TG↓
MDA content↓and SOD activity↑

(264)

Ethanol extracts of Psoralea corylifolia
HFD-induced LDLR-/- mice
ox-LDL-induced HUVEC injury

Atherosclerotic lesion size and macrophage
infiltration↓
Expression of VCAM-1 and ICAM-1↓and cholesterol
efflux↑
PARg-ABCA1/ABCG1 pathway↑and NF-
kB pathway↓

(265)

Ethyl acetate extracts of Caesalpinia sappan HFD-induced ApoE-/- mice
Macrophage infiltration and atherosclerotic
lesion size↓

(266)

Methanol extracts of Ophiopogonis Radix ox-LDL-induced mouse peritoneal macrophage cells
Levels of TG and TC↓
SOD, GSH-Px activities, and ABCA1 expression↑

(267)

Ethanol extracts of Arctium lappa TNF-a-induced HUVEC injury
Cell viability and expression of IL-1b, TNF-a, IL-6↓
NF-kB pathway↓

(268)

Aqueous extracts of Eucommia ulmoides HFD-induced ApoE-/- mice
Atherosclerotic lesion sizes and total cholesterol↓
Expression of TNF-a, IL-1b, MIF↓

(269)

Ethanol extracts of Usnea diffracta
HFD- and vitamin D3-induced atherosclerotic
rat model

Atherosclerotic lesion sizes↓
Levels of TC, TG, LDL-c↓and HDL-c↑
AST and ALT activities and levels of TNF-a, IL-1b,
MCP-1↓
TLR5/MyD88/NF-kB pathway↓

(270)

Ethanol extracts of Ganoderma lucidum spore
HFD-induced atherosclerotic rabbit model
ox-LDL-induced THP-1 cells

Levels of TC, TG, LDL-c↓and HDL-c↑
Atherosclerotic lesion sizes and foam cell formation↓
Expression of LXRa, ABCA1 and ABCG1↑

(271)

Aqueous extracts of Salvia miltiorrhiza
HFD-induced ApoE-/- mice
ox-LDL-induced HUVECs
ox-LDL-induced RAW264.7 cells

Atherosclerotic lesion sizes and levels of TG and IL-
6↓
Expression of p62↓and LC3B II↑
Foam cell formation↓

(272)

Ethanol extracts of Salvia miltiorrhiza HFD-induced atherosclerotic rat model
Levels of TC, TG, LDL-c↓and HDL-c↑
Abundance of Actinobacteriota and Proteobacteria↑
Growth of Firmicutes and Desulfobacterita↓

(273)

Butanol extracts of Acanthopanax senticosus HFD-induced ApoE-/- mice
Atherosclerotic lesion sizes↓
Levels of TC, TG, LDL-c↓and HDL-c↑
Levels of TNF-a, IL-1b, IL-6↓and NF-kB pathway↓

(274)

Ethanol extracts of Edgeworthia gardneri
HFD-induced ApoE-/- mice
ox-LDL-induced macrophages and RAW264.7 cells

Atherosclerotic lesion sizes↓
Macrophage content in atherosclerotic plaque↓
Macrophage foam cell formation↓and
CYP7A11 expression↑

(275)

Ethanol extract of Schisandrae chinensis HFD-induced atherosclerotic rat model
Atherosclerotic lesion sizes↓
Levels of TG, LDL-c↓and HDL-c↑and Nrf2/HO-
1 pathway↑

(276)

Myocardial ischemia-reperfusion injury

Ethyl acetate extracts of Cinnamomi Ramulus I/R-induced myocardial injury
LVEF and LVFS↑and expression of IL-1b, IL-6, TNF-
a↓
NLRP3/Caspase-1 pathway↓

(107)

Ethanol extracts of Origanum majorana
I/R-induced myocardial injury
LPS-treated aorta segments

Cardiac contractility (noradrenaline and endothelin-
1)↓
Expression of IL-1b, IL-6↓and SOD-1↑

(113)

(Continued)
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TABLE 2 Continued

Extracts Evaluation model Effects and action mechanism Ref.

Myocardial ischemia-reperfusion injury

Ethanol extracts of Melissa officinalis I/R-induced myocardial injury
dp/dt max and dp/dt min values↑
Coronary venous effluent, collagen content,
oxidative stress↓

(277)

Methanol extracts of Galium verum I/R-induced myocardial injury
dp/dt max values and dp/dt min↑
Levels of TBARS, O2-, H2O2↓and SOD,
CAT activities↑

(278)

Methanol extracts of Allium ursinum I/R-induced myocardial injury
dp/dt max values, dp/dt min, SLVP, SOD, CAT
activities↑
Levels of TBARS, O2-, H2O2↓

(279)

Ethanol extracts of Cinnamomum zeylanicum I/R-induced myocardial injury
Myocardial infarct size and levels of cTnl, LDH,
MDA↓
SOD, GSH, and CAT activities↑

(280)

n-butanol extract of Potentilla anserina I/R-induced myocardial injury
Activities of GSH, SOD, CAT↑and MDA content↓
Apoptosis of cardiomyocyte↓

(281)

Methanol extracts of Dunaliella salina I/R-induced myocardial injury
Myocardial infarct size, LDH level, number of
neutrophils↓
dp/dt max, SLVP↑and TLR4/NF-kB pathway↓

(282)

Methanol extracts of Taraxacum officinale I/R-induced myocardial injury
LDH and CK levels, myocardial infarct size↓
Activities of GSH and CAT↑

(283)

Aqueous extracts of Crataegus persica I/R-induced myocardial injury in diabetic rats
Expression of Nrf2, DJ-1↑
Activities of GSH, SOD, CAT↑and MDA content↓

(284)

Ethanol extracts of Melissa Officinalis I/R-induced myocardial injury
Myocardial infarct size, MDA content, LDH level↓
SOD activity↑

(285)

Ethanol extracts of Pueraria lobata and
Salvia miltiorrhiza

I/R-induced myocardial injury
Myocardial infarct size and levels of CK and LDH↓
VEGFR2/ERK pathway↑

(286)

Ethanol extracts of Salvia miltiorrhiza and
Andrographis paniculata

I/R-induced myocardial injury
Levels of IL-6, TNF-a, IL-1b, MCP-1, IL-33↓
NLRP3/ASC/Caspase-1 pathway↓

(287)

Heart failure

Ethanol extracts of Crataegus pinnatifida DOX-induced heart failure model
LVDs and LVDd↓and dp/dt max↑
Levels of BNP, CK-MB, IL-6, IL-1b, TNF-a↓
GSH-Px and CAT activity↑and MDA content↓

(288)

Ethanol extracts of Ginkgo biloba LAD-induced heart failure model
Expression of IL-1b and TNF-a↓
LVEF and LVFS↑

(289)

Ethanol extracts of Ophiopogon japonicus DOX-induced heart failure model

dp/dt max, LVEF, LVFS↑and LVDs, LVDd↓
Levels of CK-MB, LDH, AST, IL-6, IL-1b, TNF-a↓
Activities of SOD, GSH-Px, CAT↑and MDA content↓
p38 MAPK pathway↓

(290)

Alkaloid extracts of Aconitum carmichaeli AAC-induced heart failure model
LVEF and LVFS↑and LVDs and LVDd↓
Levels of ANP, NT-proBNP, TNF-a↓
Expression of a-SMA and collagen I/III↓

(291)

Myocardial infarction

Aqueous extracts of Salvia miltiorrhiza LAD-induced myocardial infarction model
LVEF and LVFS↑and LVDs and LVDd↓
Levels of BNP, TNF-a, IL-1b↓
TLR4/TRAF6/NF-kB pathway↓

(292)

Ethanol extracts of Schisandra chinensis ISO-induced myocardial infarction model
LDH, CK levels↓and SOD, GSH-Px, CAT activities↑
Nrf2/HO-1 pathway↑

(293)

Aqueous extracts of Spinacia oleracea ISO-induced myocardial infarction model
Levels of LDH, CK-MB, IL-6, TNF-a, TC, TG↓
Activities of SOD, CAT, GSH-Px and GR↑

(294)

(Continued)
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TABLE 2 Continued

Extracts Evaluation model Effects and action mechanism Ref.

Myocardial infarction

Aqueous extracts of Gentianella acuta ISO-induced myocardial infarction model
Levels of LDH, CK, IL-6, TNF-a↓
TLR4/MyD88/NF-kB pathway↓

(295)

Methanol extracts of Agrimonia pilosa ISO-induced myocardial infarction model
Levels of CK-MB, LDH, CK↓
ROS generation and MDA levels↓and SOD activity↑
PI3K/Akt pathway↑

(296)

Ethanol extracts of Syringa pinnatifolia
LAD-induced myocardial infarction model
Hypoxia-induced H9c2 cell injury

Levels of CK-MB, LDH, and inflammatory cell
infiltration↓
p53-mediated apoptotic pathway↓

(297)

Ethanol extracts of Anchusa italica LAD-induced acute myocardial infarction model

LVEF and LVFS↑and LVDs and LVDd↓
Myocardial infarct size and levels of TNF-a, IL-1b,
IL-6↓
PI3K/Akt/mTOR pathway↓

(298)

Hypertension

Aqueous extracts of Whitmania pigra
Spontaneously hypertensive rats
Ang II-induced H9c2 cells

LVEF and LVFS↑and LVDs and LVDd↓
Blood pressure↓and expression of collagen I/III, TGF-
b↓
H9c2 cell viability↑and p38/JNK pathway↓

(299)

Aqueous extracts of Momordica charantia High salt-induced hypertension
MAP, SBP, MDA content↓and activities of CAT
and SOD↑

(300)

Ethanol extracts of Plantago asiatica Spontaneously hypertensive rats
MAP, SBP, collagen deposition↓
LVEF and LVFS↑and LVDs and LVDd↓

(301)

Aqueous extracts of Eriobotrya japonica
Spontaneously hypertensive rats
Ang II-induced H9c2 cells

LVEF and LVFS↑
GATA4-NFATc3 pathway↓

(302)

Aqueous extracts of Chimonanthus salicifolius Spontaneously hypertensive rats LDL-c, TC, TG levels↓and HDL-c level↑and ERS↓ (303)

Others

Aqueous extracts of Salvia miltiorrhiza
HFD-fed db/db mice
High glucose-induced VSMCs

Plaque area and ROS generation↓
Expression of KLF10 and HO-1↓and cell viability↓

(304)

Ethanol extracts of Plantago asiatica
ISO-cardiac hypertrophy
ISO-induced H9c2 cells

Collagen deposition and expression of BNP, ANP, b-
MHC↓
Cardiomyocyte apoptosis↓

(106)

Ethanol extracts of Lycium chinense
HFD/streptozotocin-induced
diabetic cardiomyopathy

Blood glucose and levels of TG, AST, LDH, CK-MB↓
Expression of IL-6, IL-1b, TNF-a↓
MDA content↓and activities of CAT, GSH-Px, SOD↑
p53-mediated apoptotic pathway and NF-
kB pathway↓

(305)

Aqueous extracts of Arnebiae Radix Acetylcholine and CaCl2-induced atrial fibrillation
AF duration↓and induction time of AF↑
Atrial fibrosis, a-SMA, and collagen I expression↓
LVFS↑and atrial enlargement (LAD, LA area)↓

(306)

Aqueous extracts of Dendrobium candidum
ISO-induced cardiac hypertrophy model
ISO-induced H9c2 cells

LVSP, Heart body/body weight ratio, LV/TL ratio↓
Serum levels of ANP and BNP↓
Collagen deposition and ERK pathway↓

(307)

Ethanol extracts of Smilax glabra
TAC-induced cardiac hypertrophy model
ISO-induced H9c2 cells

Myocardial fibrosis and collagen content↓
Expression of ANP, BNP, b-MHC, NT-proBNP↓
Raf/MEK/ERK pathway↓

(308)

Ethanol extracts of Centella asiatica
ISO-induced cardiac hypertrophy model
ISO-induced atrial cardiomyocytes

Heart/body weight ratio↓and levels of AST, BNP,
ANP↓
Collagen content, cardiac fibrosis, expression of TNF-
a, IL-6↓
MDA content↓and SOD expression↑
PI3K/Akt pathway↑and NF-kB pathway↓

(309)

(Continued)
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infarction. Another study reported that ferulic acid ameliorated

atherosclerotic injury by modulating gut microbiota and lipid

metabolism (120), as evidenced by reducing the relative

abundance of Erysipelotrichaceae and Firmicutes and increasing

the relative abundance of Ruminococcaceae , as well as

downregulating serum levels of total cholesterol, triglyceride, and

low-density lipoprotein cholesterol and atherogenic index in HFD-

fed ApoE-/- mice. In addition, we summarized many phenolic acids

such as caffeic acid, protocatechuic acid, chlorogenic acid, gallic

acid, benzoic acid, and erucic acid for the treatment and prevention

of CVD, which are listed in Table 3.

3.3.2 Flavonoids
Flavonoids are secondary metabolites widely found in TCM and

have various pharmacological activities that are beneficial to human

health (121), such as antioxidant, anti-apoptosis, anti-

inflammation, antitumor, etc. Of note, many studies have found

that flavonoid compounds can play an effective protective role in

the treatment of CVD (122). Functionally, scutellarin, a flavonoid

compound extracted from Erigeron breviscapus, possessed

protective effects against cardiac hypertrophy (123), diabetic

cardiomyopathy (124), atherosclerosis (125), myocardial

ischemia-reperfusion injury (126), and myocardial infarction

(127) via inhibition of inflammation, oxidative stress, and

apoptosis. Baicalein extracted from Scutellaria baicalensis

inhibited Ang II/oxidized low-density lipoprotein-induced

inflammation via inactivation of the AMPK/NF-kB pathway, thus

showing anti-atherosclerotic activity (128). Wogonin, one of the

main flavonoid compounds of Scutellaria radix, ameliorated

isoproterenol-induced myocardial infarction via suppression of

inflammation and oxidative stress (129). Naringenin was the

main flavonoid that existed in various citrus fruits, bergamots,

and tomatoes. Naringenin treatment inhibited myocardial

ischemia-reperfusion-induced inflammation, lipid peroxidation,

and ferroptosis by activating the Nrf2/GPX4 pathway (130).

Naringenin suppressed blood pressure, cholesterol triglycerides,

LDL, serum malondialdehyde (MDA), and nitric oxide, as well as

increased serum superoxide dismutase and glutathione via blocking

the STAT3 pathway in obesity-associated hypertension (131).

Abukhalil et al. (132) reported that galangin, a natural flavonoid

found in lesser galangal and honey, exerted a protective effect on

diabetic cardiomyopathy by reduction of oxidative stress,
Frontiers in Endocrinology 18
inflammation, and hyperglycemia. Last but not least, pinocembrin

belongs to this series of flavonoids and exerts an antioxidant effect

on heart failure by activating the Nrf2/HO-1 pathway, evidenced by

reducing ROS level in heart tissue and serum MDA level and

improving cardiac function (133). Taken together, flavonoids

possess a range of biological activities that prevent the

development and progression of CVD, and their potential

mechanisms are summarized in Table 3.

3.3.3 Stilbenes
Stilbenes are compounds with a stilbene parent structure

connected by a vinyl group between two benzene rings and have

a typical conjugated structure. Stilbenes are widely found in TCM,

including Polygonum cuspidatum and Polygonum multiflorum, and

have beneficial effects on human health. Resveratrol, a main

compound extracted from Polygonum cuspidatum, can prevent

myocardial ischemia-reperfusion injury by inhibition of oxidative

stress and ferroptosis (134). Maayah et al. (135) found that

resveratrol treatment inhibited cardiac NLRP3 inflammasome

activation and reduced inflammatory responses, and thus

alleviated doxorubicin-induced cardiomyopathy. Another study

showed that resveratrol protects against atherosclerosis by

reducing TMAO levels and enhancing hepatic bile acid

biosynthesis through the remodeling of intestinal flora (136).

Polydatin, an active component in Polygonum cuspidatum, can

ameliorate acute myocardial infarction-induced cardiac damage by

inhibition of oxidative stress and cell apoptosis via activation of the

Nrf2/HO-1 pathway (137). Zhang and colleagues (138) confirmed

that polydatin can inhibit inflammation and pyroptosis by blocking

the NLRP3/caspase-1 pathway and triggering mTOR-mediated

autophagy, thereby exerting an anti-atherosclerosis effect. 2,3,4’,5-

tetrahydroxystilbene 2-O-b-D-glucoside (TSG) is extracted and

purified from Polygonum multiflorum, which can prevent the

development and progression of atherosclerosis by reducing lipid

accumulation and inflammation in ApoE-/- mice fed with HFD

(139). These results suggested that stilbenes exhibited therapeutic

effects on CVD via different mechanisms (Table 3).

3.3.4 Anthraquinones
Anthraquinones are compounds with unsaturated cyclic diketone

structures and are widely found in some Chinese herbal medicines

(140). Accumulating studies have shown that anthraquinones
TABLE 2 Continued

Extracts Evaluation model Effects and action mechanism Ref.

Others

Aqueous extracts of Angelica sinensis and
Hedysarum polybotrys

X-irradiation-induced myocardial fibrosis
X-irradiation-induced cardiac fibroblasts

Myocardial fibrosis↓and TGF-b1 expression↓
Cardiac fibroblast apoptosis↓
Expression of miR-21, collagen 1a, c-Jun, OPN↓

(310)

Aqueous extracts of Salvia miltiorrhiza and
Carthamus tinctorius

HFD/streptozotocin-induced diabetic
cardiomyopathy
Sodium palmitate-treated H9c2 cells

Glucose level↓and insulin level↑
Cardiomyocyte cross-sectional↓and LVFS↑
Levels of BNP and cell apoptosis↓

(311)
frontie
AAC, Abdominal aortic coarctation surgery; ANP, Atrial natriuretic peptide; BNP, Brain natriuretic peptide; dp/dt min, Minimum rate of left ventricular pressure development; dp/dt max,
Maximum rate of left ventricular pressure development; GSH, glutathione; LA, left atrium; LAD, Left atrial diameter; LVEDP, Left ventricular end-diastolic pressure; LV/TL, Left ventricular
weight/tibia length; LVSP, Left ventricular systolic pressure; SLVP, Systolic left ventricular pressure.
↑ upregulated, ↓ downregulated.
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TABLE 3 Summary of traditional Chinese medicine compounds in the prevention and treatment of various cardiovascular diseases from 2018-2023.

Compound cardiovascular diseases (model) Biological activity Ref.

Phenolic acids

Salvianolic acid A

Atherosclerosis (animal and cellular models) Anti-pyroptosis and anti-inflammation (312)

Myocardial infarction (animal and cellular models) Anti-apoptosis (313)

Diabetic cardiomyopathy (animal model) Improving mitochondrial function and anti-apoptosis (314)

Hypertension (animal and cellular models) Anti-apoptosis (315)

Salvianolic acid B

Atherosclerosis (cellular model) Anti-inflammation, anti-pyroptosis, and anti-ERS (316)

Myocardial ischemia-reperfusion injury (animal and
cellular models)

Anti-ferroptosis, anti-apoptosis, antioxidant, and
anti-inflammation

(317, 318)

Myocardial infarction (animal model) Anti-ferroptosis (119)

Uremic cardiomyopathy (animal model) Anti-inflammation and anti-fibrosis (319)

Diabetic cardiomyopathy (animal and cellular models) Angiogenesis (320)

Chlorogenic acid

Heart failure (animal model) Anti-inflammation, antioxidant, and anti-apoptosis (321)

Myocardial infarction (animal model) Anti-inflammation and anti-oxidative stress (322)

Hypertension (animal model) Modulation of gut microbiota (323)

Diabetic cardiomyopathy (animal and cellular models) Anti-ERS and anti-apoptosis (324)

Gallic acid

Atherosclerosis (animal model) Modulation of gut microbiota (325)

Heart failure (animal and cellular models) Activation of autophagy and anti-fibrosis (326, 327)

Atrial fibrillation (animal model) Inhibiting immunoproteasome (328)

Hypertension (animal model) Antioxidant (329)

Cardiac hypertrophy (animal model) Antioxidant (330)

Syringic acid

Myocardial ischemia-reperfusion injury (animal model) Anti-apoptosis (331)

Cardiac hypertrophy (animal model) Anti-fibrosis (332)

Diabetic cardiomyopathy (animal model) Antioxidant (333)

Caffeic acid

Atherosclerosis (animal model) Anti-inflammation (334)

Hypertension (animal model) Antioxidant (335)

Cardiac remodeling (animal and cellular models) Anti-fibrosis (336)

Punicalagin

Atherosclerosis (cellular model) Anti-inflammation (337)

Myocardial ischemia-reperfusion injury (animal model) Antioxidant and anti-apoptosis (338)

Diabetic cardiomyopathy (animal and cellular models) Improving mitochondrial function (339)

Ferulic acid

Atherosclerosis (animal model) Modulation of gut microbiota (120)

Myocardial ischemia-reperfusion injury (animal model) Anti-ferroptosis and antioxidant (340)

Heart failure (animal model) Antioxidant and anti-apoptosis (341)

Myocardial infarction (cellular model) Activation of autophagy (342)

Diabetic cardiomyopathy (animal model) Modulation of gut microbiota and anti-apoptosis (343)

Cinnamic acid

Atherosclerosis (animal model) Antioxidant (344)

Myocardial ischemia-reperfusion injury (animal model) Anti-inflammation and anti-pyroptosis (118)

Cardiomyopathy (animal and cellular models) Antioxidant, anti-inflammation, and anti-dyslipidemia (345, 346)

(Continued)
F
rontiers in Endocrinology
 19
 fro
ntiersin.org

https://doi.org/10.3389/fendo.2024.1366285
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Dai et al. 10.3389/fendo.2024.1366285
TABLE 3 Continued

Compound cardiovascular diseases (model) Biological activity Ref.

Flavonoids

Formononetin

Atherosclerosis (cellular model) Anti-inflammation and antioxidant (347)

Myocardial ischemia-reperfusion injury (animal model) Anti-inflammation and antioxidant (348)

Myocardial infarction (animal model) Anti-inflammation (349)

Hypertension (animal model) Anti-inflammation (350)

Baicalein

Atherosclerosis (cellular model) Anti-inflammation (128)

Myocardial ischemia-reperfusion injury (cellular model) Antioxidant (351)

Hypertension (cellular model) Anti-fibrosis and anti-inflammation (352)

Cardiac hypertrophy (animal model) Antioxidant and activation of autophagy (353)

Diabetic cardiomyopathy (animal model) Antioxidant and anti-inflammation (354)

Baicalin

Atherosclerosis (animal model) Anti-inflammation (355)

Myocardial ischemia-reperfusion injury (animal and
cellular models)

Anti-ferroptosis and anti-inflammation (356, 357)

Cardiac hypertrophy (animal model) Activation of the SIRT3 pathway (358)

Cardiomyopathy (animal model) Anti-inflammation (359)

Hypertension (animal model) Modulation of gut microbiota (360)

Hesperidin

Atherosclerosis (animal model) Anti-inflammation (361)

Myocardial ischemia-reperfusion injury (animal model) Inhibition of autophagy (362)

Cardiac hypertrophy (animal model) Anti-inflammation, anti-apoptosis, and antioxidant (363)

Hyperoside

Atherosclerosis (cellular model) Anti-inflammation (364)

Myocardial ischemia-reperfusion injury (animal model) Antioxidant (365)

Myocardial infarction (animal model) Anti-inflammation (366)

Heart failure (animal model) Anti-apoptosis and activation of autophagy (367)

Puerarin

Atherosclerosis (cellular model) Anti-inflammation and antioxidant (368)

Myocardial ischemia-reperfusion injury (animal and
cellular models)

Anti-ferroptosis and anti-inflammation (369)

Heart failure (animal and cellular models) Anti-apoptosis and anti-inflammation (370)

Cardiac hypertrophy (animal model) Activation of PPARa/PGC-1 pathway (371)

Hypertension (animal model) Antioxidant (372)

Myocardial infarction (animal model) Anti-apoptosis (373)

Diabetic cardiomyopathy (animal and cellular models) Anti-inflammation (374)

Quercetin

Atherosclerosis (cellular model) Anti-inflammation and activation of autophagy (375)

Myocardial ischemia-reperfusion injury (animal and
cellular models)

Anti-apoptosis (376)

Diabetic cardiomyopathy (animal model) Anti-inflammation (377)

Myocardial infarction (animal model) Anti-fibrosis (378)

Atrial fibrillation (animal and cellular models) Anti-fibrosis (379)

Kaempferol Atherosclerosis (animal model) Antioxidant (380)
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TABLE 3 Continued

Compound cardiovascular diseases (model) Biological activity Ref.

Flavonoids

Heart failure (animal model) Antioxidant and anti-inflammation (381)

Diabetic cardiomyopathy (animal model) Antioxidant (382)

Naringenin

Atherosclerosis (animal model) Anti-inflammation, activation of autophagy, and anti-ERS (383, 384)

Myocardial ischemia-reperfusion injury (animal and
cellular models)

Anti-ferroptosis, antioxidant, and anti-inflammation (130, 385)

Hypertension (animal model) Antioxidant (131)

Cardiac hypertrophy (animal and cellular models) Antioxidant (386)

Diabetic cardiomyopathy (animal model) Antioxidant, anti-inflammation, and anti-apoptosis (387)

Tilianin

Atherosclerosis (cellular model) Anti-inflammation (388)

Myocardial ischemia-reperfusion injury (animal model) Antioxidant, anti-apoptosis, and anti-inflammation (389, 390)

Diabetic cardiomyopathy (animal and cellular models) Antioxidant and anti-inflammation (391)

Biochanin A

Atherosclerosis (animal and cellular models) Anti-inflammation (392)

Myocardial ischemia-reperfusion injury (animal model) Anti-inflammation (393)

Diabetic cardiomyopathy (animal model) Antioxidant (394)

Myocardial infarction (animal model) Anti-inflammation (395)

Hydroxysafflor Yellow A

Atherosclerosis (animal model) Anti-inflammation (396)

Myocardial ischemia-reperfusion injury (animal model) Activation of autophagy and anti-inflammation (397)

Diabetic cardiomyopathy (animal model) Antioxidant (398)

Cardiac hypertrophy (animal model) Antioxidant (399)

Xanthohumol

Atherosclerosis (cellular model) Modulation lipid metabolism (400)

Myocardial ischemia-reperfusion injury (animal model) Anti-ferroptosis (401)

Cardiac hypertrophy (animal model) Anti-fibrosis (402)

Dihydromyricetin

Atherosclerosis (animal model) Anti-inflammation (403)

Myocardial ischemia-reperfusion injury (animal and
cellular models)

Improving mitochondrial function and antioxidant (404)

Cardiomyopathy (animal model) Anti-inflammation and antioxidant (405)

Cardiac hypertrophy (animal model) Antioxidant (406)

Acacetin

Atherosclerosis (animal model) Antioxidant and anti-inflammation (407)

Myocardial ischemia-reperfusion injury (animal model) Antioxidant, anti-inflammation, and anti-apoptosis (408)

Cardiac hypertrophy (animal model) Anti-inflammation, antioxidant, and anti-apoptosis (409)

Diabetic cardiomyopathy (animal and cellular models) Antioxidant (410)

Hypertension (animal model) Improving mitochondrial function (411)

Icariin

Atherosclerosis (animal and cellular models) Anti-apoptosis (412)

Myocardial ischemia-reperfusion injury (cellular model) Antioxidant and anti-ferroptosis (413)

Myocardial infarction (animal model) Immunomodulatory (414)

Atrial fibrillation (animal model) Improving mitochondrial function (415)

Hypertension (animal model) Antioxidant (416)

Cardiac hypertrophy (cellular model) Activation of autophagy (417)

Diabetic cardiomyopathy (animal model) Improving mitochondrial function and anti-fibrosis (418)
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TABLE 3 Continued

Compound cardiovascular diseases (model) Biological activity Ref.

Flavonoids

Scutellarin

Atherosclerosis (animal model) Anti-apoptosis (125)

Myocardial ischemia-reperfusion injury (animal and
cellular models)

Anti-inflammation and anti-apoptosis (126)

Cardiac hypertrophy (cellular model) Anti-inflammation (123)

Diabetic cardiomyopathy (animal model) Anti-apoptosis, anti-inflammation, and antioxidant (124, 419)

Myocardial infarction (animal model) Antioxidant, anti-apoptosis, and anti-inflammation (127)

Morin
Atherosclerosis (cellular model) Anti-inflammation and activation of autophagy (420)

Myocardial ischemia-reperfusion injury (animal model) Antioxidant (421)

Epigallocatechin-
3-gallate

Myocardial ischemia-reperfusion injury (animal model) Antioxidant and anti-inflammation (422)

Heart failure (animal model) Antioxidant (423)

Myocardial infarction (animal model) Anti-apoptosis and anti-inflammation (424)

Hypertension (animal model) Antioxidant (425)

Cardiac hypertrophy (cellular model) Improving mitochondrial function and anti-fibrosis (426, 427)

Diabetic cardiomyopathy (animal model) Anti-fibrosis (428)

Atrial fibrillation (animal model) Anti-fibrosis (429)

Stilbenes

Resveratrol

Atherosclerosis (cellular model) Anti-inflammation (430)

Myocardial ischemia-reperfusion injury (cellular model)
Anti-ferroptosis, improving mitochondrial function,
and antioxidant

(134, 431)

Heart failure (patients with heart failure) Anti-inflammation (432)

Myocardial infarction (animal model) Antioxidant, anti-inflammation, and anti-ferroptosis (433, 434)

Hypertension (animal model)
Antioxidant, anti-inflammation, and modulation of
gut microbiota

(435, 436)

Cardiac hypertrophy (animal model) Antioxidant and activation of autophagy (437)

Diabetic cardiomyopathy (animal model) Antioxidant (438)

Atrial fibrillation (animal model) Anti-apoptosis and anti-fibrosis (439)

Polydatin

Atherosclerosis (animal model) Anti-inflammation, antioxidant, and activation of autophagy (138, 440)

Myocardial infarction (cellular model) Antioxidant (137)

Cardiomyopathy (animal model) Improving mitochondrial function and antioxidant (441)

Raloxifene
Atherosclerosis (animal model) Anti-inflammation (442)

Heart failure (animal model) Anti-inflammation and antioxidant (443)

Anthraquinones

Emodin

Myocardial ischemia-reperfusion injury (cellular model) Anti-inflammation and anti-pyroptosis (444)

Heart failure (animal model) Anti-apoptosis (445)

Cardiac hypertrophy (animal model) Anti-fibrosis (446)

Aloe-emodin

Atherosclerosis (animal model) Activation of autophagy (150)

Myocardial infarction (animal model) Anti-apoptosis and anti-fibrosis (151)

Hypertension (animal and cellular models) Anti-inflammation (152)

Kanglexin Atherosclerosis (animal and cellular models) Hypolipidemic (447)
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TABLE 3 Continued

Compound cardiovascular diseases (model) Biological activity Ref.

Anthraquinones

Myocardial ischemia-reperfusion injury (animal model) Anti-inflammation and anti-pyroptosis (448)

Saponins

Astragaloside IV

Atherosclerosis (cellular model) Anti-inflammation, antioxidant, and anti-apoptosis (157, 449)

Myocardial ischemia-reperfusion injury (animal model) Antioxidant and anti-apoptosis (450)

Heart failure (animal model) Angiogenesis (451)

Myocardial infarction (animal and cellular models) Anti-inflammation, angiogenesis, and anti-pyroptosis (155, 452)

Hypertension (animal model) Anti-inflammatory and antioxidant (453)

Diabetic cardiomyopathy (animal model) Anti-ferroptosis, antioxidant, and activation of autophagy (454, 455)

Ginsenoside Rb1

Atherosclerosis (cellular model) Antioxidant and anti-inflammation (456)

Myocardial ischemia-reperfusion injury (animal and
cellular models)

Antioxidant and improving mitochondrial function (457)

Heart failure (animal model) Improving mitochondrial function (458)

Diabetic cardiomyopathy (animal model)
Antioxidant, anti-apoptosis, anti-fibrosis, and
anti-inflammation

(459)

Ginsenoside Rb2
Atherosclerosis (animal and cellular models) Anti-inflammation (460)

Myocardial ischemia-reperfusion injury (animal model) Anti-inflammation and antioxidant (461)

Notoginsenoside R1

Atherosclerosis (cellular model) Anti-inflammation, anti-apoptosis, and antioxidant (462)

Myocardial ischemia-reperfusion injury (animal model) Anti-apoptosis (463)

Cardiomyopathy (animal and cellular models) Anti-apoptosis, antioxidant, and anti-fibrosis (464)

Cardiac hypertrophy (animal model) Anti-inflammation (465)

Terpenoids

Tanshinone IIA

Atherosclerosis (animal model) Anti-inflammation and anti-pyroptosis (466)

Myocardial ischemia-reperfusion injury (animal model) Antioxidant, anti-inflammation, and anti-apoptosis (467)

Myocardial infarction (animal model) Antioxidant (468)

Diabetic cardiomyopathy (cellular model) Anti-ERS and anti-oxidative stress (469)

Cardiac fibrosis (animal model) Anti-fibrosis and antioxidant (470)

Paeoniflorin

Atherosclerosis (cellular model) Anti-apoptosis and activation of autophagy (163)

Myocardial ischemia-reperfusion injury (animal model) Antioxidant and anti-apoptosis (471)

Heart failure (animal model) Anti-fibrosis (472)

Hypertension (animal model) Anti-inflammation and antioxidant (473)

Catalpol

Atherosclerosis (cellular model) Anti-inflammation, antioxidant, and anti-ERS (474)

Myocardial ischemia-reperfusion injury (animal and
cellular models)

Antioxidant and anti-inflammation (475)

Hypertension (cellular model) Anti-inflammation (476)

Diabetic cardiomyopathy (animal model) Anti-apoptosis (477)

Crocin

Atherosclerosis (animal model) Anti-inflammation (478)

Myocardial ischemia-reperfusion injury (animal and
cellular models)

Anti-ERS (479)

Myocardial infarction (animal model) Anti-inflammation (480)
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TABLE 3 Continued

Compound cardiovascular diseases (model) Biological activity Ref.

Terpenoids

Hypertension (animal model) Antioxidant (481)

Diabetic cardiomyopathy (animal model) Activation of autophagy and anti-apoptosis (482)

Ginkgolide B

Atherosclerosis (animal model)
Modulation of gut microbiota, anti-inflammation,
and antioxidant

(483, 484)

Myocardial ischemia-reperfusion injury (cellular model) Anti-inflammation and anti-apoptosis (485, 486)

Myocardial infarction (animal model) Anti-inflammation (487)

Cardiac hypertrophy (cellular model) Activation of autophagy (488)

Diabetic cardiomyopathy (animal model) Antioxidant and anti-fibrosis (489)

Lycopene

Atherosclerosis (animal model) Inhibition of cholesterol and antioxidant (490)

Myocardial ischemia-reperfusion injury (cellular model)
Improving mitochondrial function, anti-apoptosis, and
anti-ERS

(491, 492)

Cardiac hypertrophy (animal and cellular models) Antioxidant and improving mitochondrial function (493)

Artemisinin

Atherosclerosis (animal model) Anti-inflammation and antioxidant (494, 495)

Myocardial ischemia-reperfusion injury (animal model) Anti-inflammation (165)

Hypertension (animal model) Antioxidant (496)

Diabetic cardiomyopathy (animal model) Anti-inflammation and anti-fibrosis (497)

Oridonin

Atherosclerosis (animal model) Anti-inflammation and antioxidant (498)

Myocardial ischemia-reperfusion injury (animal model) Anti-inflammation and anti-pyroptosis (499)

Myocardial infarction (animal model) Anti-inflammation and anti-fibrosis (500)

Cardiac hypertrophy (animal and cellular models) Activation of autophagy (501)

Alkaloids

Berberine

Atherosclerosis (animal model) Modulation of gut microbiota (502)

Myocardial ischemia-reperfusion injury (animal and
cellular models)

Anti-inflammation, antioxidant, and anti-apoptosis (503, 504)

Heart failure (animal model) Improving mitochondrial function (505)

Myocardial infarction (animal model) Anti-inflammation (506)

Hypertension (animal model) Modulation of gut microbiota (507)

Cardiac hypertrophy (animal and cellular models) Activation of autophagy (508)

Diabetic cardiomyopathy (cellular model) Anti-inflammation (509)

Colchicine

Atherosclerosis (cellular model) Anti-inflammation and anti-pyroptosis (510)

Heart failure (animal model) Anti-inflammation (511)

Cardiomyopathy (animal and cellular models) Anti-inflammation (512)

Myocardial infarction (animal model) Anti-inflammation (513)

Sinomenine

Atherosclerosis (animal model) Anti-inflammation and antioxidant (514)

Myocardial ischemia-reperfusion injury (animal model) Anti-apoptosis, anti-inflammation, antioxidant (515)

Heart failure (animal model) Anti-fibrosis and anti-inflammation (516)

Cardiac hypertrophy (animal and cellular models) Antioxidant and anti-inflammation (517)

Nuciferine
Atherosclerosis (animal model) Anti-apoptosis and activation of MMP12/Akt pathway (518)

Myocardial ischemia-reperfusion injury (animal model) Anti-apoptosis and activation of PPAR-g (519)
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havevarious biological activities, including antitumor, antioxidant, and

anti-inflammation (141), etc. Emodin (1,3,8-trihydroxy-6-

methylanthraquinone), a natural anthraquinone derivative, can be

extracted and purified from natural plants such as Rhei radix et

rhizoma, Polygoni Cuspidat, Polygoni multiflori, which protects

against various CVDs (142). Previous studies have demonstrated that

emodin exhibited a therapeutic effect on atherosclerosis via inhibition

of inflammatory response (143), suppression of PPAR-g-mediated lipid

metabolism (144) and endothelial cell apoptosis (145), reducing

oxidative stress (146). Other studies found that emodin can prevent

cardiac hypertrophy (147), restrict vasodilation by activation of K+-

ATP channels (148), and inhibition of myocardial fibrosis (149). Aloe-

emodin is an active ingredient in Rheum palmatum and Aloe vera,

which prevents the progression of various CVDs. For example, Tang

et al. (150) reported that aloe-emodin exerted an anti-atherosclerosis

effect by reducing atherosclerotic plaque in the aorta and lipid

accumulation and promoting endothelial autophagy. Yu et al. (151)

showed that aloe-emodin inhibited the development of cardiac fibrosis

and hypertrophy in rats with chronic myocardial infarction by

suppressing cardiac apoptosis and oxidative stress via the inactivation

of the TGF-b/Smad pathway. Another study found that aloe-emodin

exhibited specific therapeutic value in hypertension-related CVD by

inhibiting NLRP3 inflammasome activation (152). Moreover, other

anthraquinone compounds have protective effects against CVD, which

is summarized in Table 3.
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3.3.5 Saponins
Saponins are a class of glycosides with triterpenoids or steranes,

which are widely found in natural plants and have been reported to

have many pharmacological activities, including antitumor, anti-

inflammation, anti-oxidative stress, etc. Importantly, previous

studies have shown that saponins were shown to be effective in

treating CVD (Table 3) (153), such as atherosclerosis, myocardial

infarction, myocardial ischemia-reperfusion injury, heart failure,

cardiomyopathy, and hypertension. Astragaloside IV (AS-IV) is the

main active ingredient purified from Astragalus membranaceus and

serves as an effective therapeutic agent for the treatment of CVD

(154). For example, AS-IV could markedly reduce myocardial

infarction-induced myocardial fibrosis, cardiac hypertrophy, and

macrophage pyroptosis by inhibition of the ROS/caspase-1/

GSDMD pathway (155). Yin et al. (156) showed that AS-IV

protects against myocardial ischemia-reperfusion injury by

suppressing cardiomyocyte apoptosis and serum cardiac troponin

levels via blocking CaSR/ERK1/2 and the related apoptotic

pathways. Another study found that AS-IV treatment suppressed

inflammation, plaque area, and serum lipids in HFD-induced

atherosclerosis by blocking the MAPK/NF-kB pathway (157).

Other studies proved that AS-IV can attenuate the progression of

myocardial fibrosis (158), heart failure (159), and cardiac

hypertrophy (160) by inhibiting Nrf2-mediated oxidative stress.

Ginsenosides (mainly including the ginsenosides Rb1, Rb2, Rb3, Rc,
TABLE 3 Continued

Compound cardiovascular diseases (model) Biological activity Ref.

Alkaloids

Myocardial infarction (animal model) Anti-inflammation (520)

Polysaccharides

Dendrobium
huoshanense

Atherosclerosis (zebrafish model) Antioxidant and anti-inflammation (521)

Laminaria japonica Atherosclerosis (animal model) Modulation of gut microbiota (522)

Cordyceps militaris Atherosclerosis (animal model) Improving hyperlipidemia (523)

Undaria pinnatifida Atherosclerosis (animal model) Anti-inflammation (524)

Cipangopaludina
chinensis

Atherosclerosis (animal model) Modulation of gut microbiota (525)

Poria cocos Atherosclerosis (animal model) Anti-inflammation (526)

Lycium barbarum

Atherosclerosis (animal model) Modulation of gut microbiota (527)

Myocardial ischemia-reperfusion injury (animal model) Improving mitochondrial function and antioxidant (528)

Cardiac hypertrophy (animal model) Anti-inflammation (529)

Schisandra chinensis Cardiac hypertrophy (animal model) Antioxidant (530)

Chuanminshen
violaceum

Myocardial ischemia-reperfusion injury (animal model) Anti-ferroptosis (531)

Polygonatum sibiricum Heart failure (animal model) Antioxidant, anti-inflammation, and anti-apoptosis (532)

Astragalus
membranaceus

Heart failure (animal model) Anti-inflammation (533)
fro
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Rd, Re, Rg3, and Rh2 and compound K) serve as the main active

constituents of Panax ginseng and exert protection against CVD by

suppression of oxidative stress, cholesterol accumulation,

inflammation, and insulin resistance (161).
3.3.6 Terpenoids
Terpenoids are a large group of organic compounds present in

TCM and can be effectively used for treating various diseases.

Importantly, the preventive and therapeutic effects of terpenoids

on CVD have received increasing attention (Table 3), which was

associated with their remarkable biological activities, such as anti-

inflammation, antioxidant, and anti-apoptosis. Tanshinone IIA, a

fat-soluble component of Salvia miltiorrhiza, could protect against

heart failure by inhibition of cardiomyocyte apoptosis via activating

the AMPK/mTOR-mediated autophagy pathway (162).

Paeoniflorin, a bioactive component extracted from Paeonia

lactiflora, can ameliorate ox-LDL-induced atherosclerosis by

inhibiting apoptosis and adhesion molecule expression via

autophagy enhancement in human umbilical vein endothelial

cells (163). Andrographolide, a bioactive labdane diterpenoid

extracted from Andrographis paniculate, exhibited anti-oxidative

stress capacity against adverse cardiac remodeling after myocardial

infarction by activating the Nrf2/HO-1 pathway (164). Artemisinin,

a sesquiterpene lactone compound with peroxisome bridging group

structure purified from Artemisia annua, prevented myocardial

ischemia-reperfusion injury by inhibition of cardiac autophagy

and NLRP3 inflammasome activation (165). Taken together,

terpenoids may serve as an effective therapeutic agent for the

treatment of various CVDs by different mechanisms.
3.3.7 Alkaloids
Alkaloids are a class of nitrogen-containing basic organic

compounds and widely found in TCM. Of note, alkaloids exert

protective effects against CVDs by suppression of inflammation,

oxidative stress, and cardiomyocyte apoptosis (Table 3). Berberine,

a natural isoquinoline alkaloid isolated from Rhizoma coptidis,

possessed profound pharmacological activities for the treatment

of various CVDs (166), including atherosclerosis, cardiac

hypertrophy, heart failure, myocardial infarction, and arrhythmia.

Similarly, palmatine was a potential candidate drug for the

treatment of cardiac hypertrophy by activating the Nrf2/ARE

pathway (167). Matrine, a quinolizidine alkaloid derived from

Sophora flavescens, could attenuate diabetic cardiomyopathy by

reducing inflammatory cytokines levels and oxidative stress (168).

Cyclovirobuxine D, a steroidal alkaloid extracted from Buxus

microphylla, exerted a cytoprotective effect against HFD diet- and

streptozotocin-induced rat diabetic cardiomyopathy by activating

Nrf2-mediated antioxidant responses (169). Cordycepin is an active

ingredient in Cordyceps sinensis that can prevent myocardial

ischemia-reperfusion injury by activating the AMPK/mTOR-

mediated autophagy (170). Colchicine, a botanical alkaloid

derived from Colchicum autumnale, exerted unique anti-

inflammatory effects in the therapy of various CVDs (171),

including atherosclerosis, heart failure, atrial fibrillation, and

myocardial infarction.
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3.3.8 Polysaccharides
Polysaccharides widely exist in natural plants, which are a kind

of complex structure of natural polymer compounds (172).

Currently, natural polysaccharides are attracting considerable

attention worldwide due to their versatile biological activities and

few side effects. Of note, numerous studies have shown that

bioactive polysaccharides exhibit profound efficiency in

controlling the risk factors of CVD (173), such as inflammatory

response, oxidative stress, hypertension, and hyperlipidemia.

Polysaccharides derived from Gelidium crinale reduced oxidative

stress and inflammation in oxidized low-density lipoprotein-

induced atherosclerosis (174). Huang et al. (175) found that the

administration of polysaccharides from Eriobotrya japonica

effectively reduced oxidative damage and inflammation induced

by myocardial ischemia-reperfusion injury. Astragalus

polysaccharides could ameliorate diabetic cardiomyopathy

progression by improving cardiac function and inhibiting

cardiomyocyte apoptosis via the inactivation of the ERS pathway

(176). Lycium barbarum polysaccharides could reduce the levels of

inflammatory cytokines (e.g., IL-6 and TNF-a) and plasma lipid

peroxidation in a pressure overload-induced heart failure rat model

(177). In addition, polysaccharides extracted from TCM, such as

Polygonatum sibiricum, Opuntia dilleniid, Plantago asiatica,

Angelica sinensis, and Ganoderma lucidum, also have therapeutic

effects on various CVDs (Table 3).
3.3.9 Others
In addition to the above-mentioned compounds isolated from

TCM for the prevention of CVD, other active ingredients in TCM

have been reported to have therapeutic effects on various CVDs.

Schisandrin B, bioactive dibenzocyclooctadiene derivatives found in

Schisandra chinensis, could alleviate diabetic cardiomyopathy by

reducing cardiac inflammation and damage via blocking MyD88-

dependent inflammation (178). Schisandrin B prevented hypoxia/

reoxygenation-induced cardiomyocyte injury by inhibiting

inflammation and oxidative stress, which was associated with the

activation of the AMPK/Nrf2 pathway (179). Morronisid, an iridoid

glycoside extracted from Cornus officinalis, promoted angiogenesis

and improved cardiac function in rats with acute myocardial

infarction (180). Sulforaphane is a natural glucosinolate found in

Raphanus sativus, which inhibited cardiac cell ferroptosis by

activating the AMPK/Nrf2 pathway (76). Schisandrol A, a

bioactive lignan extracted from Schisandra chinensis, could inhibit

cardiomyocyte apoptosis induced by myocardial ischemia-

reperfusion via increasing 14-3-3q expression (181). Collectively,

natural compounds from TCM exert anti-CVD effects, which may

be developed as an effective therapeutic agent for the treatment of

CVD in clinical.
4 Clinical study of the TCM for the
prevention and treatment of CVD

Accumulating evidence has reported that TCM has a wide range

of pharmacological effects in various CVDs and its beneficial
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efficacy has been proved in vitro cell models or animal experiments.

Importantly, several clinical studies are underway to explore the

safety and efficacy of TCM decoction and injections for the

treatment of various CVDs. For example, several studies provided

a reliable evaluation of the efficacy and safety of Xuefu Zhuyu

granules (182) and Xuefu Zhuyu granules (183) in the treatment of

patients with coronary heart disease. Other randomized controlled

trials similarly analyzed the efficacy and safety of Zhuling decoction

(184) and Buyang Huanwu decoction (185) in the treatment of

heart failure. A multicenter, randomized, double-blind, placebo-

controlled clinical trial found that Qing-Xin-Jie-Yu granule reduced

inflammation and cardiovascular endpoint in patients with

coronary heart disease (186). A phase I clinical trial by Hu et al.

(187) showed that Danhong injection promoted endothelial

progenitor cell mobilization by increasing the expression of Akt,

eNOS, and MMP-9 in patients with coronary heart disease. Lai et al.

(97) found that treatment with TCM formula (Songling

Xuemaikang capsule) improved blood pressure in patients with

mild hypertension and was well tolerated. Another study confirmed

that astragalus injection was a safe and effective therapeutic agent in
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the clinical management of heart failure (188). In addition, several

clinical trials have shown that the combination of TCM and

standard drugs for CVD treatment was advantageous to simple

conventional Western medicine in relieving clinical symptoms (25,

189). Chao et al. (190) reported that TCM formula combined with

Western medicine reduced blood lipid levels and inflammatory

factors in patients with coronary heart disease. Zhang et al. (191)

showed that modified Xiaojianzhong decoction combined with

conventional Western medicine alleviated the progression of

chronic heart failure by improving heart function and

maintaining gastrointestinal hormones. Another study found that

treatment with Jianpi Huazhi pill combined with Western medicine

(anti-heart failure) led to decreasing the levels of inflammatory

cytokines and improving the composition of the gut microbiota

(192). Meanwhile, several clinical studies are completed or ongoing

to evaluate the safety and efficacy of TCM combined with Western

medicine for the treatment of CVD according to Chinese Clinical

Trial Registry (Table 4). Many researchers have proved that

treatment with TCM based on the standard drug not only

prevented CVD progression and improved quality of life but also
TABLE 4 The ongoing clinical trials of traditional Chinese medicine combined with Western medicine for cardiovascular diseases therapy from
2018-2023.

No. Disease Interventions Status Sponsor
Clinical
Trial ID

1 Atherosclerosis Tongxinluo capsule+CWM Completed Qilu Hospital of Shandong University ChiCTR1900025842

2 Atherosclerosis Xiaochaihu decoction+CWM Not recruiting Shanghai Sixth People’s Hospital ChiCTR2000032470

3 Atherosclerosis Yanshi Jiangzhi formula+CWM Not recruiting Shanghai Tenth People’s Hospital ChiCTR2000036785

4 Atherosclerosis Yishen Huazhuo decoction+CWM Not recruiting
Longhua Hospital Shanghai University of
Traditional Chinese Medicine

ChiCTR2300071014

5 Atherosclerosis Huoxue Jiedu formula+CWM Recruiting
Xiyuan Hospital, Chinese Academy of Traditional
Chinese Medicine

ChiCTR2300074283

6 Atherosclerosis Huazhuo Tiaozhi granule+CWM Not recruiting
Guang’anmen Hospital, China Academy of
Chinese Medical Sciences

ChiCTR2400079454

7
Myocardial
ischemia-
reperfusion injury

Shenxiang Suhe pill+CWM Recruiting
Sir Run Run Shaw Hospital, College of Medicine,
Zhejiang University

ChiCTR2200055170

8 Heart failure Yiqihuoxuelishui formula+CWM Recruiting
Dongfang Hospital Affiliated to Beijing University
of Chinese Medicine

ChiCTR1900022036

9 Heart failure Yangyin Shuxin formula+CWM Completed
The First Affiliated Hospital of Tianjin University
of Traditional Chinese Medicine

ChiCTR2000030921

10 Heart failure LuHong formula+CWM Not recruiting
Shuguang Hospital Affiliated to Shanghai
University of traditional Chinese Medicine

ChiCTR2000037368

11 Heart failure Qiangxin formula+CWM Recruiting
Shanghai Hospital of Traditional
Chinese Medicine

ChiCTR2000037254

12 Heart failure Shenfu Xiangshao decoction+CWM Not recruiting Shanghai Putuo District Central Hospital ChiCTR2000036639

13 Heart failure Shen’ge formula+CWM Not recruiting
Longhua Hospital affiliated to Shanghai
University of Traditional Chinese Medicine

ChiCTR2000036533

14 Heart failure Shenshao pill+CWM Recruiting
The First Teaching Hospital of Tianjin University
of Traditional Chinese Medicine

ChiCTR2100042242

15 Heart failure Shenge powder+CWM Not recruiting Nanxiang Hospital ChiCTR2100049790

(Continued)
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reduced the incidence of adverse cardiovascular events in patients

(193–195). More interestingly, TCM may be an effective alternative

method to Western medicine in modern American healthcare, but

some barriers prevent its integration into Western health systems,

such as the fact that TCM is not accredited by the American Board

of Medical Specialties, available TCM therapies may impose an

undesired burden for patients, and TCM therapies are

individualized. However, no cardiovascular drug or combination

of drugs has shown significant efficacy in all patients with CVD, and

standardWestern medicine can lead to adverse side effects. From an

economic point of view, TCM therapies are cheaper than Western
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medicine and have a better prognosis for patients with CVD. Based

on the current situation, TCM may be an attractive alternative for

patients with CVD.
5 Conclusion and prospects

As the leading cause of death after malignant tumors, CVD is

difficult to treat clinically and imposes a huge economic and health

burden on people worldwide. The morbidity and mortality of CVD

are continuously increasing, and the treatment is ineffective because
TABLE 4 Continued

No. Disease Interventions Status Sponsor
Clinical
Trial ID

16 Heart failure Yixin formula+CWM Not recruiting

Yueyang Hospital of Integrated Traditional
Chinese and Western Medicine Affiliated to
Shanghai University of Traditional
Chinese Medicine

ChiCTR2100051882

17 Heart failure Fangji Huangqi decoction+CWM Recruiting
The Second Affiliated Hospital of Tianjin
University of Traditional Chinese Medicine

ChiCTR2100054580

18 Heart failure Xin-Li-Fang formula+CWM Not recruiting
The Second Affiliated Hospital of Guangzhou
University of Chinese Medicine (Guangdong
Provincial of Chinese Medicine)

ChiCTR2200058649

19 Heart failure Kangxin formula+CWM Not recruiting
The First Affiliated Hospital of Guangzhou
University of Chinese Medicine

ChiCTR2300069435

20 Heart failure Yangxinxue granules+CWM Not recruiting Qionglai Hospital of Traditional Chinese Medicin ChiCTR2300074840

21 Heart failure Shexiang Baoxin pill+CWM Not recruiting Sichuan Provincial People’s Hospital ChiCTR2300076014

22 Heart failure Yiqi Huayu decoction+CWM Recruiting
Shuguang Hospital Affiliated to Shanghai
University of Traditional Chinese Medicine

ChiCTR2400082425

23 Heart failure Qiwei Fangji Huangqi granule+CWM Not recruiting Hangzhou Traditional Chinese Medicine Hospital ChiCTR2400080029

24 Hypertension Bushen Jiangya granule+CWM Recruiting
Guang′anmen Hospital, China Academy of
Chinese Medical Sciences

ChiCTR1900028572

25 Hypertension Shugan Wendan decoction+CWM Not recruiting Guangzhou University of Chinese Medicine ChiCTR2000034557

26 Hypertension Dingxuan Shuyu formula+CWM Completed
Shuguang Hospital Affiliated to Shanghai
University of Chinese Medicine

ChiCTR2000040386

27 Hypertension Chaigui decoction+CWM Completed Wuxi Hospital of Traditional Chinese Medicine ChiCTR2300076783

28 Hypertension Huoxue Qiyang Qutan prescription+CWM Recruiting
Shanghai Yueyang Integrated Traditional Chinese
Medicine and Western Medicine Hospital

ChiCTR2400081580

29 Myocardial
infarction

Qishen Yiqi drop pill+CWM Not recruiting

The Second Affiliated Hospital of Tianjin
University of Traditional Chinese Medicine

ChiCTR2000029136

30 Peking University First Hospital ChiCTR2300069035

31
Myocardial
infarction

Shexiang Tongxin drop pill+CWM Recruiting
Beijing University of Chinese Medicine
Dongzhimen Hospital

ChiCTR2300075069

32
Septic
cardiomyopathy

Fuling Sini decoction+CWM Recruiting
Beijing University of Chinese Medicine Shenzhen
Hospital (Longgang)

ChiCTR2100045549

33

Combined blood
stasis with
dilated
cardiomyopathy

Kuoxinfang granule+CWM Recruiting
Longhua Hospital, Shanghai University of
Traditional Chinese Medicine

ChiCTR2100049536

34
Coronary
artery disease

Shexiang Baoxin pill+CWM Recruiting Gansu Provincial Hospital ChiCTR2400080152
CWM, conventional Western medicine.
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of its complex pathogenesis. In recent years, TCM has been

particularly prominent in the treatment of 95 certain diseases,

including CVD, offering a new perspective in the modern era for

the prevention and treatment of diseases such as COVID-19. In this

review, we found that TCM (formulas, extracts, and compounds)

can combat CVD through multiple mechanisms, including anti-

inflammatory, antioxidant, improving mitochondrial dysfunction,

anti-cell death (such as autophagy, apoptosis, ferroptosis,

pyroptosis), and regulating gut microbiota. Meanwhile, clinical

trials have proven the efficacy and safety of TCM in alleviating

the symptoms of CVD. However, there are still some challenges that

must be overcome in TCM for CVD treatment. (1) With the rapid

advancement of science, there is a need to utilize network

pharmacology approaches and multi-omics technologies, such as

nutrigenomics, metabolomics, proteomics, gut microbial

macrogenomics and immunomics, to reveal the physiological

functions and mechanism explanations of TCM in combating

CVD; (2) The metabolic, toxicity, and pharmacokinetic profiles of

TCM fight against patients with CVD in clinical trials need to be

further validated; (3) The construction of TCM resources for

common quality standards to ensure active ingredient in TCM;

(4) Research on active ingredients of TCM is limited by defects

includes unstable chemical structure, low bioavailability and easy

oxidation, and liposome embedding or nanoparticle formulation

can be considered; (5) Development of CVD models with human

disease characteristics for exploring the pharmacological activity of

TCM, such as primate animal models that can avoid species barriers

leading to ineffectiveness; (6) Designing TCM delivery systems to

improve its stability, bioavailability, and efficacy in the

gastrointestinal tract.

In conclusion, TCM possesses good anti-CVD effects and is an

indispensable active drug for the treatment of CVD. Based on the

latest evidence, this review summarized the pathogenesis of CVD

and systematically analyzed and discussed the mechanisms of TCM

in preventing CVD, as well as its clinical trials. This review aims to
Frontiers in Endocrinology 29
provide a scientific and effective comprehensive reference for TCM

in CVD therapy and to better utilize and develop the treasures

of TCM.
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