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The 25 kDa-sized protein Lipocalin 2 (LCN2) was originally isolated from human

neutrophil granulocytes more than 30 years ago. LCN2 is an emerging player in

innate immune defense, as it reduces bacterial growth due to its ability to

sequester iron-containing bacterial siderophores. On the other hand, LCN2

also serves as a transporter for various hydrophobic substances due to its b-
barrel shaped structure. Over the years, LCN2 has been detected in many other

cell types including epithelial cells, astrocytes, and hepatocytes. Studies have

clearly shown that aberrant expression of LCN2 is associated with a variety of

disorders and malignancies, including several diseases of the reproductive

system. Furthermore, LCN2 was proposed as a non-invasive prognostic and/or

diagnostic biomarker in this context. Although several studies have shed light on

the role of LCN2 in various disorders of the female and male reproductive

systems, including tumorigenesis, a comprehensive understanding of the

physiological function of LCN2 in the reproductive tract is still lacking.

However, there is evidence that LCN2 is directly related to fertility, as global

depletion of Lcn2 in mice has a negative effect on their pregnancy rate. Since

LCN2 expression can be regulated by steroid hormones, it is not surprising that its

expression fluctuates greatly during remodeling processes in the female

reproductive tract, especially in the uterus. Well-founded details about the

expression and regulation of LCN2 in a healthy reproductive state and also

about possible changes during reproductive aging could contribute to a better

understanding of LCN2 as a target in various diseases. Therefore, the present

review summarizes current knowledge about LCN2 in the reproductive system,

including studies in rodents and humans, and discusses changes in LCN2

expression during pathological events. The limited data suggest that LCN2 is

expressed and regulated differently in healthy male and female

reproductive organs.
KEYWORDS

Lipocalin 2 (LCN2), uterocalin, fertility, reproductive system/tract, cancer,
estrogen, biomarker
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2024.1365602/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1365602/full
https://www.frontiersin.org/articles/10.3389/fendo.2024.1365602/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2024.1365602&domain=pdf&date_stamp=2024-04-05
mailto:rweiskirchen@ukaachen.de
mailto:saschroeder@ukaachen.de
https://doi.org/10.3389/fendo.2024.1365602
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2024.1365602
https://www.frontiersin.org/journals/endocrinology


Krizanac et al. 10.3389/fendo.2024.1365602
1 Introduction

Lipocalin 2 (LCN2) is a member of the lipocalin family of

proteins known for its specific lipocalin fold that forms a

hydrophobic pocket, thus allowing them to act as transport

proteins (1). LCN2 was first isolated from human neutrophils and

reported as neutrophil gelatinase-associated protein (NGAL) that

served as bacterial iron sequester (2). It is believed that its multiple

functions probably stem from its ability to act as a monomeric

protein (25 kDa), as a homodimer (~46 kDa), and as a heterodimer

(~135 kDa) in a complex with matrix metalloproteinase 9 (MMP9)

(3). Importantly, only human LCN2 can form dimers (4), whereas

murine LCN2 lacks Cys87 which is required for covalent disulfide

bond formation (5).

Due to its pleiotropic nature, LCN2 was rediscovered and given

several names, some of which being oncogene 24p3, siderocalin,

p25, a2-microglobulin-related protein and migration-stimulating

factor inhibitor (MSFI) (6–8). The protein was given the name

siderocalin because LCN2 has the ability to reduce bacterial growth,

as it can bind iron indirectly via bacterial siderophores (6, 9). In

addition to its physiological role in host immune defense, aberrant

expression of LCN2 has been observed under various

pathophysiological conditions (10–12).

A role of LCN2 in reproductive tissue was suspected early on

after its discovery. Because LCN2 was found to be strongly

expressed in the uterine tissue of mice, the term ‘uterocalin’ for

LCN2 was introduced (13). However, there are relatively few

historical studies in the area of LCN2 in the reproductive system.

Even less data is available on the molecular mechanisms by which

LCN2 mediates signal transduction in the healthy reproductive

system. Currently, three different putative LCN2 receptors, namely

soluble carrier family 22 member 17 (SLC22A17), megalin and

melanocortin-4 receptor (MC4R), have been described and

comprehensively reviewed in (14). The role of these receptors in

the reproductive tract is still poorly understood. However, there is

evidence that sex hormones influence the expression of LCN2 in

mice and humans (15–17).

With this review, our goal was to summarize the available

knowledge on LCN2 in female and male reproductive organs. The

focus was mainly on the female reproductive tract (uterus, vagina,

and ovary). However, in the male reproductive tract, we

concentrated on the expression of LCN2 in the testes and
Abbreviations: APR, acute phase response; BSA, bovine serum albumin; E. coli,

Escherichia coli; EMF, electromagnetic field; EMT, epithelial-to-mesenchymal

transition; Esr1, ERa, estrogen receptor alpha; FSHR, follicle-stimulating

hormone receptor; GBS, group b Staphylococcus; GDM, gestational diabetes

mellitus; irNGAL, immunoreactive NGAL; LCN2, lipocalin 2; MC4R,

melanocortin-4 receptor; MMP9, matrix metalloproteinase 9; MSFI, migration-

stimulating factor inhibitor; NF-kB, nuclear factor kappa B; NGAL, neutrophil

gelatinase-associated protein; PCOS, polycystic ovarian syndrome; PE,

preeclampsia; RT-PCR, conventional reverse transcription polymerase chain

reaction; RT-qPCR, real-time quantitative polymerase chain reaction;

SLC22A17, soluble carrier family 22 member 17; WT, wild type.
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epididymis, as its expression in healthy and diseased prostates has

been previously summarized (10).
2 LCN2 in the female
reproductive system

2.1 Female reproductive tract

The female reproductive system is tightly regulated by hormones

and consists of the vagina, the cervix, the uterus, the fallopian tubes, and

the ovaries (18). Ovaries produce and secrete steroid hormones and are

responsible for the maturation and release of oocytes. Fertilization takes

place in the fallopian tubes (also known as oviducts), after which the

fertilized oocyte is transported to the uterus for implantation (19). The

cervix not only connects the uterus to the vagina, through which sperm

reach the site of fertilization and forms the birth canal, but also serves as

a barrier to invading pathogens (20).

Although murine models are used for the research of

reproductive organs, notable differences can be observed between

human and murine reproductive systems. Unlike humans, which

possess a pyriform uterus, mice have a bicornuate uterus consisting

of uterine horns with multiple implantation sites that open into the

uterine junction (21). Compared to the size of the reproductive

tract, mice have rather small oviducts (21). Furthermore, the

reproductive system of mice is more similar to that of rats than

that of primates (22). Moreover, the time of gestation and the

number of offspring differ between humans and rodents (22).
2.2 LCN2 expression in the female
reproductive system

Although the existence of LCN2 in the uterus has been known

for more than 25 years (23, 24), only few studies have addressed the

expression, function, and signaling pathways of LCN2 in the female

reproductive tract. This is likely due to the fact that so far little is

known about the interaction of LCN2 with its various receptors as

previously mentioned (14). In the following section, we summarize

the studies on LCN2 expression in the female reproductive tract in

chronological order.

Interestingly, the first reports of Lcn2 mRNA (then referred to

as 24p3) in the murine female reproductive system were made

almost at the same time by two different research groups in 1995 in

the USA. Using Northern Blot analysis, Kasik and Rice (24) found

high levels of Lcn2 in the glandular uterine epithelium of pregnant

mice during gestation and shortly before giving birth. Liu and

Nilsen-Hamilton investigated the expression of Lcn2 in a

turpentine-induced mouse model of Acute Phase Response (APR)

as well via Northern Blot analysis (23). In addition to a massive

induction of Lcn2 in the liver during APR, a strongly enhanced

expression of Lcn2 in murine uterine tissue under the same

conditions was found (23). Interestingly, the Northern Blot

analysis demonstrated that Lcn2 was not present in the placenta

or fetus (23). Further experiments showed that Lcn2 is also up-

regulated during normal pregnancy independently of APR (23).
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Two years later, the same research group from Iowa State University

conducted another study on the expression of LCN2 protein and

mRNA in the mice (13). In contrast to increased LCN2 expression

in the uterus during APR, Western blot analysis showed no protein

expression of LCN2 in the bloodstream or in the amniotic fluid

during pregnancy (13). Instead, immunostaining identified the

luminal and glandular uterine epithelium as the site of LCN2

protein synthesis (13). Interestingly, the expression levels of Lcn2

in the liver of the mice did not change during pregnancy, as

analyzed by Northern blot analysis (13). It was particularly

emphasized that the amount of LCN2 in the uterus during

pregnancy and at birth was much higher than the increase

detected in the liver during APR. This led to the assumption that

LCN2 is involved in local inflammatory processes at parturition

(13). In this context, a review article also proposed the theory that

LCN2 is subject to separate, local regulation within different tissue

types (25).

In 1996, Chu and co-workers demonstrated by Northern blot

analysis that Lcn2 is strongly expressed in the uterus and vagina of

adult mice, but not in ovarian tissue (26). Additionally, Western

blot analysis revealed that LCN2 was not only detected in uterine

tissue, but has also been reported as a component of uterine luminal

fluid, secretions that are produced by uterine epithelial cells during

estrus cycles in mature rodents (26). Furthermore, their analysis of

glycopeptide linkage revealed evidence for N-linked but not O-

linked glycosylation in LCN2. Thus, two potential sites for N-linked

glycosylation at Asn81 and Asn85 of LCN2 can be derived from the

primary structure (26).

The key finding of Huang and co-workers in 1999 was that uterine

protein and mRNA expression of LCN2 (detected via Western and

Northern blot analysis and immunohistochemical staining) is strongly

dependent on natural hormonal fluctuations during the estrus cycle in

mice (27). In line with this, a study by Burns et al. also shows that Lcn2

is regulated by hormonal influences in the murine ovary (28). In situ

hybridization demonstrated that there was no detectable expression of

Lcn2 in the wild type (WT) murine ovary, but depletion of the follicle-

stimulating hormone receptor (FSHR) led to greatly increased Lcn2

levels (28).

In addition to the small number of studies of LCN2 in mice

(Table 1), there are also few studies on its expression in human tissue.

In a study analyzing 50 tissues of human origin by RNA dot-blot

hybridization, the uterine tissue was positive for LCN2 (39). In their

comprehensive study, Friedl and co-workers (40) used

immunohistochemistry to examine various healthy human tissues for

LCN2 protein expression. These results of the study report that LCN2

expression was not found in the female reproductive tract (ovaries,

fallopian tube, endometrial glands or stroma, myometrium, uterine

cervix). Unfortunately, not all images of the staining results from the

screening are displayed in the publication, but the results of the staining

have been summarized in tabular form.

According to Human Protein Atlas (https://www.proteinatlas.org/,

last accessed on 21.3.2024), high expression of LCN2 mRNA was

detected in the vagina and cervix, while protein expression was proven

only in the cervix. Low or no LCN2 expression was detected in the

ovary, endometrium, fallopian tube, and placenta (Table 2). There are

no data on the tissue expression of human LCN2 in the vagina, but it
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was found via enzyme-linked immunosorbent assay that LCN2 is

secreted into the vaginal fluid and participates in vaginal immune

response (41).

A more recent study by De La Chesnaye and colleagues showed

for the first time ovarian expression of LCN2 in rats (42). RT-qPCR

showed that ovarian Lcn2mRNA increased from date of birth to 30

days (pre-pubertal period) in rats (42). Western blot analysis

showed that adult rats (without definite age mentioned) show

stronger expression of LCN2 protein in ovaries than testes (42).

Furthermore, cellular localization of LCN2 via immunostaining

detected positive signal in granulosa cells (of primordial and

growing follicles), in the oocyte, in the zona pellucida and in the

antrum of developed follicles of adult rat ovaries (42).

The most recent study by our research group showed contrasting

results for the expression of LCN2 in the ovary in mice, compared to

the study described previously in rats. We found low but detectable

mRNA and protein expression of LCN2 in the ovaries of B6N(Cg)-

Esr1tm4.2Ksk/J mice through immunohistochemistry, Western blot, and

RT-qPCR analysis (31, 43). The study revealed a correlation of

increased LCN2 expression and estrogen receptor alpha (ERa, Esr1)
deficiency in adult murine ovaries (31). In addition, in adult WT

animals, the previously described estrus-dependent expression of

LCN2 was confirmed in luminal and glandular uterine epithelium

via immunohistochemical stainings (31). We have recently shown that

LCN2 is also strongly expressed in parts of the oviduct and in the

vagina of adult WT animals (Figure 1). Importantly, a subsequent

study showed that the ovaries of Esr1-deficient mice exhibited iron

accumulation, increased levels of LCN2, and signs of aging (43).

Limited data suggest that there are differences in LCN2

activities in mice (summarized in Table 1) and humans

(summarized in Table 2), which may be related to the

aforementioned ability of human LCN2 to form dimers.

Furthermore, taking all reports into account, the conclusion can

be drawn that LCN2, which is usually viewed as a systemic

inflammation indicator, is regulated by specific local mechanisms

within reproductive tissue without affecting the rest of

the organism. Unfortunately, mechanistic insights into the

mechanism of action of LCN2 in the female reproductive tract

are still scarce. A study by Lee and co-workers suggested that post-

translational modification of LCN2 may play a role in its biological

function, as there is a phosphorylation site of protein kinase C at

Ser88 in murine uterine protein (29).

We summarized the current knowledge on the expression of

murine LCN2 in different compartments of the female reproductive

tract in Figure 1 and included findings of our own (unpublished)

immunohistochemical LCN2 stainings. Further comprehensive

studies are needed to determine the precise cell type expressing

LCN2, for instance, in the ovary, oviduct, and vagina and whether

they are subject to hormonal fluctuations of the estrus cycle.
2.3 LCN2 in fertility, pregnancy,
and involution

Throughout history, the expression of LCN2 in the reproductive

system has been studied primarily in the context of pregnancy and
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reproduction. Studies gave evidence that LCN2 levels fluctuate

during murine estrus cycle (27, 31). The murine estrus cycle

consists of 4 phases, namely proestrus, estrus, metestrus, and

diestrus which repeat every 4 to 5 days unless interrupted by

pregnancy, pseudopregnancy, or anestrus (44). As already briefly

mentioned, Huang et al. showed that the level of Lcn2 mRNA was

high in the proestrus and estrus, then declined dramatically from

the metestrus to diestrus in the uterus (27). Consistent with this

observation, the LCN2 protein was abundant in the proestrus,

decreased from estrus to metestrus, and declined to a very low

level in the diestrus. We confirmed this finding and further showed

that when hormone balance is disrupted by depletion of Esr1, the

corresponding Esr1-deficient mice remain permanently in the
Frontiers in Endocrinology 04
diestrus (31). This is accompanied by a constant and massively

reduced expression of LCN2 in uterine epithelium, which was

observed in immunohistochemical staining (31).

Most existing publications studied LCN2 in the context of gestation,

parturition or postpartum (13, 23, 24, 26). Liu and colleagues analyzed

tissues stained with anti-LCN2 antiserum from mice on day 19 of

pregnancy and 1 day postpartum (13). LCN2 was detectable in the

luminal uterine epithelium (day 19). On day 1 after delivery, it was also

found in the glandular epithelium. Kasik and Rice speculated that

uterine Lcn2 mRNA (around birth) could be due to neutrophils in the

uterus or stem from different cell types (such as myometrial cells) (24).

Following birth, the uterus undergoes a process called

involution, whose goal is to return the uterus to its prepregnancy
TABLE 1 Expression pattern of LCN2 in murine female and male reproductive tract.

Organ Expression Detection method Localization Reference

Vagina +++ Northern blot NA1 (26)

Uterus

+++ Northern blot NA2 (24)

+++ Northern blot NA3 (23)

+++ Northern blot, IHCa luminal epithelium (day 19 of pregnancy)
and glandular epithelium (postpartum)

(13)

+++ Northern blot NA1 (26)

+++ Northern blot, Western blotb, IHCc luminal and glandular epithelial cells of
the endometrium

(27)

+++ Western blotd NA1 (29)

+++ Northern blot NA4 (25)

+++ Western blote uterotubular junction (30)

++ IHCf luminal and glandular epithelial cells (31)

Ovary
– Northern blot NA1 (26)

+ RT-qPCR, Western blotg, IHCf, IFf Corpus luteum5 (31)

Testis

– Northern blot NA1 (26)

+/- Northern blot, RT-PCR Germ and somatic cell fraction6 (32)

+/- PCR, Southern blot, Western bloth Sertoli cells7 and spermatogonial cells8 (33)

++ Western Bloti, RT-PCR Leydig cells (34)

++ In situ hybridization, Western blotj Leydig cells (35)

++ In situ hybridization Leydig cells (36)

++ RT-qPCR, Western blotg, IHCf, IFf Leydig cells (31)

Epididymis

+++ Northern blot NA1 (26)

+++ Northern blot, Western blotk epithelial cells and epididymal lumen (37)

+++ Western blot caput epididymis (38)

Prostate – Northern blot NA1 (26)
IF, immunofluorescence; NA, not applicable; IHC, immunohistochemistry; 1whole tissue lysates were used; 2the whole uterus at the time of birth was analyzed; 3the whole uterus of pregnant
females was analyzed; 4postpartum involuting uterus; 5no cell type confirmed but single cells in the Corpus luteum were positive in IHC; whole tissue lysate was used for Western Blot and RT-
qPCR. 6Northern blot analysis of wild type testis showed no expression of Lcn2 (at different ages), but expression of Lcn2 was detected by RT-PCR in testicular gonadal cells (isolated via
fluorescence-activated cell sorting) from 13.5-dpc and 3-week-old wild type mice in germ cells and the somatic fraction; 7a barely detectable level was found in primary Sertoli cells alone (isolated
from 7-day-old mice), but a strong expression was observed in coculture with spermatogonial cells and after treatment with spermatogonial-conditioned medium; 8defined as the c-Kit+ cell
fraction. afixation in 2% paraformaldehyde, antibody: self-made in rabbits; bself-made rabbit antibody; cfixation in Bouin’s solution, self-made rabbit antibody; dself-made rabbit antibody; erabbit
polyclonal anti-LCN2 antibody (#sc-50351, Santa Cruz Biotechnology); ffixation in 4% neutral buffered formaldehyde (stabilized with methanol), polyclonal goat anti-LCN2 antibody (#AF3508;
R&D Systems; 1:40 for IHC); gpolyclonal goat anti-LCN2 antibody (#AF3508; R&D Systems; 1:800); hpolyclonal goat anti-LCN2 antibody (#AF1857, R&D Systems); imonoclonal rat anti-LCN2
antibody (#MAB1857, R&D Systems; 1 µg/ml); janti-LCN2 antibody (no product number indicated, Abcam, 1:1000); kself-made in rabbit antibody. Symbols mean: -, no expression; +/-, very low
expression; +, low expression; ++, moderate expression; +++, strong expression.
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state. It has been observed that the postpartum involuting uterus is a

major site of LCN2 expression (25). The authors speculate that in

this context, LCN2 serves as an inducer of neutrophilic apoptosis,

thus protecting the uterus from oxidative stress and carcinogenesis

during the remodeling phase.

Others studied LCN2 in uterine tissue of rats (45) in context of

pregnancy and involution. Western blot analysis show that LCN2

was strongly elevated on day 22 of pregnancy and on the first two

days after delivery compared to non-pregnant uterine tissue. In

pregnant and non-pregnant rats (in the proestrus), uterine LCN2

expression was restricted to the uterine luminal and glandular

epithelium of the uterine and did not colocalize with

Myeloperoxidase (detected via immunostaining), which is also

up-regulated during postpartum involution but in different

cellular compartments (in the vessel-rich layer and in the

endometrial stroma).

The uterine tissue is also involution, as is the mammary gland.

Northern blot analysis demonstrate that Lcn2 expression was barely

detectable in the mammary gland of virgin, pregnant or lactating

mice (46). In contrast, the involution process that induced strong

tissue remodeling of the mouse mammary gland started with

weaning and was accompanied by strong expression of Lcn2

mRNA and protein (46, 47). In situ hybridization demonstrated

that Lcn2 expression was restricted to epithelial cells of mammary

gland alveoli (46). Mechanistically, Bong and colleagues found that

overexpression of Lcn2 drives mammary epithelial cells to

apoptosis. Interestingly Western blot analysis show that the LCN2

protein is secreted from epithelium into the milk of lactating female

mice, indicating an important function for the pups as well (47).

Not less important, it was also speculate that Lcn2 and its receptor

(Slc22a17 alias 24p3R) are involved in apoptotic signaling in the

perinatal ovary, where numerous ovaries are lost through

apoptosis (42).

LCN2 has been reported to play a role during pregnancy not

only in rodents, but also in mares, where in situ hybridization

showed that it was localized in the equine uterine glandular

epithelium (48). Immunohistochemical stainings demonstrate that
Frontiers in Endocrinology
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LCN2 protein is expressed in gravid endometrium and secreted into

the luminal fluid (48). Therefore, it was speculated that LCN2 could

function as a carrier for small substances from the mother to the

fetus (48).

Several reports implicate LCN2 in the fertilization process (30,

49). A study by Watanabe and colleagues identified LCN2 produced

by the female mouse reproductive tract as a sperm-capacitating agent

that alters the membrane properties of sperm in preparation for

fertilization (30). More specifically, LCN2 levels reach their peak

during estrus at uterotubular junction, where sperm maturation is

believed to begin, forcing the sperm to undergo lipid raft

reorganization, cholesterol efflux, and glycosylphosphatidylinositol-

anchored protein shedding necessary for fertilization. Furthermore,

the same study reported that LCN2 has the ability to increase murine

in vitro fertilization efficiency, making it a great target to study for

clinical application.

On the other hand, other studies reported a negative correlation

between LCN2 and fertilization (50, 51). More precisely, with the

use of computer-assisted sperm analysis method, cytochemical

staining and detection of the protein tyrosine phosphorylation

pattern Lee and co-workers reported that the LCN2 protein play

a role in stimulating flagellar motility but preventing acrosome

reaction. The same group confirmed previous indications of the

inhibitory effect of LCN2 on in vitro fertilization (51). To be precise,

the presence of LCN2 reduced the response of sperm to bovine

serum albumin (BSA) and calcium by suppressing intracellular pH

elevation, calcium uptake, cAMP accumulation, and protein

tyrosine phosphorylation of BSA/calcium-stimulated sperm.

The most important report on the implication of LCN2 in the

fertilization process is probably the one that says that Lcn2KO mice

show compromised fertility (52). The study reports that although

Lcn2 deficient males appear to be fertile, Lcn2-deficient females

show a significantly (p < 0.05) decreased pregnancy rate compared

to WT littermates when crossed to WT or Lcn2-deficient males.

Taken together, these data indicate that sperm maturation and

fertilization are highly dependent on the LCN2 status of the

female individual.
TABLE 2 Summary of LCN2 mRNA and protein expression according to Human Protein Atlas*.

Organ
IHC RNA seq

Expression Localization Expression Localization

Vagina – NA + NA

Cervix +++ glandular cells +++ Smooth muscle cells, squamous epithelial cells, glandular cells

Uterus – NA + Smooth muscle cells, stromal cells, glandular cells

Oviduct – NA – NA

Ovary – NA + Smooth muscle cells, stromal cells

Testis – NA + Cells in seminiferous ducts

Epididymis – NA + Smooth muscle cells, glandular cells

Prostate – NA + Glandular cells, smooth muscle cells
*All data was taken from the Human Protein Atlas [https://www.proteinatlas.org/ENSG00000148346-LCN2, last accessed on 21.3.2024]. IHC, immunohistochemistry; NA, not applicable; IHC,
immunohistochemistry; RNA seq, RNA sequencing. Symbols mean: -, no expression; +, low expression; +++, strong expression.
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3 LCN2 in the male
reproductive system

3.1 Male reproductive tract

The male reproductive system consists of external genitals such

as penis, scrotum, and testes and the internal organs, including the
Frontiers in Endocrinology 06
vas deferens, urethra, and prostate gland. The interaction of the

individual parts is controlled by the hypothalamic-pituitary-

gonadal hormone axis and is essential for male fertility. Only a

brief overview is given here, since the various processes are very

complex and precisely regulated and are explained elsewhere (53,

54). The male reproductive organs have various functions including

production of testosterone, spermatogenesis, sperm maturation and

–storage, and the release of the sperm. The testes have both an
FIGURE 1

Schematic representation of LCN2 expression in the main components of the female reproductive system. The right side of the figure displays the
primary compartments of the mouse female reproductive tract, including the ovary (O), oviduct (Ov), uterus (U), and vagina (V). The left side of the
figure depicts a scheme of immunohistochemical staining of LCN2 in different parts of the female reproductive system based on previous research
and our own findings using the anti-LCN2 antibody AF3508 from R&D Systems. Cells shown in shades of pink and purple indicated a lack of LCN2
expression, while cells with brown staining indicate positive LCN2 expression. The ovarian stroma consists of epithelial cells, fibroblast-like cells and
smooth muscle cells. Growing ovarian follicles contain various cell types, including oocytes surrounded by granulosa and theca cells. Only cells in
the Corpus luteum, which form from cells remaining in the pre-ovulatory follicle, were positive for LCN2. In both the oviduct and uterus, the luminal
epithelium displayed positive staining for LCN2, while stromal cells remained unstained. Additionally, the glandular uterine epithelium showed
positive LCN2 expression. In vaginal tissue, positive LCN2 staining was observed in several cells of the surface epithelium and stroma
(lamina propria).
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endocrine function (e.g., testosterone production) and an exocrine

function (spermatogenesis). Sperm maturation and storage occur in

the epididymis. The sperms are transported via the Vas deferens to

the prostate and urethra. The prostate gland produces the fluid

secretions that support the sperms. Both sperm and urine from the

bladder are excreted through the urethra to the outside via the

penis. It is important to keep in mind that there are various

differences in the male reproductive tract between species, such as

gross anatomy and histology. Compared to humans, for example,

rodents have a multilobed prostate and additional glands (54).
3.2 LCN2 expression in the male
reproductive system

According to Human Protein Atlas (https://www.proteinatlas.org/,

last accessed on 21.3.2024), Lcn2mRNA expression was not detected in

the testes, epididymis, and seminal vesicles, while only low expression is

reported in healthy prostate. The data correspond to the study by Friedl

and co-workers who analyzed the expression of the LCN2 in the

human prostate gland and found strong expression in glandular foci

and a positive signal in epithelial cells (40). Furthermore, RNA dot-blot

hybridization with a probe containing the LCN2 cDNA sequence

showed specific expression in human prostate tissue (39). To date,

no further data are available on the physiological expression and

function of LCN2 in the male human reproductive tract.

In contrast to the limited data available on human reproductive

tissues, there are some studies on rodent models that investigated

LCN2 in different parts of the male reproductive system.

Chronologically, Chu and colleagues in 1996, were the first to

mention LCN2 in the male reproductive tract (26). Northern blot

analysis of various tissues of adult mice revealed a strong expression of

Lcn2 in the epididymis, but not in the testes, prostate, seminal vesicles,

or coagulating glands (26). Four years later, the group confirmed their

findings by immunolocalization andNorthern blot analysis (37). LCN2

was expressed in epithelial cells and the lumen of mouse epididymis

(37). Both the mRNA and the LCN2 protein were already detectable in

2-week-old mice and remained at a constant level during the observed

period (up to 12-weeks). Interestingly, a decreasing gradient of LCN2

expression was detected from the caput to the caudal region of the

epididymis, as well as its association with sperm. The finding was

confirmed by another research group, who detected the presence of

LCN2 in the caput region of the epididymis via immunolocalization

(38). In another study, it was proposed that LCN2 is responsible for

internalization of the protein–ligand complex by spermatozoid cells

(55). Most notably, LCN2 has been reported to serve as a physiological

mechanism for the delivery of ferric ion to epididymal spermatozoa

(55). Taking into account the findings, it was concluded that LCN2 is

an important component in spermatozoa processing.

In the initial studies mentioned above on LCN2 in the male

reproductive tract, no expression was detected in the testes, but the

studies of the following years showed contrasting results. To better

classify the ambiguous results, the histological structure and

function of the testes are briefly described. Histologically, testes

consist of tubular glands covered by the tunica albuginea (54). They

comprise testicular tubules (seminiferous tubules), including Sertoli
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cells and germ cells (spermatogonia, spermatocytes, spermatids)

and the interstitial compartment with the endocrine Leydig cells

(54). Sertoli cells function as the main cells required for maturation

and differentiation of germ cells (54).

Tanaka and colleagues found contrasting results regarding Lcn2

expression in murine testes. Northern bot analysis showed no

expression in wild type mice from 19.5-dpc up to 8 weeks (32).

In the same study, Lcn2 expression was determined in germ cells

and somatic cells via RT-PCR after fluorescence-activated cell

sorting of testicular gonadal cells from wild type (13.5-dpc and 3-

week-old) mice (32). It was assumed that the somatic cells are

mainly Sertoli cells, but no Leydig cell markers, which also belong to

the somatic cells, were examined (32). A subsequent study by the

same group showed, that primary Sertoli cells, obtained from the

testes of 7-day-old mice through enzymatic digestion followed by

magnetic activated cell sorting, exhibited undetectable levels of Lcn2

(33). Additionally, they reported that its expression in juvenile

primary murine Sertoli cells is highly dependent on germ cells,

more specifically spermatogonial cells (33). The freshly isolated

primary Sertoli cells were positive for Lcn2, but loose expression

levels when cultured for 1 week alone but not in coculture with

primary spermatogonial cells. Interestingly, in vitro treatment of the

Sertoli cells with spermatogonial cell-conditioned medium caused

nuclear factor-B (NF-kB) pathway mediated transcription of the

Lcn2 gene (33), providing first insights into the signaling

mechanisms responsible for LCN2 expression in the testes.

Moreover, it was shown that Lcn2 is regulated in a different

manner in testicular cells compared to inflammatory immune

cells, as commonly known inducers (Interleukin-1b and

lipopolysaccharide) fail to induce Lcn2 in an immortalized

Sertoli-B cell line (33). Furthermore, transcriptional regulation of

the Lcn2 gene in juvenile Sertoli cells was independent of IkBz (33).
In 2009, it was speculated that artificially generated

electromagnetic fields (EMF) affect sperm motility and could

affect LCN2 expression in mice (34). This study provides further

insights into the expression of LCN2 on mRNA and protein level in

healthy testes. Total testicular mRNA, isolated from untreated adult

8-week-old mice, showed strong Lcn2 expression demonstrated by

RT-PCR (34). When mice were exposed to a 3 mT (50 Hz) magnetic

field (for 6 days a week and 4 hours a day) for 8 weeks, Lcn2mRNA

expression and protein levels decreased significantly (34).

Mechanistically, it was discussed that LCN2 is involved in EMF-

induced apoptosis in germ cells.

Years later, a research group analyzed the pattern of Lcn2

expression with increasing age in mice and provided the first

evidence for Lcn2 in murine Leydig cells (35). In situ

hybridization demonstrated that Lcn2 levels show an age-

dependent increase in testes from day 1 to 8 months in Leydig

cells, then reduce by the twelfth month, portraying Lcn2 as a

developmentally regulated gene (35). However, while that study

detected LCN2 protein expression in Leydig cell, it reported an

absence of LCN2 in Sertoli and germ cells (35).

A study by De La Chesnaye and coworkers in 2018 studied

LCN2 for the first time in adult rat testes and reported positive

expression solely in germ cells (42). In addition, the mRNA

expression profile and cellular location of LCN2 were analyzed in
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gonads collected from fetal rats at 21 days post-coitum, as well as

neonatal rats at 0, 2, 4, 6, 12, 20 and 30 postnatal days (42).

Interestingly, expression in testes collected at all stages was lower

than in ovaries of female rats. In this study, the expression of the

LCN2 receptor SLC22A17 was shown in germ cells at different

developmental stages (42). On the contrary, a consecutive study

done by the same group in 2020, reporting detectable LCN2

expression in Sertoli and Leydig cells (56). Although both

publications contain manufacturer information on the antibody

used (which was the same), only one of the studies provides

information on the catalog number, therefore, it cannot be

completely ruled out that different antibodies were used.

Unfortunately, this discrepancy is not addressed in the study, so

it is not possible to definitively say where exactly LCN2 is expressed

in the rat testes.

Recently, studies observed high expression of Lcn2 in adult Leydig

cells via in situ hybridization (36). This is in line with the most recent

publication by our group studying LCN2 in reproductive tissues. There,

moderate expression of Lcn2mRNA and protein expression was found

in the testes of adult mice (31). In addition, immunolocalization

confirmed positive signals in interstitial Leydig cells (31).

Furthermore, this study found Esr1-dependent expression of LCN2,

since it was greatly increased in Esr1-deficient testes (31).

In summary, it can be concluded that the expression and function

of LCN2 in the male reproductive tract are not yet fully understood.

Although research suggests that LCN2 plays a vital role in sperm

maturation, to understand the exact mechanisms by which LCN2

exerts its functions, a detailed screening of LCN2 expression in different

compartments with a well-established antibody (such as anti-LCN2

AF3508 from R&D Systems) would be essential. Therefore, we have

schematically summarized the immunohistochemical localization of

LCN2 expression in the male reproductive tissues (of mouse testis and

epididymis) in Figure 2 that we have found in unpublished work. It is

important to understand which cells express LCN2 and which putative

receptors are essential. In this way, the molecular mechanisms of its

action can be finally uncovered.
4 LCN2 in the pathology of female
reproductive tissue

The presented article summarizes that there are only limited,

partially ambiguous studies on the physiological expression and

function of LCN2 in the reproductive tract. However, there are

several studies that focus on LCN2 in different diseases and

pathologies of both male and female reproductive tracts. In the

following sections, LCN2 is examined in the context of various diseases.
4.1 Hormonal imbalance

Steroid hormones, especially estrogens, are essential players in a

variety of biological processes in the female reproductive tissue.

They enable folliculogenesis, successful ovulation, and mediate

proliferation and differentiation of uterine tissue (57). Studies
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show that the LCN2 promoter contains an estrogen-responsive

element and its expression can be controlled by estrogens (17). If

hormone levels are not in balance, hormone deficiency conditions

can occur, for example, hypogonadism or during menopause. Since

LCN2 is influenced by natural hormonal fluctuations of the estrous

cycle (27), it is likely that its expression is affected under such

conditions. In a study by Liu and co-workers, the dependence of

LCN2 on hormones was investigated using an ovariectomized

mouse model, which is a valuable tool for understanding estrogen

deficiency (16). In situ hybridization and Western blot analysis gave

evidence that estrogen is the main hormone for inducing LCN2

levels in uterine tissue (16). On the other hand, deletion of Esr1 in

mice, one of the receptors through which estrogens can mediate

signals, does not induce LCN2 in uterine epithelium (16). This is in

line with the findings of our recent study using Esr1-deficient mice

(31). Since the mice in the studies by Liu et al. had their ovaries

removed due to the experimental model (16), the authors were

unable to make any statement about the expression of LCN2 in the

ovary. Kessel et al. showed that the depletion of Esr1 in female mice

leads to a massive increase in LCN2 expression in the ovary (31).

Obesity affects not only LCN2 expression in adipocytes (58), but

also in the reproductive tract. A study using rats showed that

ovarian LCN2 strongly decreased in pups from obese mothers

compared with pups of mothers fed control diet (56). This

scenario was as well observed in rat testicles of pups from obese

mothers compared with control animals (56). However, the

molecular mechanisms of Lcn2 regulation are poorly understood,

but there is a general assumption that SLC22A17 and megalin play

essential roles (56). Further studies should aim to understand the

molecular mechanisms, which in turn will also allow conclusions to

be drawn about the physiological function of LCN2.
4.2 Polycystic ovarian syndrome (PCOS)

Hormonal imbalances, including a low level of estrogen and

high levels of testosterone, are common in patient with polycystic

ovarian syndrome (PCOS) (59). LCN2 is likely involved in PCOS as

obesity is linked to this condition (59) and LCN2 is known to be

strongly expressed by adipocytes (58). However, there are limited

studies on the subject, and existing data is inconclusive. As

previously reported, human LCN2 has the ability to form

complexes with MMP9 and regulate its function (3). A study

conducted on 80 subjects (40 healthy and 40 patients with PCOS)

reported lower serum levels of LCN2 as well as LCN2/MMP9

complex in PCOS patients (60). Another study found no

difference in serum concentration and activity of LCN2/MMP9

complex between the diseased and healthy groups (61). Sahin and

co-workers also found no difference in serum LCN2 levels between

patients with PCOS and control patients (62). On the contrary,

Cakal and colleagues reported increased serum levels of LCN2 in

woman with PCOS (30 patients) compared to body mass index-

matched controls (30 woman) (63). There are two studies that

report that LCN2 is not affected by PCOS, but that obesity in

patients with PCOS is associated with alterations of serum LCN2
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levels (64, 65). Loss of weight significantly decreases LCN2 levels in

obese/overweight PCOS patients (64, 65). Possible hormonal

fluctuations in patients of these studies are a possible reason for

the different results, suggesting the notion that hormonal

differences might affect LCN2 or activity of the LCN2/MMP9

complex (61). More comprehensive studies on urine, blood, and

tissue are needed to understand the role of LCN2 in PCOS.
4.3 Issues in pregnancy

Shortly after the discovery of LCN2, it became obvious that it

plays a role in fertilization, implantation, and pregnancy in mice

(13, 23, 24, 26).
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However, LCN2 has also been implicated in pregnancy

complications in humans. Meta-analysis comparing women with

healthy pregnancy and preeclampsia (PE) detected that high

circulating LCN2 is associated with PE, which may be

independent of the trimesters for blood sampling and the severity

of PE (66). In line, Stepan and colleagues found that maternal LCN2

serum levels increased significantly in PE patients (67).

Based on these findings, it is likely that elevated circulating

LCN2 expression is associated with increased vascular and

metabolic risk in patients with PE. Furthermore, meta-analysis of

data comparing gestational diabetes mellitus (GDM) patients to

parturient with normal glucose tolerance identified higher blood

LCN2 in GDM patients (68). Proteomics analysis of amniotic fluid

obtained from patients diagnosed with a sonographic short cervix
FIGURE 2

Schematic representation of LCN2 expression in the main components of the male reproductive system. The right side of the figure shows the main
components involved in sperm maturation and development in the murine male reproductive tract, namely the testis (T) and epididymis (E) which
can be histologically divided into the caput (Cap), corpus, and cauda (Cau) regions. The left side of the figure is a schematic representation of
immunohistochemical staining of LCN2 in the different compartments using the anti-LCN2 antibody AF3508 from R&D Systems. Cells shown in
shades of pink and purple represent cells negative for LCN2, while cells with brown staining are positive for LCN2. Spermatogenesis begins gradually
in the germ cells located in the seminiferous tubules of the testis. Positive staining for LCN2 was only observed in interstitial located, hormone
producing Leydig cells. The spermatozoa (sperm), produced in the testis, are transported for maturation and storage to the epididymis. In the caput
epididymis, a high expression of LCN2 is visible in the lumen where sperm maturation occurs. A decline in LCN2 expression can be observed when
comparing sperm in the lumen of the cauda to the caput epididymis segment.
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(< 25 mm) revealed a proteomic signature of increased risk of

imminent delivery containing increased LCN2 protein (69).
4.4 Infection and inflammation

During early pregnancy, stimulation of uterine tissue with

lipopolysaccharide or injection of Escherichia coli leads to a

strong induction of LCN2 (16). In addition, LCN2 is secreted in

the vaginal fluid and is involved in the vaginal immune response

(41). There is a positive correlation between the increase in

leukocyte infiltration and the level of LCN2 in the vaginal fluid of

woman suffering from vaginal inflammation (70). Interestingly,

LCN2 expression was found to be increased during vulvovaginal

candidiasis infection, but decreased in bacterial vaginosis, two

common vaginal disorders in reproductively aged women (41).

The differences may be related to different microbiota composition

in the different disorders and the authors speculate that low levels of

LCN2 might be favorable for bacterial processes that use

siderophores to obtain iron for proliferation (41). Another study

in connection with group B Staphylococcus (GBS) infections during

pregnancy assumes that LCN2 prevents iron uptake by GBS and

thus restrict their growth (71). The immune defense activity of

LCN2 in the vagina appears to be controlled by hormones, as

treatment with topical estrogen concentrations led to an increase in

LCN2 in vaginal douche samples of patients and in immortalized

vaginal epithelial cell lines (72). All these findings shed light on the

antibacterial activity of LCN2 in the female reproductive tract,

which has previously been found in non-reproductive tissues (52).
4.5 Endometriosis

When endometrial-like tissue develops outside the uterine cavity, it

is often associated with pelvic pain and infertility (73). This condition is

known as endometriosis and often affects women in reproductive age

(73). Nevertheless, the exact cause of this condition is not fully

understood, but is associated with pro-inflammatory processes (73).

Consistently, there is a significantly higher expression of serum LCN2

in patients with endometriosis compared to the control group (73).

This increase was accompanied by increased quantities of the tumor

marker cancer antigen 125 and the inflammatory C-reactive protein

(74). In endometriosis patients, there was not only a systemic increase

in LCN2, but also locally in endometrial cysts, as demonstrated by

immunohistochemical staining (74). However, others did not find

significant differences in serum LCN2 levels in endometriosis patients

compared to the control group or between different stages of the

disease, but the MMP9/LCN2 complex ratio was higher (75). Since

endometriosis patients have an almost three times higher incidence of

developing cancer, it is also likely that LCN2 is involved in the

transition (76). Depending on their findings, Yamada and co-

workers speculated that LCN2 is involved in the progression of

ovarian carcinoma resulting from endometriosis (77).

Furthermore, a behavioral study showed that induced

endometriosis in mice led to increased depression and is also

reflected in the induction of the expression of various targets in
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the brain, including the induction of the LCN2 protein and mRNA

in the amygdala in females with endometriosis (78). A study in mice

that dealt with the molecular interactions that LCN2 plays in

endometriosis found that LCN2 expression induces epithelial-to-

mesenchymal transition (EMT) in stressed primary uterine

endometrial cells promoting onset of endometriosis (79). More

studies are essential to clarify how LCN2 is related to the initiation

and progression of endometriosis. It would also be informative to

investigate whether and how LCN2 fluctuates during the menstrual

cycle, which has not been considered in existing studies and could

possibly explain the differences seen.
5 LCN2 and cancers of the female
reproductive system

Gynecological cancers can originate from various sites in the

normal tissues of the female reproductive tract (80). LCN2

expression has been shown to be up-regulated in ovarian, cervical

tissue, and endometrial cancer, as well as human ovarian cancer cell

lines [https://www.proteinatlas.org/, last accessed on 21.3.2024].
5.1 Ovarian cancer

Hao and co-workers found an up-regulated expression of LCN2

in ovarian cancer patients, as well as in different ovarian cancer cell

lines compared to normal tissue and cell lines (81). Using human

ovarian cancer cell lines, the study provided evidence on the

mechanism of LCN2 signaling ovarian cancer (81). LCN2

promotes tumor progression in ovarian cancer cells by activating

the ERK/GSK3b/b-catenin signaling pathway (81).

Interestingly, LCN2 could be a suitable non-invasive biomarker

for ovarian cancer as it is elevated not only in tissue, but also in

serum and urine of patients (82–84). The expression of

immunoreactive NGAL (irNGAL) in ovarian tumors changes

with disease grade and this change is reflected in the

concentration of NGAL/LCN2 in peripheral blood, which allows

LCN2 to be used as a biomarker of tumor progression (83).

Additionally, LCN2 has been detected among the most highly up-

regulated genes in ovarian serous papillary carcinomas (85).

Furthermore, LCN2 has been reported to increase intracellular

iron levels in ovarian cancer cells but decrease oxidative stress,

suggesting antioxidant capacity and allowing cancer cells to survive

in stressful endometriotic cysts (77). Taken together, the data clearly

demonstrate a positive correlation of LCN2 with tumor progression

and targeting LCN2 or its signaling pathways could be a therapeutic

strategy for targeting ovarian cancer.
5.2 Endometrial cancer

LCN2 mRNA and protein expression were strong in human

patients with endometrial hyperplasia and, suggesting that it is

involved in the tumorigenic process leading to endometrial

carcinoma (86). Furthermore, there is a gradual increase in LCN2
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in patients with endometrial hyperplasia and carcinoma (87).

Consistent with this, LCN2 was found to be a component of the

key signature in the onset of endometrial cancer in the glandular

uterine epithelium, as its expression increased in precancerous

atypical endometrial hyperplasia (88). A study with 85 high-grade

endometrial cancer tissue samples showed strong LCN2 expression

using immunohistochemical detection (88). Multivariate analysis

revealed a positive correlation between LCN2 expression and

shorter overall survival of these patients (89). Others found that

increased LCN2 tissue expression is associated with aggressive

characteristics and a poor prognosis in women with endometrial

cancer (90). In line, immunohistochemical localization of LCN2 (as

well as its receptor SLC22A17) was indicated LCN2 to be a

prognostic factor in endometrial cancer (91). In endometrial

cancer, there is not only a strong expression of LCN2 in the

tissue, but also in the serum of the patients. In a study that

included 123 women, out of whom 52 had endometrial cancer,

significantly lower median serum levels of LCN2 were found in a

group of patients with normal endometrium compared to the

endometrial cancer group (92).

In vitro experiments confirmed the role of LCN2 in enhancing

endometrial carcinoma cell survival and migration by mediating

cytokine production (93). In addition, Lin and colleagues used the

human endometrial carcinoma cell line RL95-2 to gain new insights

into the LCN2 signaling mechanism and found that it is induced in

a time-dependent manner by glucocorticoid stimulation

(dexamethasone) and under starvation conditions (94).

Furthermore, forced expression of LCN2 led to increased

proliferation and invasion in the human endometrial cancer cell

lines Ishikawa and HEC1B (87). A study by Miyamoto and co-

workers provided information on signaling pathways of LCN2 in

endometrial cancer (95). Their results showed that LCN2 promotes

the survival of endometrial cancer cell lines via the PI3K pathway in

a stressful environment and in an iron-dependent manner (95).

Furthermore, others found that stimulation with LCN2 protein

purified from mouse uterine fluid induced apoptosis in the RL95-2

endometrial cancer cell line (94). However, estrogen could not

induce Lcn2 expression in these cells (94). LCN2 expression is

speculated to be involved in balance between cell death and

proliferation in uterine tissue remodeling and is important in the

progression of endometrial cancer.
5.3 Cervical cancer

Persistent infection with the human papilloma virus is a risk

factor for the development of cervical cancer, including cervical

adenomas and cervical squamous carcinomas (96). By analyzing 90

clinical specimens, it was found that elevated LCN2 tissue

expression in cervical cancer is correlated with tumor metastasis

and cancer progression (97). In addition, serum levels of LCN2 were

also increased significantly patient with cervical cancer, suggesting

it as a potential non-invasive biomarker for the diagnosis and

prognosis of cervical cancer (97, 98). In vitro and in vivo studies

in a xenograft model confirmed tumor-promoting role and
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provided evidence that LCN2 mediates cervical cancer through

the EMT signaling pathway (97).

All mayor findings on LCN2 expression and role in female

reproductive tract cancers have been summarized in a tabular form

in Table 3.
6 LCN2 and the pathology of the male
reproductive tract

LCN2 is a known acute phase protein in non-reproductive

tissues (52). Interestingly, a study examined Lcn2 in the context of

uropathogenic infections (99). In murine cauda epididymis,

Lcn2 mRNA was significantly increased after infection with

uropathogenic E. coli, highlighting the antibacterial activity of

LCN2 in reproductive tissues as seen in female uterine tissue

(16, 99).

Male infertility can be caused by diseases of the testicles

themselves or impaired testicular function, including defects in

spermatogenesis, Leydig cell degeneration or poor sperm quality

(100). One study from 2017, detected a strongly increased

expression of Lcn2 expression in the testes in mice as a

consequence of induced infertility by busulfan treatment or

bilateral cryptorchidism (35). Although the study did not examine

molecular signaling mechanisms, the authors speculated that LCN2

is involved in germ cell apoptosis. Tanaka and colleagues conducted

a study on the involvement of spermatogonia in testicular gene

regulation. They discovered that germ cell-deficient mice

completely lose the expression of certain genes, including Lcn2

(32). Furthermore, they examined Lcn2 expression in a juvenile

spermatogonial depleted (jsd/jsd) mouse mutant, which has severe

defects in spermatogonial differentiation (seminiferous tubules

containing only type A spermatogonial germ cells and Sertoli

cells), and in an artificial cryptorchid model (32). Interestingly,

both models exhibited high expression of Lcn2 in the testis,

suggesting a potential relationship between Lcn2 and germ cell

apoptosis (32).

Kessel et al. analyzed LCN2 expression in testes from adult

infertile Esr1-deficient mice (31). Interestingly, LCN2 protein

expression was strongly increased in these animals compared with

age-matched WT animals (31). These studies provide evidence that

LCN2 has not only a physiological but also a pathophysiological

role in the testes. However, it is mandatory to understand the

underlying molecular mechanism, which likely involves estrogen

receptor signaling.

Apart from its role in benign prostate diseases and the

development and progression of prostate cancer (10, 101), LCN2

has hardly been studied at all in diseases of the male reproductive

tract. In 2005, a study analyzed adult male germ cell tumors and

found a high increase in LCN2 in teratomas without seminomas but

not in other subtypes, classifying it as an suitable predictor (102).

For a more comprehensive understanding, it is also important

to investigate the expression and localization of LCN2 in healthy

human testes and in various diseases such as testicular cancer.
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TABLE 3 Expression levels of LCN2 in cancers of the human female reproductive tract.

Cancer type Specimen/model
LCN2 expression

and effect*
Reference

Endometrial

Cancerous tissue ↑
https://www.proteinatlas.org/,
last accessed on 21.3.2024

Endometrial hyperplasia, cancerous tissue ↑ (86, 87)

Precancerous atypical endometrial hyperplasia tissue ↑ (88)

Cancerous tissue
↑, correlation of LCN2 and
shorter overall survival

(89)

Cancerous tissue
↑, correlation of LCN2

expression with aggressive
features and poor prognosis

(90)

Cancerous tissue
↑, LCN2 can be used as

prognostic marker
(91)

Serum of cancer patient
↑, LCN2 can be used as non-

invasive biomarker
(92)

Carcinoma cell line (RL95-2)
LCN2 treatment promoted

cancer cell survival
and migration

(93)

Carcinoma cell line (RL95-2)
Dexamethasone and starvation
conditions upregulate LCN2

(94)

Carcinoma cell line (HHUA, Ishikawa, HEC1A,
HEC1B, KLE, RL-95-2

LCN2 overexpression increased
cancer cell proliferation

and invasion
(87)

Carcinoma cell line (HHUA, HEC1A, HEC1B, KLE,
RL95-2)

LCN2 overexpression promotes
cancer cell survival in
stressful environment

(95)

Carcinoma cell line (RL95-2)

LCN2 isolated from murine
uterine fluid induces apoptosis

of human endometrial
cancer cells

(94)

Ovarian

Cancerous tissue ↑
https://www.proteinatlas.org/,
last accessed on 21.3.2024

Carcinoma cell lines (OVCAR-5, SNU-8, RMG-I,
OVKATE, EFO-21)

↑
https://www.proteinatlas.org/,
last accessed on 21.3.2024

Cancerous tissue, carcinoma cell lines (CAOV3, ES2,
OVCAR3, SKOV3)

↑, LCN2 mediates
tumor progression

(81)

Cancerous tissue, serum, urine
↑, LCN2 can be used as non-

invasive marker
(82–84)

Ovarian serous papillary carcinomas ↑ (85)

Ovarian clear cell carcinoma
↑, LCN2 promotes cancer

cell survival
(77)

Cervical

Cancerous tissue ↑
https://www.proteinatlas.org/,
last accessed on 21.3.2024

Cancerous tissue, serum, cell lines (C33A)
↑, correlation of LCN2 with

metastasis and
cancer progression

(97)

Serum of cancer patient
↑, LCN2 can be used as non-

invasive marker
(98)
F
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*↑ indicates an increased expression during the course of a specific pathology.
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7 Conclusion

The presence of LCN2 has been confirmed in both male and

female healthy reproductive systems by multiple studies. However, the

available studies show that LCN2 has so far been studied much more

intensively in a pathological context than in a physiological context.

Nevertheless, we can speculate about the different functions of LCN2 in

the female and male reproductive tract. Although it appears that in the

female reproductive system LCN2 is involved in tissue reorganization

during the menstrual cycle and pregnancy, the mechanism of its action

and the cells responsible for its production have not yet been

determined. However, it has been shown to serve as a component of

the maturation and motility component of sperm in male reproductive

organs. Furthermore, several studies report the deregulation of LCN2

in numerous reproductive tissue pathologies, including fertility defects.

Considering that the literature overview provides clear evidence that

LCN2 is a key component in fertility, and that no information on the

actual mechanisms of its action is currently available, further research

on this topic would be beneficial to understand its precise function in

the reproductive system, as well as its therapeutic potential.
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