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Endometriosis is a chronic inflammatory gynecological disease, which

profoundly jeopardizes women’s quality of life and places a significant medical

burden on society. The pathogenesis of endometriosis remains unclear, posing

major clinical challenges in diagnosis and treatment. There is an urgent demand

for the development of innovative non-invasive diagnostic techniques and the

identification of therapeutic targets. Extracellular vesicles, recognized for

transporting a diverse array of signaling molecules, have garnered extensive

attention as a novel mode of intercellular communication. A burgeoning body of

research indicates that extracellular vesicles play a pivotal role in the

pathogenesis of endometriosis, which may provide possibility and prospect for

both diagnosis and treatment. In light of this context, this article focuses on the

involvement of extracellular vesicles in the pathogenesis of endometriosis, which

deliver information among endometrial stromal cells, macrophages,

mesenchymal stem cells, and other cells, and explores their potential

applications in the diagnosis and treatment, conducing to the emergence of

new strategies for clinical diagnosis and treatment.
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Introduction

Endometriosis (EMs) is a chronic inflammatory condition, characterized by the

presence of abnormal tissue similar to the endometrium outside the uterine cavity,

besetting approximately 10% of women of reproductive age (1). Common symptoms

comprise secondary dysmenorrhea, deep dyspareunia (pain in the upper vagina during

sexual intercourse), chronic pelvic pain, and infertility (2).

The pathogenesis of EMs remains uncertain and encompasses various pathogenic

pathways, including retrograde menstruation, benign metastases, immune dysregulation,

coelomic metaplasia, hormonal dysregulation, involvement of stem cells, and alterations in

epigenetic regulation (3, 4). Laparoscopy with histopathological confirmation has been

considered as the widely accepted standard for diagnostic assessment (2, 5). Nevertheless,
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recent evidence indicates that the prevalence of occult EMs may be

as high as 39% in women who were diagnosed as negative during

laparoscopy (6). The management of EMs is typically categorized

into conservative approaches, hormonal therapies, and surgical

treatments. However, the clinical benefits are often limited.

Consequently, there is an urgent demand for comprehensive

research into the pathogenesis of EMs, alongside the exploration

of innovative non-invasive diagnostic techniques and the

identification of effective therapeutic targets.

Cell-cell communication has been demonstrated to play a

critical role in various physiological processes, including cell

proliferation, development, and differentiation (7). Recent studies

have suggested that extracellular vesicles (EVs) serve as a novel

mechanism mediating cellular crosstalk within or among tissues.

An expanding body of research indicates that EVs play a significant

role in disease progression, diagnosis, and treatment (8).

Simultaneously, EVs are present in body fluids and show promise

for use in ‘liquid biopsy’, having been successfully separated from

blood, urine, and saliva (9). There is potential for EVs to serve as a

reliable, non-invasive diagnostic indicators for diagnosis of various

pathological conditions (7, 10).
Biogenesis of EVs

EVs constitute a heterogeneous group of membrane-structured

vesicles, characterized by lipid bilayer-encapsulated nanoparticles,

carrying various substances such as nucleic acids, proteins, lipids,

and metabolites. They are actively released by nearly all types of

cells and can be found in various human body fluids, including

blood, urine, saliva, and ascites. EVs function as key players in

cellular crosstalk, enabling the delivery of messages over long

distances or in close proximity (8, 11, 12). According to the

International Society for EVs, EVs can be categorized into

medium/large EVs (>200 nm) and small EVs (<200 nm) based on

their physical properties (13). Based on their origin, size, biogenesis,

and function, EVs are classified as exosomes, microparticles,
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microvesicles (MVs), apoptotic bodies, ectosomes, and oncosomes

(14). Figure 1 overviews the biogenesis of different types of EVs.

Exosomes are relatively small EVs (about 50-150 nm) released

by almost all types of cells, which are produced through the

endocytosis endosomal pathway (14). The biogenesis of exosomes

begins with the inward budding of endosomal membranes,

resulting in the formation of early endosomes. These early

endosomes subsequently progress into late endosomes.

Throughout this maturation process, the endosomal membrane

undergoes invagination into the lumen, leading to the development

of intraluminal vesicles (ILVs) that can encapsulate cytoplasmic

molecules. In the course of this process, cytoplasmic proteins,

nucleic acids, and lipids are sorted into ILVs. Late endosomes

enriched with significant quantities of ILVs are termed

multivesicular bodies (MVBs). These MVBs can either merge

with lysosomes, leading to degradation, or with the plasma

membrane, resulting in the release of ILVs. Once ILVs are

released into the extracellular space, they are known as exosomes

(14–18).

The process of MVs biogenesis is much less elucidated

compared to that of exosomes. MVs typically range from about

100 to 1000 nm and can be generated in various cell types via direct

outward budding and fission of the plasma membrane (15, 16, 19).

The shedding process of MVs is related to the molecular

rearrangement of the plasma membrane, which, in turn, is

affected by protein, lipid, and Ca2+ levels. Elevated intracellular

Ca2+ levels or the liberation of Ca2+ from the endoplasmic reticulum

can trigger the activation of Ca2+-dependent enzymes, leading to

alterations in the asymmetric phospholipid distribution of the

plasma membrane and depolymerization of the actin

cytoskeleton, thus promoting MVs shedding (16, 20).

Apoptotic bodies have the largest diameter, ranging from 1000

to 5000 nm. They are fragments of apoptotic cells composed of

phosphatidylserine-exposing plasma membrane and cytoplasmic

materials (21). In the final stage of apoptosis, cells undergo division

into variable numbers of apoptotic vesicles containing a variety of

cellular components, including micronuclei, chromatin remnants,
FIGURE 1

The biogenesis of different types of EVs.
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cytoplasmic fractions, degraded proteins, and DNA fragments (22).

The formation of apoptotic bodies involves the rupture of the

cytoskeleton beneath the plasma membrane, resulting in

apoptotic membrane blebbing. Disruption of phospholipid

asymmetry in the plasma membrane triggers membrane blebbing,

apoptotic membrane protrusion, and finally compression of nuclear

vesicle fragments into a semilunar shape to release apoptotic bodies

(23). Following their formation, apoptotic bodies are engulfed by

phagocytes, including neutrophils, macrophages, and dendritic

cells, for final degradation (24).

The biogenesis of ectosomes, typically ranging in diameter from

50 to 500 nm, diverges from that of other EVs. In ectosomes, cargo

secretion takes place through the accumulation of cargo at the

cytosolic surface of the plasma membrane. Subsequently, ectosomes

are released into the extracellular matrix through the outward

budding of the cell membrane (25). The structure of ectosomes

relies on local microstructure domains assembled in the plasma

membrane of the ectosomes. The biogenesis of ectosomes is

attributed to the rearrangement of asymmetric membranes

composed of phospholipid layers, which undergo reorganization

facilitated by Ca2+-dependent enzymes (14).

Oncosomes are vesicles with diameters ranging from 100 to 400

nm, formed by the protrusion of the plasma membrane of tumor

cells. They are typically associated with cell motility, and their

release is regulated by various structural proteins that contribute to

plasma membrane extrusion and rupture (26). Tumor cells

spontaneously release oncosomes containing metalloproteinases

with pro-immune properties, which carry unique substances

delivering signals to specific target cells and serve as major

regulators of the tumor microenvironment (14).

During the formation of EVs, cellular components such as

DNA, RNA, proteins, and lipids are sorted into EVs and function

as signaling molecules when delivered to target cells. Released EVs

engage in communication with the target cell through ligand-

receptor interactions, fusion, or receptor-induced endocytosis.

This interaction facilitates the transfer of EVs components into

the receptor cell, thereby inducing signaling pathways within the

target cell. Notably, EVs are secreted in both physiologic and

pathologic conditions, with contents corresponding to the state of

their donor cells. This unique property endows them with the

potential to be utilized as diagnostic molecules and therapeutic

targets for various diseases.
EVs are involved in mediating EMs

EVs can be released by the vast majority of cell types

constituting the human body. These vesicles contain a diverse

array of cell type-specific content, extensively identified as RNA,

proteins, lipids, and noncoding RNAs, including microRNAs

(miRNAs), long noncoding RNAs (lncRNAs), and transfer RNA-

derived small RNAs (tsRNAs). tsRNAs can be categorized into two

primary groups: tiRNAs (tRNA halves) and tRFs (tRNA-derived

fragments). There is growing evidence of differences in the cargo

carried by EVs at multiple sites in patients with EMs.
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To determine the role of EVs in EMs, studies have been

conducted to analyze EVs in human samples. At least 1449

mRNAs, 938 lncRNAs, 39 miRNAs, and 61 competing

endogenous RNAs (ceRNAs) were identified to display differential

expression patterns in EVs derived from endometrial stromal cells

(ESCs) of patients without EMs compared to ESCs of patients with

EMs, including ESCs from ovarian endometrioma and those from

eutopic endometrium (27). Another study found 63 up-regulated

and 45 down-regulated tiRNAs and tRFs in ectopic tissue EVs from

EMs (28). It was also found that lncRNAs MEG8, SNHG25,

LINC00293 and RP5-898J17.1 were down-regulated, while

lncRNAs LINC00998, PVT1, and RP4-561L24.3 were significantly

up-regulated in ectopically diseased EVs from EMs patients (29).

In addition to ectopic tissues, EVs exhibited differential miRNA

expression in body fluids of EMs patients. Twenty-four miRNAs

were observed to show varying enrichment levels in serum EVs of

EMs patients, with miR-320a and miR-22-3p significantly

upregulated (30). In peritoneal fluid EVs from EMs patients,

thirteen EVs miRNAs were differentially expressed (miRNA-

1908,-130b,-451a,-486-5p,-4488,-432,-342,-425,-505,-6508,-145,-

365a, and -365b) and were involved in immune alterations and cell

proliferation (31). Fourteen miRNAs were found to be differentially

expressed in tubal fluid EVs from tubal EMs patients, with four up-

regulated and 10 down-regulated miRNAs (32). MiR-210-3p, miR-

20b-5p, miR-625-5p, miR-342-5p, miR-155-5p, miR-146A-5p, and

miR-130b-3p were up-regulated in uterine lumen aspirates, while

miR-335-3p and miR-132-5p were down-regulated (33). In

leukorrhea EVs, both miR-202-3p and miR-202-5p were notably

upregulated, each playing a role in advancing various diseases,

including cancer (34).

The level of miRNAs can be differently regulated in EVs from

different tissues of the same patients. A study found that 21

miRNAs were differentially expressed in plasma-derived EVs

from EMs patients compared to healthy control plasma EVs, with

miR-375, miR-27a-3p , and miR-30d-5p significant ly

downregulated (29). However, miR-375 and miR-30d-5p were

notably downregulated in EMs ectopic endometriotic lesions

compared with normal endometrium, yet were found to be

upregulated when compared to matched eutopic endometrium

(29). Furthermore, miR-27a-3p demonstrated upregulation in

both EMs eutopic and ectopic tissues compared to control normal

endometrium (29).

In addition to the previously mentioned contents, the

microbiota composition of EVs in the peritoneal fluid of women

with EMs was found to be significantly altered. Diversity analysis

indicated notable differences between the two microbial

communities at the order, family, and genus levels. In the EMs

group, the levels of Acinetobacter, Pseudomonas, Streptococcus,

and Enhydrobacter were significantly higher compared to the

control group. Conversely, the amounts of Propionibacterium,

Actinomyces, and Rothia were significantly lower in the EMs

group than in the control group (35).

An increasing body of research highlights the significance of

EVs in EMs. EVs associated with EMs carry distinctive cargoes that

play a role in disease pathophysiology by influencing EMs cell

proliferation, immune escape, angiogenesis, and lesion invasion.
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EVs are released by all cells, facilitating the transfer of bioactive

components from donor cells to recipient cells. This process

mediates the exchange of information between cells. In the

context of EMs, ESCs, macrophages, and mesenchymal stem cells

(MSCs) engage in communication through EVs that carry specific

substances (36–38). These EVs mediate various signaling pathways,

ultimately promoting the progression of EMs. Figure 2 summarizes

the information exchange between ESCs via EVs. Figure 3

summarizes the information transfer among ESCs, macrophages,

and MSCs through EVs.

ESCs play a key role in the development of EMs by releasing EVs

containing specific substances that stimulate surrounding ESCs and

other recipient cells, thereby promoting angiogenesis, fibrosis, and

mediating EMs. For example, Abudula et al. found that EVs derived

from ESCs induced normal endometrial stromal cell migration,

angiogenesis, and upregulation of inflammatory cytokine

expression in ovarian cells (36). Li et al. found that EVs derived

from ectopic ESCs (eESCs) promote lymphangiogenesis (39). In the

peritoneal fluid, proinflammatory cytokines like interleukin (IL)-1b
and tumor necrosis factor-a actively inhibit the expression of

chicken ovalbumin upstream promoter-transcription factor II

(COUP-TFII) in eESCs. The downregulation of COUP-TFII leads

to upregulation of cyclooxygenase-2 (COX-2), which is responsible

for production of prostaglandin E2 that leads to secretion of vascular

endothelial growth factor (VEGF)-C (39). VEGF-C carried by EVs

spreads to bind with VEGFR2/R3 on lymphatic endothelial cells to

induce lymphangiogenesis toward endometriotic lesions (39).

Another study suggests that EVs-mediated miR-138 promotes

apoptosis through NF-kB/VEGF signaling pathway and induces

inflammation via the NF-kB signaling pathway (40).

Moesin, a protein associated with cell growth, motility, and

migration, exhibits up-regulation in EVs derived from eESCs. These

EVs, carrying moesin, are delivered to normal ESCs. Within these

recipient cells, moesin mediates the establishment of a “migration-

vascularization-inflammation” loop in the ectopic environment,

thereby promoting the progression of EMs (36). Sun et al.

discovered that EVs play a crucial role in the progression of EMs
Frontiers in Endocrinology 04
by promoting the co-recruitment of nerves and blood vessels,

inducing neurite outgrowth, and inhibiting neuronal apoptosis (41).

Long non-coding RNA (lncRNA) is a subgroup of non-coding

RNAs exceeding 200 nucleotides in length. They play a regulatory

role in gene expression through interactions with miRNAs,

mRNAs, or proteins. Recent studies have shown that lncRNAs

are essential for maintaining intracellular homeostasis and play a

crucial role in the development of EMs (42–44). lncRNA HOTAIR

has been reported to be associated with the progression of several

diseases (45, 46). A study found that HOTAIR is overexpressed in

ectopic endometrium (30). ESCs-derived EVs carrying HOTAIR

propagate to peripheral ESCs, targeting the miR-761/HDAC1 axis

to activate STAT3-mediated inflammation, which promotes ESCs

proliferation, migration, invasion, and angiogenesis (30). LncRNA

actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1)

is an oncogenic lncRNA that promotes proliferation, invasion, and

migration of tumour cells, and it has been demonstrated that

AFAP1-AS1 plays a part in the lesions of EMs (47, 48). Wang

et al. found that AFAP1-AS1 is highly expressed in eESCs, delivered

to the surrounding eESCs via EVs, and up-regulated BCL9

expression by binding to miR-15a-5p, which promotes

proliferation, migration, and invasion of eESCs (49). Antisense

hypoxia-inducible factor (aHIF) is a known angiogenesis-related

lncRNA. Qiu et al. found that aHIF is highly expressed in ectopic

tissues from EMs patients, transferred via EVs and regulated VEGF-

A, VEGF-D, and bFGF to promote angiogenesis (50). In addition,

Qiu et al. found that the expression of lncRNA-TC0101441 was

significantly up-regulated in ectopic endometrium. This lncRNA

was identified within EVs derived from eESCs with heightened

TC0101441 levels, exerting an impact on eESCs displaying

diminished TC0101441 levels. By regulating the related metastatic

proteins including N-cadherin, snail, slug, and TCF8/ZEB1, eESCs

adopt more pro-metastatic behaviours, ultimately promoting

migration and invasion of EMs (51).

Furthermore, miR-214-3p was observed to be significantly

down-regulated in ectopic lesions and stromal cells in a mouse

model of EMs. The miRNA was delivered to eESCs via EVs to
FIGURE 2

The information exchange between ESCs via EVs.
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inhibit the expression of connective tissue growth factor (CCN2),

thereby promoting the development of EMs. CCN2 acts as a

downstream target of transforming growth factor-b, and has been

associated with fibrosis (52).

Macrophages are highly diverse cells found in all tissues of the

body and play a crucial role in the pathophysiology of EMs. They

are critical for the growth, development, angiogenesis, and

neurogenesis of EMs lesions (53–55). Depending on the

microenvironment, macrophages can undergo modifications and

be broadly categorized into two distinct subtypes: the classically

activated phenotype (M1) and the alternatively activated phenotype

(M2). M1 mainly mediates tissue damage and inflammation, while

M2 is mainly involved in tissue repair and anti-inflammatory

processes (53, 54). Growing evidence suggests that the abdominal

microenvironment in EMs patients contributes to macrophages M2

polarization to facilitate progression of EMs (56, 57). Sun et al.

demonstrated that EMs-EVs can remodel the macrophage

phenotype to M2 polarization and attenuate the phagocytic ability

of macrophages both in vivo and in vitro (41). Jiang et al.

successfully isolated EVs from the uterine cavity and observed

high expression of miR-210-3p in the EVs from EMs patients.

MiR-210-3p is carried and delivered to macrophages in the

peritoneal cavity by EVs, inhibiting macrophage M1 polarization

by suppressing the JNK signaling pathway and concurrently,

promoting the migration and invasion of ESCs (33).

Legumain pseudogene 1 (LGMNP1) is a pseudogene of

legumain (LGMN, also known as asparagine endopeptidase).

LGMN is overexpressed in macrophages and subsequently binds

to the surface of macrophages to maintain their active conformation

and induce M2-like polarization (58, 59). LGMNP1 was found to

upregulate the expression of LGMN, promoting glioma cancer

progression (60). In a recent study, it was identified that

LGMNP1 is highly expressed in ectopic lesions. LGMNP1
Frontiers in Endocrinology 05
upregulates the expression of LGMN and directs macrophages

towards an M2-like phenotype (61).

Another study found that EVs-mediated miR-301a-3p also

induces macrophage towards an M2-like phenotype by regulating

the phosphatidylinositol 3-kinase (PI3K)-phosphatase and tensin

homolog (PTEN) axis (62). PI3K is a crucial lipid kinase involved in

a multitude of cellular processes, encompassing apoptosis,

autophagy, cell cycle modulation, differentiation, and cellular

motility. Conversely, PTEN acts to inhibit PI3K activity (63, 64).

Huang et al. found that EMs-derived EVs miR-301a-3p induces M2

macrophage polarization by up-regulating expression of PI3K and

down-regulating expression of PTEN, activating the PTEN/PI3K

signaling pathway (62). Contrarily, EVs derived from M1

macrophages have been observed to inhibit the migration and

invasion of ESCs and hinder angiogenesis, thereby impeding the

development of EMs. This effect is achieved by repolarizing

macrophages from M2 to M1 phenotype (65).

The EVs containing miR-22-3p, originating from peritoneal

macrophages, stimulate proliferation, migration, and invasion of

eESCs through the modulation of the SIRT1/NF-kB pathway (38).

An elevated expression of lncRNA CHL1-AS1 in peritoneal

macrophages allows the transfer of high levels of this lncRNA to

eESCs via EVs. Within ESCs, CHL1-AS1 serves as a competing

endogenous RNA for miR-610, leading to the downregulation of

miR-610 and subsequently upregulating the expression of MDM2

(66). MDM2 is situated within the 13–14 segment of the long arm of

chromosome 12. There is growing evidence that MDM2 enhances

cellular activity and promotes tumour growth (67, 68). In EMs,

MDM2 positivity was higher than in normal endometrium (69).

Therefore, EVs containing lncRNA CHL1-AS1 derived from

peritoneal macrophages may be implicated in promoting the

proliferation, migration, and invasion of ESCs, while concurrently

inhibiting their apoptosis (66).
FIGURE 3

The information transfer among ESCs, macrophages, and MSCs through EVs.
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MSCs are non-hematopoietic pluripotent stem cells

characterized by their capacity for self-renewal and pluripotent

differentiation (70). Feng et al. discovered that EVs derived from

human umbilical cord MSCs (Huc-MSCs) inhibit the expression of

E-cadherin while concurrently enhancing the expression of

vimentin and N-cadherin at both the mRNA and protein levels.

This modulation enhances migration and invasion of endometrial

glandular epithelial cells (37). Zhang et al. found that Huc-MSCs-

derived EVs carry miR-100 and act on ESCs, which promote

proliferation, invasion, and migration of ESCs as well as

epithelial-mesenchymal transition through inhibiting heparan

sulfate-glucosamine 3-sulfotransferase 2 (71).

Mast cells are granular immune cells that deposit in tissues, and

there is growing evidence to support their involvement in the

pathogenesis of EMs (72–75). A research collected EVs from

ectopic tissues and conducted sequencing of tiRNAs and tRFs to

identify the specifically expressed tRF-Leu-AAG-001 within these

tissues. Further research found that tRF-Leu-AAG-001 is

overexpressed in endometriotic focal mast cells and delivered to

peripheral cells through EVs. This process promotes inflammation

and angiogenesis in EMs (28).

In summary, intercellular communication among ESCs, eESCs,

MSCs, mast cells, and other cell types plays a crucial role in

promoting cell proliferation, migration, invasion, and

angiogenesis. This communication is facilitated by the transport

of miRNAs, lncRNAs, and proteins through EVs, ultimately

regulating the development of EMs.
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EVs as diagnostic markers for EMs

The absence of specific markers presents a significant challenge

in diagnosing EMs, and hampers understanding of disease

mechanisms. Thus, non-invasive diagnostic biomarkers are

needed. EVs, carrying disease-specific cargo, are plentiful in

various body fluids and have been isolated from multiple sources

in EMs patients, including blood, peritoneal fluid, uterine cavity,

and leukorrhea. When compared to non-EMs patients, including

those with submucosal fibroids or other benign non-endometrial

lesions, variations in expression levels are evident in EVs from EM

patients (Table 1). Significantly, EVs transport cargoes with well-

maintained quantities, stability, and integrity, suggesting their

potential as diagnostic biomarkers, with the expectation that they

will supplant tissue diagnosis as a dependable and non-invasive

diagnostic tool across numerous pathological processes (10, 33,

79–82).

Li et al. identified EVs tRF-Leu-AAG-001 expression in the

leucorrhea of EMs patients, demonstrating their potential as specific

indicators with high specificity and sensitivity for distinguishing

EMs from other conditions (28). Additionally, elevated levels of

miR-202-3p and miR-202-5p were observed within EVs isolated

from both the endometrium and leucorrhea of EMs patients (34).

These findings suggest the promise of miR-202-3p and miR-202-5p

as potential non-invasive diagnostic biomarkers for EMs. However,

further exploration is needed to determine their specific diagnostic

value. Moreover, significantly elevated levels of TC0101441 and
TABLE 1 Source, cargo, and expression trends of EVs in patients with EMs.

EVs Sample Source EVs Cargo
Regulation

in
Endometriosis

References

Peritoneal fluid

miRNA-1908、-130b、-451a、-486-5p、-4488、-432、-342、-425、-505、-
6508、-145、-365a and -365b

Differentially express (31)

Acinetobacter, Pseudomonas, Streptococcus, and Enhydrobacter Increase
(35)

Propionibacterium, Actinomyces, and Rothia Decrease

Culture medium of ESCs

Moesin, HOTAIR, AFAP1-AS1, lncRNA aHIF, miR-214-3p, lncRNA TC0101441,
miR-202-3p, miR-202-5p, miR-301a-3p, LGMNP1

Increase
(30, 34, 36, 49–
52, 61, 62)

MiR-214 Decrease (76)

Culture medium of macrophage miR-22-3p, lncRNA CHL1-AS1 Increase (38, 66)

Serum

miR-22-3p, miR-320a, miR-301a-3p, VEGF-C, lncRNA aHIF, RP11-326N17.2,
KLHL7-AS1, MIR548XHG, miR-214-3p, lncRNA TC0101441, LGMNP1

Increase
(39, 50–52, 61,
62, 77, 78)

LncRNA LINC01569, RP3-399L15.2, FAM138B and CH507-513H4.6 Decrease (78)

Culture medium of MSCs miR-100 Increase (71)

Leucorrhea tRF-Leu-AAG-001, miR-202-3p, miR-202-5p Increase (28, 34)

Uterine aspirate fluid

miR-210-3p, miR-20b-5p, miR-625-5p, miR-342-5p, miR-155-5p, miR-146A-5p
and miR-130b-3p

Increase
(33)

miR-335-3p and miR-132-5p Decrease

Tubal fluid
miR-6087 Increase

(32)
miR-6747-5p, miR-5699-5p and miR-1273f Decrease
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aHIF were detected in EVs isolated from the serum of EMs patients,

indicating their potential diagnostic utility for EMs (50, 51).

However, only a few studies have measured the sensitivity and

specificity of EVs as diagnostic markers. One study, which included

48 EMs patients and 21 controls reported serum EVs-derived

VEGF-C as a biomarker with the sensitivity of 81.3% and

specificity of 71.4% for EMs (39). Another study of 20 subjects

and 20 controls was performed by combination of serum EVs-

derived miRNA—320a and 22-3p with a sensitivity of 80% and

specificity of 80% (77). Wang et al. employed 85 patients and 85

controls and reported serum EVs-derived lncRNA RP3-399L15.2 as

a biomarker with a sensitivity of 67% and specificity of 98%, or a

combination of the lncRNAs RP3-399L15.2 and CH507-513H4.6

with a sensitivity of 80% and specificity of 85% (78). Another study,

focusing on serum EVs-derived LGMNP1 as a novel non-invasive

biomarker for predicting relapse had a sensitivity of 93.3% and

specificity of 75.7% (61). Although EVs are promising as diagnostic

markers for EMs, the samples in these studies were limited. So

further research and validation are imperative before

clinical application.

The primary challenge in utilizing EVs as non-invasive

biomarkers lies in the isolation and purification process. Currently,

various technologies have been developed for separating different

EVs, including centrifugation (ultracentrifugation, density gradient,

and differential), volume exclusion chromatography, precipitation,

ultrafiltration, and commercial precipitation kits. These techniques

heavily rely on the biophysical and/or biochemical characteristics of

EVs, such as size, density, shape, and specific surface markers. Each

method comes with its own strengths and limitations, impacting the

yield, purity, and quality of the isolated EVs (8, 83). Differential

ultracentrifugation is undertaken as the most commonly employed

“gold standard” technique for the separation of EVs. This method is

characterized by its simplicity, cost-effectiveness, and minimal

requirement for expertise or additional materials. However, it has

the drawback of a low recovery rate and is susceptible to

contamination with non-vesicular components (8, 84). In recent

years, several commercial kits have been developed for the isolation

and extraction of EVs. In comparison to differential

ultracentrifugation, these commercial kits are simpler to operate

and often yield higher amounts of EVs, demonstrating greater

extraction efficiencies. However, extracts obtained using

commercial kits may sometimes contain albumin impurities. The

choice of the EVs separation method has a substantial impact on the

subsequent analysis of the substances. Therefore, the selection of an

appropriate separation method is crucial for accurate and

reliable results.
EVs as potentially therapeutic targets
for EMs

The management of EMs is typically categorized into

conservative, hormonal, and surgical treatments. Non-hormonal

and non-surgical interventions are frequently necessary,
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particularly for individuals actively seeking conception. Surgical

treatment is often used; however, the benefits of surgery are

controversial and influenced by the surgeon, surgical technique,

symptoms, disease stage, and a variety of other factors (85).

Postoperative recurrence is common and the risk of recurrence

increases over time. Currently, the prevention of postoperative

recurrence relies heavily on suppressing menstruation, but the

efficacy is limited. Hence, numerous studies have delved into new

treatment methods and identified advantages of EVs, such as low

immunogenicity, low toxicity, low tumorigenicity, and excellent

biocompatibility. These characteristics enable EVs to traverse

certain biological barriers, positioning them as potential

candidates for non-cellular therapies (86, 87). Furthermore, owing

to their inherent advantages in facilitating cellular communication,

exhibiting high physicochemical stability, and demonstrating

biocompatibility, EVs are regarded as outstanding delivery

platforms for a diverse array of therapeutic agents, including

proteins, miRNAs, siRNAs, drugs, and even nanomaterials (88).

Several studies have conducted preliminary investigations on

the utilization of EVs in the treatment of EMs or as therapeutic

targets for EMs. Davoodi et al. utilized EVs sourced from stem cells

isolated from menstrual blood for therapeutic purposes,

demonstrating a significant reduction in expression levels of

markers associated with inflammation, proliferation, migration,

and angiogenesis in endometriotic cells (89). Li et al. found that

EVs derived from M1 macrophages can inhibit migration and

invas ion of ESCs , whi le promoting M2 macrophage

reprogramming to M1 macrophages that inhibit EMs and block

angiogenesis (65). Wu et al. found that miR-214-enriched EVs

inhibit fibrosis in the EMs animal model, becoming a promising

treatment for EMs (76). In addition, Zhang et al. reduced the

expression of fibrosis-associated proteins (CCN2, a-SMA and

collagen a1) in endometriotic lesions by intraperitoneal injection

of miRNA-214-3p-enriched EVs in vivo. It is thought that miR-214-

3p can inhibit fibrosis in EMs by targeting CCN2 (52). Wang et al.

used EVs derived from human umbilical vein endothelial cells at a

concentration of 120 mg/mL, resulting in a significant decrease in

the proliferation and invasion of ESCs and the expression of

estrogen-related genes (SF-1, ERb, and aromatase) (90).

In addition, it was previously mentioned that exosomes from

EMs decrease the proportion of M1 macrophages. This effect can be

reversed by the JNK activator anisomycin, suggesting that EVs can

be used as a therapeutic target for EMs (33). It was also noted that

VEGF-C, carried by EVs in EMs patients, possesses the ability to

promote lymphangiogenesis. Lenvatinib, a selective VEGFR2/R3

inhibitor, significantly disrupts VEGF-C signaling, thereby

ameliorating this phenomenon. This suggests that EVs carrying

VEGF could serve as a potential therapeutic target for the treatment

of EMs (39).

Finally, existing research on potential therapeutic EVs targets is

currently confined to animal models. If specific EVs phenotypes

inducing EMs indeed exist, further investigation aiming to target

these specific EVs to disrupt the pathogenesis of EMs may present a

potential avenue for non-surgical, non-hormonal treatment regimens.
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Conclusion

EMs is a prevalent chronic inflammatory gynecological

condition, often accompanied by infertility and pelvic pain. The

etiology of EMs is complex, and the lesions are extensive, causing

serious damage to women’s reproductive health and imposing a

heavy burden on society. The pathogenesis of EMs remains elusive,

lacking non-invasive diagnostic methods and more effective

comprehensive treatment plans. Hence, it is crucial to seek new

strategies for diagnosis and treatment. EVs have garnered

widespread attention in EMs as novel biomarkers, carrying

various cargoes such as RNA, proteins, and small non-coding

RNAs. EVs play a communication role among cells such as ESCs,

macrophages, and MSCs, triggering cell migration, angiogenesis,

immune regulation, and inflammation mediation. Especially, EVs

have diagnostic value for EMs and may become new therapeutic

targets for this troublesome disease. Numerous studies have

revealed that EVs can serve as diagnostic biomarkers for diseases.

However, only a few experiments have investigated the sensitivity

and specificity of using EVs as diagnostic markers, and there is

significant variation in the obtained results. Some experiments have

also preliminarily explored the use of EVs in treating EMs or as

therapeutic targets for EMs to improve the condition, but the

research is limited. Additionally, the choice of methods for

isolating EVs has a substantial impact on subsequent substance

analysis, but existing methods have their limitations. Therefore, the

establishment of a gold standard method for the isolation and

purification of EVs is also a challenge, which may restrict their

clinical application. Despite the recognized importance and

significance of EVs in EMs, research in this field is still in its

early stages, requiring more robust evidence to support the potential

clinical applications of EVs.
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