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Engineering, University of Science and Technology Beijing, Beijing, China
Objective: To develop and validate an artificial intelligence diagnostic model

based on fundus images for predicting Carotid Intima-Media Thickness (CIMT) in

individuals with Type 2 Diabetes Mellitus (T2DM).

Methods: In total, 1236 patients with T2DM who had both retinal fundus images

and CIMT ultrasound records within a single hospital stay were enrolled. Data

were divided into normal and thickened groups and sent to eight deep learning

models: convolutional neural networks of the eight models were all based on

ResNet or ResNeXt. Their encoder and decoder modes are different, including

the standardmode, the Parallel learningmode, and the Siamesemode. Except for

the six unimodal networks, two multimodal networks based on ResNeXt under

the Parallel learning mode or the Siamese mode were embedded with ages.

Performance of eight models were compared via the confusionmatrix, precision,

recall, specificity, F1 value, and ROC curve, and recall was regarded as the main

indicator. Besides, Grad-CAM was used to visualize the decisions made by

Siamese ResNeXt network, which is the best performance.

Results: Performance of various models demonstrated the following points: 1)

the RexNeXt showed a notable improvement over the ResNet; 2) the structural

Siamese networks, which extracted features parallelly and independently,

exhibited slight performance enhancements compared to the traditional

networks. Notably, the Siamese networks resulted in significant improvements;

3) the performance of classification declined if the age factor was embedded in

the network. Taken together, the Siamese ResNeXt unimodal model performed

best for its superior efficacy and robustness. This model achieved a recall rate of

88.0% and an AUC value of 90.88% in the validation subset. Additionally,

heatmaps calculated by the Grad-CAM algorithm presented concentrated and

orderly mappings around the optic disc vascular area in normal CIMT groups and

dispersed, irregular patterns in thickened CIMT groups.
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Conclusion: We provided a Siamese ResNeXt neural network for predicting the

carotid intimal thickness of patients with T2DM from fundus images and

confirmed the correlation between fundus microvascular lesions and CIMT.
KEYWORDS

carotid intima-media thickness, type 2 diabetes mellitus, deep neural networks, retinal
fundus images, ResNeXt
1 Introduction

Over 500 million patients with Type 2 Diabetes Mellitus

(T2DM) (1, 2) globally are taking the high risk of macrovascular

complications like cardiac, cerebral, and peripheral vessels (3).

These complications may significantly increase the probability of

morbidity and mortality. Carotid Intima-Media Thickness (CIMT)

is a pivotal biomarker for assessing macrovascular pathologies (4,

5). In patients with diabetes, thickened CIMT signals the early onset

of atherosclerosis, thereby elevating the risk for cardiovascular

incidents, including heart disease and stroke (6). Early detection

of CIMT of course makes sense to T2DM patients. However,

conventional checking methods like CT imaging evaluation and

carotid artery ultrasound examination are expensive and cannot be

performed routinely, especially in developing or underdeveloped

regions. Many T2DM patients cannot receive early therapeutic

intervention (7).

Fundus imaging is universally known as an indispensable

routine screening modality for T2DM (8). Biologically, the

ophthalmic artery is an integral subsidiary of the internal carotid

artery and the leading vascular provider for the retina (9); variation

of the hemodynamics of the internal carotid artery definitely may

result in anomalies of the retinal microvasculature (9). Fundus

images can be an indirect barometer of systemic disease (10–12).

More notably, artificial intelligence (AI) predicting methods from

retinal images, which have significant advantages in multifactorial

issues with high-dimensional data, has been widely applied in

systemic disease diagnostics, such as cardiovascular diseases (13),

cerebrovascular accidents (14), chronic renal disorders Alzheimer’s

disease (15), and carotid artery stenosis (16).

Based on the fact that changes in retinal microvasculature can

reflect internal carotid artery (17–19), Junlong Qu (16) proposed a

multimodal fusion predicting model based on fundus images and

clinical indices, which can detect carotid artery stenosis

automatically. Although the model’s accuracy (74.82%) is not

high enough, the research confirmed that predicting CIMT for

patients with T2DM from fundus images using deep neural

networks is a potential method (16).

For early detection of CIMT in T2DM, which can consequently

benefit patients from the prevention of cardiovascular diseases via

early intervention, this paper established a specific fundus images

dataset and proposed a Siamese ResNeXt network for predicting
02
CIMT. The accuracy of Siamese ResNeXt is 88.0%, which further

confirms the correlation between CIMT and retinal abnormalities

and provides a valuable tool for early detection of CIMT in patients

with T2DM.
2 Materials and methods

2.1 Dataset

2.1.1 Diagnostic criteria
2.1.1.1 The criteria for the diagnosis of T2DM:

Patients have diabetes-specific symptoms, like xerostomia,

polydipsia, polyuria, and inexplicable weight reduction, and the

random plasma glucose level of who is equal to or exceeding 11.1

mmol/L; the fasting plasma glucose level after necessitating a

minimum fast of eight hours equal to or exceeding 7.0 mmol/L;

the postprandial plasma glucose level two hours after 75g oral

glucose is equal to or exceeding 11.1 mmol/L (20).

2.1.1.2 The diagnostic benchmarks for CIMT:

The CIMT has not yet been clear in clinical, due to differences

in ethnicity, age, and measuring equipment. Luca SABA and others

(21) drew that the CIMT thickness threshold were between 0.7

millimeters and 1.2 millimeters, from 107 global studies on the

correlation between CIMT thickness and vascular diseases. In this

paper, based on the research of Chinese population (22), patients

are classified into the normal group if their CIMT is less than

0.9 mm and the thickened group if their CIMT is over or equal to

0.9 mm
2.1.2 Inclusion and exclusion criteria
2.1.2.1 Inclusion criteria
(1) Individuals must be 18 years or older, with no restrictions

based on gender.

(2) Participants must meet the diagnostic benchmarks for

T2DM as established guidelines stipulate.

(3) The participants must have complete clinical records

readily available for research evaluation.
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2.1.2.2 Exclusion criteria
Fron
(1) Patients diagnosed with type 1 diabetes mellitus, gestational

diabetes, or other specific diabetes variants are precluded

from the study.

(2) Patients with archived ophthalmic images of suboptimal

quality, which precludes the extraction of valuable data for

the study, are excluded.

(3) Patients whose archived ultrasonographic assessments of

the carotid arteries fail to detail the measurements of the

CIMT are also excluded from participation.
2.1.3 Data collection
This retrospective case-control investigation systematically

assessed a cohort of individuals diagnosed with T2DM

hospitalized in the Second Affiliated Hospital of Anhui Medical

University from January, 2021 to November, 2023. After excluding

subjects with non-qualifying ophthalmic fundus images, the study

encompassed a sample size of, 1236 patients. The dataset is

randomly divided into test, validation, and training groups. The

validation group consists of 50 normal patients and 50 patients with

thickening, while the test group includes 30 normal patients and 30

patients with thickening. The remaining data are allocated to the

training group. The process of dataset collection is illustrated in

Figure 1. Their clinical parameters (including sex, age, and hospital

admission identifiers), high-resolution fundus photographs, and

CIMT values determined by ultrasonography were acquired. This

research has received formal approval from the Ethics Committee

of the aforementioned hospital. The approval number is YX2023-

2011(F1).

Fundus imagery was obtained utilizing the Canon CR-2 PLUS

AF non-mydriatic digital fundus photography apparatus, which

facilitated the capture of images depicting the natural dilation of the
tiers in Endocrinology 03
pupils at a 45-degree acquisition angle without the necessity of

pharmacologic pupillary dilation, show in Figure 2. The

measurement of CIMT was conducted by professional

sonographers in the hospital’s ultrasound department using a

Siemens ACUSON S2000 ultrasound diagnostic instrument,

which is equipped with an L16 transducer with a frequency range

of 5-12 MHz, while the patient was at rest with their head turned to

the side. The detailed methodology for measuring the CIMT is as

follows: Initially, the precise location for the measurement must be

identified, typically targeting the far wall of the common carotid

artery (CCA), specifically about 1-2 cm above the carotid bulb. This

area is chosen because of its relatively flat surface and the distinct

clarity of the interface between the intima and media layers, which

enables the capture of high-quality images. Subsequent steps

involve pinpointing the carotid artery and acquiring both

transverse and longitudinal sectional images to accurately

determine the measurement point . The actual CIMT

measurement is conducted on the longitudinal section, calculating

the distance between the intima-lumen interface and the intima-

media interface, show in Figure 3.
2.1.4 Privacy protection
In the initial stages of data collection, rigorous measures were

implemented to safeguard patient privacy rights comprehensively.

This involved anonymizing all clinical data that could contain

identifiable markers, thereby securing the confidentiality of

personal information. Furthermore, fundus images were

meticulously cropped to excise any segments potentially

comprising individual identification elements. Throughout the

entirety of the data collection and processing trajectory, the study

carefully conformed to predefined standard operating procedures,

guaranteeing data uniformity and comparability and thereby

maintaining the scientific rigor and ethical integrity of the

research endeavor.
FIGURE 1

Flow chart of data collection.
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2.2 data processing

In pursuit of a robust generalization for the model, a refined

palette of geometric and photometric augmentation techniques was

integrated to expand the dataset. Geometric augmentations are

articulated through a stochastic rotation algorithm that adjusts

random orientation within a precisely controlled angular

spectrum of ±5 degrees, meticulously retaining the image’s central

fidelity. A bidirectional flipping in horizontal and vertical was

implemented to enrich the model’s interpretative versatility across

variously oriented planes. Photometric augmentations, which

delicately fine-tune the imagery’s luminosity, contrast, saturation,

and hue, were executed randomly after geometric enlargements,

presenting diverse visual scenarios. Such deliberate and strategic

data augmentation strategy primed the model for consistent and

reliable performance under different imaging environments,

thereby solidifying its practicality and robustness in real-world

clinical applications.
Frontiers in Endocrinology 04
2.3 Diagnostic model

2.3.1 Network architecture
Typically, there are two types of AI diagnostics models for

systemic disease. The feature-driven analytical models depended on

a definite correlation between image characters and disease. The

VGGNet-16 network for assessing the risk of ischemic stroke (23) is

based on the correlation between vascular caliber and

cerebrovascular events (24). However, other excluded features

may be ignored. Although the feature-free model is weakly

interpretable, it is efficient, especially if classification

characteristics are unclear. Even though the details of retinal

vascular were enhanced, their features were not given in the

predicting model of biological age based on the VGG-19

network (25).

In spite of the significant correlation between CIMT and retinal

abnormalities (19), biological characteristics are not pointed.

Accordingly, feature-free deep learning algorithms based on two
A B

FIGURE 3

Ultrasound images of the cross-sectional and longitudinal sections for measuring the thickness of CMIT. (A) is a longitudinal ultrasound view of the
carotid artery, where the green line indicates the Intima-Lumen Interface and the red line marks the Media-Adventitia Interface, with the CIMT
measured in the yellow dashed area. (B) is a cross-sectional ultrasound view of the carotid artery, with the CIMT located between the green and red
dashed lines, enclosed by the red dashed circle indicating the artery’s boundary.
A B

FIGURE 2

Fundus images. (A). Left fundus image; (B). Right fundus image.
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popular deep learning frameworks, ResNet (26) and ResNeXt (27),

were used to predict CIMT.

The encoder and decoder can affect the classification results.

Considering that a group of fundus images comprises images from

the left and right eyes, pairs of images should be trained

simultaneously. Three different encoder and decoder modes were

designed in this paper (Figure 4). Besides, based on the correlation

between age and CIMT thickening in demographic statistics,

multimodal modes with the aged were also trained. Therefore,

eight prediction models were trained in experiments.

The raw images are RGB images with a resolution of, 2415 ×

2387. The deep neural algorithms in each mode are ResNet50 or

ResNeXt50 in this paper.

2.3.1.1 Mode A: Stitching and resizing images

Two raw images were stitched into one image (4830× 2387×3).

Then, the stitched image was resized to 256×256×3. A center

cropping operation is performed to obtain an image area of
Frontiers in Endocrinology 05
224×224×3 before learning. An output feature vector of, 2048×1

was extracted from the deep neural network. The vector is fed into a

fully connected layer for classification.

2.3.1.2 Mode B: Parallel learning

This is a structural parallel network. The architecture of the two

networks is the same, but their parameters can be different. Firstly,

two raw images (2415 × 2387×3) were resized to 256×256×3, and

center cropped to 224×224×3 independently. Then, the processed

images were fed into two deep neural networks independently for

learning. The networks’ two output feature vectors, 2048×1, were

concatenated into a large vector of, 4096×1, and the large vector was

fed into a fully connected layer for classification.

2.3.1.3 Mode C: Siamese learning

This is a siamese network, and the architecture and parameters

value of the two sub-networks is identical. These networks follow

the same path as ModeB during forward propagation.
A

B

C

FIGURE 4

Classification Networks. (A). Stitching and resizing images; (B). Parallel learning; (C). Siamese learning.
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2.3.1.4 Multimodal mode

The primary frameworks of the multimodal mode are similar to

that of the unimodal mode. The significant difference is that the

128-dimensional age vectors and the output feature vector of deep

neural networks were concatenated into one vector before being fed

into a fully connected layer for classification.

2.3.2 Model optimization and loss functionality
A gradient-based optimization called Adam was adopted in this

paper. The Adam optimizer can calculate the adaptive weighted

moving averages of both gradients and their squared values,updates

requisite for model training and convergence with pronounced

efficiency (28). The formula for calculating the Adam optimizer can

be found in Equation 1 (28).

In light of the pronounced imbalance in sample sizes among

different categories within our research dataset, we have adopted a

weighted cross-entropy loss function for this classification task.

This loss function can assign weights to the numbers of each class.

Categories with fewer samples are allocated higher weights. Such a

method can ensure that all categories can be classified accurately,

particularly for those small categories.The calculation of these

weights is specified in Equation 2.

H(p, q) =   −o
N

i=1

wip(xi) log (q(xi)) (1)

Within the equation, p(xi) epitomizes the ground truth

associated with the i-th label, while q(xi) corresponds to the

estimated predictive value, N denotes the whole number of data;

n1 denotes the number of data of normal groups; n2 denotes the

number of data of thickened groups.

wi =

n1
N ,         if   xi ∈ normal   groupsf g  
n2
N ,     if   xi ∈ thickened   groupsf g

(
(2)
2.3.3 Assessment indicators
Common indicators:Confusion matrix, precision, recall,

specificity, F1 Score and ROC curve are used to evaluate the

performance of different deep neural networks. The formulas for

calculating the metrics precision, recall, specificity, and F1 Score can

be found in Equations 3–9.

Precision ̲ Thickened =
Num_TT

Num_TT + Num_TN
(3)

Recall ̲ Thickened =
Num_TT

Num_TT + Num_NN
(4)

Specificity ̲ Thickened =
Num_NT

Num_NT + Num_TN
(5)

Precision ̲ Normal =
Num_NT

Num_NT + Num_NN
(6)

Recall ̲ Normal =
Num_NT

Num_NT + Num_TN
(7)
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Specificity ̲ Normal =
Num_TT

Num_TT + Num_NN
(8)

F1 Score = 2*
Precision*Recall
Precision + Recall

(9)

Note: Num_TT: The number of thickened group instances

correctly identified as belonging to the thickened group. Num_TN:

The number of normal group instances incorrectly identified as

belonging to the thickened group. Num_NT: The number of

thickened group instances incorrectly identified as belonging to the

normal group. Num_NN: The number of normal group instances

correctly identified as belonging to the normal group.Precision: The

ratio of correctly predicted positive observations to the total predicted

positives.Recall : The ratio of correctly predicted positive observations

to all observations in actual class.Specificity: The measure of the ability

of the model to correctly identify negatives.F1 Score: The weighted

average of Precision and Recall. Therefore, this score takes both false

positives and false negatives into account.

2.3.3.1 Clinical indicators:

Specifically noted that, in clinical application, other than adding

extra checks, the misdiagnosis that normal patients are classified

into the thickening group of the carotid artery intima cannot

produce serious consequences. However, the missed diagnosis

that patients with thickening of the carotid artery intima have not

been screened may delay early intervention for patients. Therefore,

the recall of the thickened group is equally important as the overall

accuracy of the classification model. The recall of the normal group

is inferior to that of the thickened group and the overall model.

2.3.4 Class activation map
Activation Maximization (AM) (29), Deconvolutional Neural

Network Visualization (DeconvNet) (30), Class Activation

Mapping (31), and other methods are employed to enhance the

transparency and interpretability of the black-box prediction model.

This paper overlaps the heatmaps calculated through the

Grad-CAM technique onto the input image to highlight the

areas that contributed the most to the network’s decision. First,

the gradients of the predicted class score concerning the final

convolutional layer’s feature map, which were obtained when the

input image was passed through the classification network, are

computed. Then, the average gradient value for each channel is

calculated using global average pooling. Finally, the feature maps

were linearly weighted by their corresponding gradient values,

then ReLU-activated and aligned to the original input image size

(32, 33).
2.4 Training

All eight models were trained under the same training strategy,

with the entire process spanning 400 epochs. The process is divided

into two main phases: In the foundational training phase, models

initially load parameters pre-trained on ImageNet and are trained
frontiersin.org
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using the Adam optimizer. The initial learning rate is set to 0.001,

with a decay to 10% of its value every 10 epochs. The batch size is set

to 32 for all model types, including the Parallel, Standard, and

Siamese models. The best-performing model parameters on the

validation set are saved during this phase. In the subsequent 300

epochs of advanced training, models load the best-performing

parameters from the foundational training and adjust the learning

rate to either 0.0001 or 0.00005, with all other hyperparameters

remaining unchanged, to conduct in-depth advanced training. After

completing this series of training, the models’ capabilities are

comprehensively evaluated on the test set.

Besides, the Grad-CAM was used to help highlight which

regions of an input image after the prediction model was trained.

This paper calculated the heatmaps only for the Siamese ResNeXt

model, the performance of which was best.
3 Results

3.1 Demographic information

In this retrospective analysis, the dataset encompassed 1,236

subjects, categorized into the CIMT-normal group with 387

individuals (31.31%) and the CIMT-thickened group with 849

individuals (68.69%). Subsequent subgroup analysis delineated a

mean age of 37.33 ± 9.95 years for the CIMT-normal cohort.

Conversely, the CIMT-thickened group exhibited an elevated

mean age of 53.74 ± 9.99 years. Statistical evaluation revealed a

statistically significant divergence in age distribution between the

CIMT-normal and thickened cohorts (P< 0.001), indicating a

pronounced correlation between age and the variation in CIMT

measurements, shown in Table 1.
3.2 Performance of prediction models

The names of various predictive models are presented in

Table 2. The performance of these models is illustrated in

Table 3, Figures 5, 6.

3.2.1 Comparison via common indicators
Figure 5 shows that the Siamese ResNeXt network was

identified as the most efficient model for robust and accurate

performance in the four common indicators. Siamese ResNeXt

network exhibited the highest recall rate reaching a value of

88.0% (Figure 5A and Table 3). Conversely, the ResNet network

was the least efficient, with a recall rate of 80.0%. As shown in
Frontiers in Endocrinology 07
Figure 5B and Table 3, the ResNet model exhibited a precision of

80.00% in the validation group and 79.97% in the test group,

indicating that its precision was relatively lower than that of other

model groups. The precision of the parallel ResNeXt and Siamese

ResNeXt models reached 88.20% and 88.00% respectively, which

were the best in the validation group. However, in the test group,

the precision of the Siamese ResNeXt model at 85.04% was higher

than that of the parallel ResNeXt, which was only 78.36%. Figure 5C

showed that the F1 Score values of the Siamese ResNeXt model were

the highest in both the validation and test groups, achieving 88.0%

and 85.0%, respectively. At the same time, the standard ResNet

model demonstrated the worst performance, with an F1 Score of

79.97% in the validation group and 74.94% in the test group.

3.2.2 Comparison via clinical indicators
It is clear that the recall rates for the test set were marginally lower

than those for the validation set overall, shown in Figure 5D. However,

despite potential limitations in identifying normal CIMT states, most

models exhibited superior performance in detecting thickened

conditions. In the ResNet model series, the thickened group

exhibited a notable enhancement in predictive recall rates in both

validation and test groups, with increments of 8.0%-18.0% and 10.0%-

16.77% respectively, when compared to the normal group. Within the

Resnext model series, except for the Falltern Rensext model where the

outcomes were identical in both scenarios within the validation group,

the thickened group consistently achieved a higher recall rate than the

normal group, ranging from 4.0%-24.0% across various cases. In the

test groups of the Resnext series, the thickened group in themultimodal

and standard Resnext models demonstrated an increased recall rate by

6.66%-23.0% over the normal group, while the Parallel ResNeXt and

Siamese ResNeXt models showed a decrease in recall rate by 3.33% in

the thickened group compared to the normal group.
3.2.3 Comparison of different networks
3.2.3.1 Comparison of Different Deep Neural Algorithms

From the perspective of the deep learning algorithm, the

performance of the ResNeXt algorithm consistently outshined the

ResNet algorithm in Figure 5 and Table 3. Specifically, in the

validation set, the ResNeXt algorithm surpassed the ResNet

algorithm by 2% in the standard network architecture, 3% in the

parallel network configuration, and 3% in the Siamese network

setup. Regarding the test set, the ResNeXt algorithm demonstrated

an increase of 5% over the ResNet algorithm in the standard

configuration. However, in the parallel configuration, the

ResNeXt algorithm fell by 3.34% compared to the ResNet

algorithm. In the Siamese configuration, the ResNeXt algorithm

showed a significant lead of 6.67% over the ResNet algorithm.
TABLE 1 Demographic Characteristics by CIMT Category.

Normal Group Thickened Group

Male
N=280

Female
N=107

Total
N=387

Male
N=531

Female
N=318

Total
N=849

Age 35.90 ± 8.58 41.08 ± 12.13 37.33 ± 9.95 51.41 ± 10.41*** 57.64 ± 7.84*** 53.74 ± 9.99***
***, p<0.001.
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Similarly, in both the validation set and the test set, the AUC of

most ResNeXt models were higher than that of ResNet models

under the same encoder and decoder (Figures 5E, F).

3.2.3.2 Comparison of different encoder and
decoder models

In both the validation and test groups, the Siamese network

configuration demonstrated a consistently superior performance

profile, irrespective of whether ResNet or ResNeXt were used for

extracting features, in Figure 5D. In the validation group, when the

ResNet framework was employed, the standard network

architecture yielded the lowest recall rate of 80.0%, whereas the

Siamese configuration exhibited the highest recall rate, reaching

85.0%. When the ResNeXt framework was applied, the recall rate of

the standard architecture marginally increased to 82.0%, but the

Siamese architecture still achieved the highest recall rate, at a value

of 88.0%. If the ResNet framework acted as the feature extractor in

the test group, the standard architecture had the lowest recall rate at

75.0%. Yet, the parallel architecture achieved the highest recall rate

at 81.67%. While the ResNeXt framework was used for prediction

CMIT, although the recall rate of the standard architecture

increased slightly to 78.33%, the Siamese architecture consistently

presented the highest recall rate at 85.0%.
3.2.3.3 Comparison of different data modalities

Figures 5A, B, C clearly illustrated that, in the validation group,

when the factor of age was embedded into the last complete connection

layer, the performance of the model called the Parallel ResNeXt & Age

or the Siamese ResNeXt & Age decreased by 3% or 5%, compared with
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the Parallel ResNeXt or the Siamese ResNeXt. However, the results of

the test group varied with that of the validation group. The recall of the

Parallel ResNeXt & Age model increased by 3.34% over the Parallel

ResNeXt model. Yet the Siamese ResNeXt & Age model decreased by

8.5% compared with the Siamese ResNeXt model.

3.2.4 Confusion matrices and ROC curves of the
Siamese ResNeXt

Figure 6A presents the confusionmatrices for the Siamese ResNeXt

model within both validation and test groups. In the validation dataset,

the model showed impressive accuracy, accurately predicting ‘Normal’

cases with an actual positive rate of 88.0% and achieving the same

accuracy for ‘Thickened’ patients. The false positive and false negative

rates were 12.0%, indicating a balanced occurrence of Type I and Type

II errors. In the test dataset, more precision is needed. The model

proficiently identified ‘Normal’ cases with an 86.67% accuracy and

‘Thickened’ patients at 83.33%. Nevertheless, there was a slight uptick

in misclassification rates, with ‘Normal’ cases incorrectly labeled as

‘Thickened’ in 13.33% of instances and ‘Thickened’ cases erroneously

identified as ‘Normal’ at a rate of 16.67%.

Figures 6B, C show the ROC curves of the Siamese ResNeXt

model in the validation and test groups, respectively. In both

datasets, the Siamese ResNeXt model consistently recorded the

highest AUC values, achieving 90.88% in the validation set and

88.92% in the test set. This performance highlighted the model’s

exceptional robustness and efficacy in CIMT prediction.
3.3 Results of class activation map

Figure 7 presents the feature mapping of the Siamese ResNeXt

network executed on retinal images. In Figure 7A, the Grad-CAM

mapping displays the feature distribution for the normal CIMT group.

In this group, the featuresmainly concentrate around the optic disc and

vascular areas, exhibiting a centralized and regular pattern on the

feature map. This centralization suggests that, in normal CIMT cases,

the model focuses more on the optic disc and vascular regions, likely

indicative of normal CIMT levels. In contrast, Figure 7B shows the

Grad-CAM mapping for the thickened CIMT group. The feature map

highlights elongated and various point-like circular shapes, with these

features being more dispersed across the map. This distinct pattern in

feature distribution is attributable to the unique presentation of retinal

lesions in the pathological state of CIMT. The observable differences in

retinal mapping between the normal and thickened CIMT groups

potentially mirror key distinctions in retinal vascular characteristics

associated with normal and pathologically altered CIMT states.
4 Discussion

4.1 Research contributions

We provided a Siamese ResNeXt neural network for predicting

CIMT of patients with T2DM from fundus images and confirmed

the correlation between fundus microvascular lesions and CIMT.
TABLE 2 Names of different predicting models.

Model
Name

Encoder and
decoder mode

Deep
Neural
Network

Data
Modality

Standard
ResNet

Stitching and
resizing images

ResNet
unimodal
modes

Parallel
ResNet

Parallel learning ResNet
unimodal
modes

Siamese
ResNet

Siamese learning ResNet
unimodal
modes

Standard
ResNext

Stitching and
resizing images

ResNeXt
unimodal
modes

Parallel
ResNeXt

Parallel learning ResNeXt
unimodal
modes

Siamese
ResNeXt

Siamese learning ResNeXt
unimodal
modes

Parallel
ResNeXt
& Age

Parallel learning ResNeXt
multimodal
mode

Siamese
ResNext
& Age

Siamese learning ResNeXt
multimodal
mode
The prediction model, which is stitching and resizing raw images, is a standard ResNet/
ResNeXt classification model.
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4.1.1 Clinical significance
It is a well-documented statistic that cardiovascular

complications account for the demise of approximately 50% of

individuals with T2DM (20) because the continuous chronic

hyperglycemia state of patients with diabetes can cause vascular

inflammatory responses and endothelial injury (34). CIMT is

widely recognized as a precursory biomarker of cardiovascular

morbidity, and it is evidenced that incipient alterations in CIMT

can be reversed or mitigated through precise pharmacological

interventions (35). Therefore, the early detection of CIMT

thickening is significant in effectively managing T2DM. Although

carotid artery ultrasound is the standard method for CIMT

examination, it is not a routine screening for T2DM. Many

patients need to attend the early screening of CIMT. A routine

and rapid screening method for T2DM is necessary in the clinic.
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4.1.2 Biological basis
The ophthalmic arteries, responsible for delivering critical

sustenance to ocular components, including the retina and

crystalline lens (36), primarily arise from the internal carotid.

Carotid stenosis induced by diabetes may enhance the risk of

thromboembolic phenomena and attenuated blood flow (37),

consequently resulting in ischemic ocular diseases such as retinal

artery occlusion and ischemic optic neuropathy (38). Analysis of

microvascular changes on fundus images provides valuable

information for cardiovascular pathologies (39).

Researchers (40–43) have proved a definite correlation between

CIMT and retinal pathologies. Wang (40) demonstrated that the

degree of retinal arteriolar hardening has a significant positive

correlation with the severity of the carotid atherosclerotic burden,

which is characterized by intimal thickening and luminal stenosis
TABLE 3 Performance of different predicting models.

Model
Name

Data
Group

Validation Group Results Test Group Results

Precision Recall Specificity
F1-

score
AUC Precision Recall Specificity

F1-
score

AUC

Standard
ResNet

Normal 82.61% 76.00% 84.00% 79.17% 85.00% 77.78% 70.00% 80.00% 73.68% 86.67%

Thickened 77.78% 84.00% 76.00% 80.77% 84.29% 72.73% 80.00% 70.00% 76.19% 85.44%

Average 80.19% 80.00% 80.00% 79.97% 85.29% 75.25% 75.00% 75.00% 74.94% 85.14%

Parallel
ResNet

Normal 90.24% 74.00% 92.00% 81.32% 89.68% 88.00% 73.33% 90.00% 80.00% 79.89%

Thickened 77.97% 92.00% 74.00% 84.40% 89.84% 77.14% 90.00% 73.33% 83.08% 79.89%

Average 84.11% 83.00% 83.00% 82.86% 88.72% 82.57% 81.67% 81.67% 81.54% 80.28%

Siamese
ResNet

Normal 92.68% 76.00% 94.00% 83.52% 88.12% 84.00% 70.00% 86.67% 76.36% 85.22%

Thickened 79.66% 94.00% 76.00% 86.24% 88.76% 74.29% 86.67% 70.00% 80.00% 84.67%

Average 86.17% 85.00% 85.00% 84.88% 88.76% 79.14% 78.33% 78.33% 78.16% 84.83%

Standard
ResNeXt

Normal 83.33% 80.00% 84.00% 81.63% 86.20% 82.14% 76.67% 83.33% 79.31% 77.20%

Thickened 80.77% 84.00% 80.00% 82.35% 86.96% 78.12% 83.33% 76.67% 80.65% 84.11%

Average 82.05% 82.00% 82.00% 81.99% 86.21% 80.13% 80.00% 80.00% 79.98% 80.75%

Parallel
ResNeXt

Normal 97.37% 74.00% 98.00% 84.09% 90.64% 77.42% 80.00% 76.67% 78.69% 82.44%

Thickened 79.03% 98.00% 74.00% 87.50% 89.04% 79.31% 76.67% 80.00% 77.97% 83.67%

Average 88.20% 86.00% 86.00% 85.80% 89.99% 78.36% 78.33% 78.33% 78.33% 82.81%

Siamese
ResNeXt

Normal 88.00% 88.00% 88.00% 88.00% 90.44% 83.87% 86.67% 83.33% 85.25% 88.22%

Thickened 88.00% 88.00% 88.00% 88.00% 90.64% 86.21% 83.33% 86.67% 84.75% 89.00%

Average 88.00% 88.00% 88.00% 88.00% 90.88% 85.04% 85.00% 85.00% 85.00% 88.92%

Parallel
ResNeXt
& Age

Normal 90.24% 74.00% 92.00% 81.32% 88.36% 91.30% 70.00% 93.33% 79.25% 89.78%

Thickened 77.97% 92.00% 74.00% 84.40% 86.84% 75.68% 93.33% 70.00% 83.58% 90.33%

Average 84.11% 83.00% 83.00% 82.86% 87.17% 83.49% 81.67% 81.67% 81.41% 88.42%

Siamese
ResNext
& Age

Normal 88.37% 76.00% 90.00% 81.72% 86.88% 80.77% 70.00% 83.33% 75.00% 81.00%

Thickened 78.95% 90.00% 76.00% 84.11% 87.04% 73.53% 83.33% 70.00% 78.12% 80.33%

Average 83.66% 83.00% 83.00% 82.92% 87.00% 77.15% 76.67% 76.67% 76.56% 80.39%
frontie
the validation set includes 50 normal patients and 50 patients with thickening, while the test set comprises 30 normal patients and 30 patients with thickening.
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(40). The findings of Ichinohasama (41) that individuals with

T2DM are suffering from a high risk of CIMT demonstrated the

potential of CIMT as an incipient marker for diabetic ocular

alterations. Subsequent research elucidated a correlation between

the increase in CIMT concomitant and the progression of

retinopathy severity among T2DM patients (42, 43). The inverse

correlation between CIMT and blood flow and density of retina

vascular (44, 45) was further confirmed by Lilla István and Lahme,

utilizing sophisticated Optical Coherence Tomography (OCT).

Pathophysiologically and physiologically, predicting CIMT of

patients with T2DM from fundus images is underpinned by robust

rationale and sufficient evidence.
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4.1.3 Intelligent diagnosis technologies
Retinal images are complex and high-dimensional data. If

clinicians do not have sufficient clinical experience, they cannot

precisely diagnose. Besides, conventional artificial diagnosis

methods can not accurately express the complex relationships

between the multidimensional data and diseases. The spread of

these artificial diagnostic methods may be restricted.

It is acknowledged that Artificial Intelligence (AI) techniques

have been pivotal in advancing the diagnostic acuity for various

pathologies using retinography, especially in the diagnosis of ocular

pathologies and prognostications of holistic health status (12, 13).

The study by Wong (46) illuminates the potential of AI-based
A

B

D

E

F

C

FIGURE 5

Performance of Different Models for Predicting CIMT Thickness. (A–C) illustrate the comparative performance metrics of recall rate, precision, and
F1 score for various CIMT prediction models. (D) displays the performance of models in terms of recall rate across average, thickened, and aggregate
effects for predicting CIMT. (E, F) show the ROC curves and AUC of various deep learning models in the test and validation groups for
CIMT prediction.
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analyses of the retinal microvasculature to predict cardiovascular

disease (CVD) risk factors, direct CVD events, retinal

characteristics, and CVD biomarkers, including coronary artery

calcium scores (47). Concurrently, Wagner et al’s research, utilizing
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retinal imaging, has uncovered biomarkers for cardiovascular

diseases and dementia, particularly Alzheimer’s disease, thereby

underscoring the technology’s capability to reveal systemic diseases.

Furthermore, Wu and Liu’s review critically examines the
A

B C

FIGURE 6

Performance Evaluation of the Siamese ResNeXt Model Using Fundus Images for the Prediction of Carotid Artery Thickness. (A) displays the
confusion matrices for the Siamese ResNeXt model’s prediction of CIMT in both validation and test groups. (B, C) show the ROC curves and AUC
performance of the Siamese ResNeXt model in the valid and test groups.
A

B

FIGURE 7

The characteristic heatmap of the Siamese ResNeXt using the Grad-CAM algorithm. (A, B) depict the raw images and the heatmaps for the normal
and thickened groups, respectively. The heatmaps were the Grad-CAM projections overlaid on these fundus images.
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application of deep learning techniques in oculomics derived from

retinal images for evaluating systemic health, especially predicting

conditions such as sarcopenia. These investigations not only mark

significant advancements in retinal image analysis for predictive,

preventive, and personalized medicine but also open new avenues

for future research and clinical practices (48). They showcase the

substantial potential of AI and retinal imaging technologies in

refining the accuracy of diagnosing ophthalmological pathologies

and in the comprehensive assessment of patients’ overall

health conditions.

The investigative collective at West China Hospital, under the

aegis of Kang Zhang, has adeptly applied the AneNet architecture

for the screening of anemia via retinal vessel Optical Coherence

Tomography (OCT) imaging, culminating in an accuracy apex of

98.65% and an exemplary Area Under the Receiver Operating

Characteristic Curve (AUC) of 99.83% (49). Meanwhile, this team

has pioneered the prognostication of chronic kidney disease

through fundoscopic examinations, yielding an AUC span of 0.87

to 0.92 (50), signifying a robust predictive capability.

In this paper, we provided eight models for predicting CIMT,

based on ResNet and ResNeXt, using three encoders and decoders,

under different data modalities (Table 2). Then, the performance of

these models was compared. According to the results in Section

3.2.2, Siamese ResNeXt showed the overall best performance.

Siamese ResNeXt achieves the highest accuracy, reaching up to

88.0%. The recall of the normal and thickened groups of Siamese

ResNeXt is not the highest but can satisfy application requirements.

The robustness of Siamese ResNeXt is the best.

Although the performance of the paper is not as high as

Diabetic retinopathy detection (an AUC of 99%), which can be

attributed to various limiting factors, including the finite dataset

size, single-center study design, and the unbalanced distribution of

the sample, our accuracy advanced the accuracy previously reported

by the consortium at Shenzhen Eye Hospital by an appreciable 14

percentage points (16).
4.2 Analysis of different models

4.2.1 Analysis of different network structures
ResNeXt represents an improvement over ResNet, aiming to

enhance network representational capacity, computational

efficiency, and parameter utilization. They are both classic

residual neural networks performing well in image classification

tasks. In this paper, ResNet50 and ResNeXt50 were applied in the

predicting task CMIT. Overall, ResNeXt50 performed better than

ResNet 50. The accuracy of ResNeXt50 is about 2~3% higher than

that of ResNet50 in both the validation and test groups because of

the ‘cardinality’ (51), which breaks down the width into multiple

dimensions. Through group convolution, the network can learn

different features more richly.

4.2.2 Analysis of encoding and decoding mode
The input data comprises two images, different from the object

recognition task. The dimension of the input data of standard
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ResNet or ResNeXt is 224×224×3. An appropriate encoder should

be designed for this specific task.

Regardless of the deep neural network, the standard encoder

performed worst, probably due to the deformation caused by the

‘resize’ operation. Some original features may be stretched,

compressed, or distorted when images are deformed.

Overall performance of the Siamese mode is best. The features

of a pair of images can be learned simultaneously without

deformation. In some tasks, redundant information in the high-

dimensional feature space may not significantly contribute to

classification tasks. The model can focus more on crucial features

despite losing some information by reducing the dimensions.

Parallel Mode performed the best in the recall of the thickened

group. Data imbalance between the normal and thickened groups

may result in this performance. Meanwhile, overfitting to a specific

category is common in Siamese network structures. Because of

overfitting, the recall of the thickened group of Parallel ResNeXt is

significantly lower than expected.

This study reveals that the Siamese ResNeXt network exhibits

superior robustness in terms of both predictive accuracy and model

performance. A universal and robust feature was extracted from all

samples through the sharing of weight parameters (52), which is of

great significance to predict the thickness of the CMIT. Moreover, the

attribute of shared weights enables the network to be effectively trained

on smaller datasets by reducing the quantity of parameters that need to

be learned, which in turn minimizes the risk of overfitting (53). This

attribute may contribute to the Siamese ResNeXt network’s heightened

accuracy and robustness in predicting CIMT.
4.2.3 Analysis of data modality
Despite a statistically significant age distribution divergence

between the CIMT-normal and thickened cohorts in the

retrospective analysis, the performance of classification models is

reduced if the age factor is embedded in the network, perhaps due to

the relationship between age and CIMT prediction is not linear. The

age should be processed more appropriately.
4.3 Analysis of class activation map

In this investigation, the strategic implementation of Grad-CAM

technology on the Siamese ResNeXt network has yielded pivotal

insights into the differential feature presentations within fundus

imagery, particularly under the diverse physiological states of normal

and CIMT. In instances of normal CIMT, the feature mappings

prominently coalesce around the vascular environs of the optic disc,

suggesting a heightened degree of focalization and structural order.

This phenomenon ostensibly mirrors the inherent stability and

uniformity of retinal vascular configurations in a salubrious state,

implying a preservation of physiological integrity within these

vascular zones. Consequently, these regions within the fundus

imagery are algorithmically recognized as denotative of a normative

vascular state devoid of significant carotid arterial thickening.

Conversely, the feature mappings associated with thickened

CIMT conditions are markedly disparate, characterized by
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dispersion and an absence of regular patterning, potentially signaling

underlying pathological shifts. This dispersed mapping paradigm

may directly correlate with pathological processes intrinsic to

increased CIMT, culminating in the manifestation of irregular and

heterogeneous vascular attributes within the fundus images. Such

findings indicate potential alterations in the retinal vascular

architecture consequent to CIMT augmentation, engendering a

diverse array of morphological and structural retinal modifications.

These revelations augment our comprehension of the intricate nexus

between cardiovascular health and retinal vascular characteristics and

significantly enhance the potential utility of fundus images as a

sophisticated, non-invasive modality for cardiovascular risk

assessment. This advancement holds substantial promise for

enriching the armamentarium of clinical diagnostics and refining

cardiovascular medicine preventative strategies.

5 Conclusions

The predictive analysis of CIMT through fundoscopic imaging

bears critical implications for the preemptive risk stratification of

macrovascular complications among patients diagnosed with

T2DM. In this research, a range of deep neural network

structures were applied to forecast the thickening of CIMT in

T2DM patients. The architectures included conventional neural

networks, neural networks with parallel structures, siamese neural

networks, and multimodal neural networks integrating age factors.

The siamese ResNeXt model, in particular, showed exceptional

efficacy in predicting CIMT thickening, recording a recall rate of

88.0% and an AUC of 90.88% on the validation set and exhibited

notable robustness in the testing phase. Nevertheless, with the

impetus for future research to focus on enhancing interpretable

machine learning features, alongside the enlargement of sample

cohorts and multi-center study inclusion, significant advancements

in the precision of CIMT predictive models based on fundoscopic

imaging are expected. This research delineates a foundational

framework for the integration of ocular fundoscopic assessments

in the realm of cardiovascular diagnostics. It suggests expansive

prospects for its application in clinical settings, enriching the early

cardiovascular disease intervention methodologies.
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9. Batu Oto B, Kılıçarslan O, Kayadibi Y, Yılmaz Çebi A, Adaletli I,̇ Yıldırım SR.
Retinal microvascular changes in internal carotid artery stenosis. J Clin Med. (2023)
12:6014. doi: 10.3390/jcm12186014

10. Rajput Y, Gaikwad S, Dhumal R, Gaikwad J eds. Classification of non-
proliferative diabetic retinopathy in terms of dark and bright lesions using multi-
layered perceptron (Mlp). In: International Conference on Information and
Communication Technology for Intelligent Systems. Singapore: Springer.

11. Revathi T, Sathiyabhama B, Sankar S. Diagnosing cardio vascular disease (Cvd)
using generative adversarial network (Gan) in retinal fundus images. Ann Romanian
Soc Cell Biol. (2021) 25:2563–72.

12. Courtie E, Veenith T, Logan A, Denniston A, Blanch R. Retinal blood flow in
critical illness and systemic disease: A review. Ann Intensive Care. (2020) 10:1–18.
doi: 10.1186/s13613-020-00768-3

13. Sheng B, Chen X, Li T, Ma T, Yang Y, Bi L, et al. An overview of artificial
intelligence in diabetic retinopathy and other ocular diseases. Front Public Health.
(2022) 10:971943. doi: 10.3389/fpubh.2022.971943

14. Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: A
systematic literature review, synthesizing framework and future research agenda. J
Ambient Intell Humaniz Comput. (2022) 14:1–28. doi: 10.1007/s12652-021-03612-z

15. Tan Y, Sun X. Ocular images-based artificial intelligence on systemic diseases.
BioMed Eng Online. (2023) 22:49. doi: 10.1186/s12938-023-01110-1

16. Qu J, Xie H, Xie Y, Hu H, Li J, Sun Y, et al eds. Multi-relational graph
convolutional neural networks for carotid artery stenosis diagnosis via fundus
images. In: International Workshop on Ophthalmic Medical Image Analysis.
Vancouver, BC, Canada: Springer.

17. Monferrer-Adsuara C, Remolı-́Sargues L, Navarro-Palop C, Cervera-Taulet E,
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