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Chinese Medicine, Changchun, China, 3College of Integrative Medicine, Changchun University of
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Background: Previous observational studies have demonstrated a link between

diabetes mellitus(DM) and primary biliary cholangitis (PBC). Nevertheless, since

these relationships might be confused, whether there is any causal connection or

in which direction it exists is unclear. Our investigation aimed to identify the

causal associations between DM and PBC.

Methods:We acquired genome-wide association study (GWAS) datasets for PBC,

Type 1 diabetes(T1DM), and Type 2 diabetes(T2DM) from published GWASs.

Inverse variance-weighted (IVW), MR-Egger, weighted median (WM), Simple

mode, and weighted mode methods were used to determine the causal

relationships between DM(T1DM or T2DM) and PBC. Sensitivity analyses were

also carried out to ensure the results were robust. To determine the causal

relationship between PBC and DM(T1DM or T2DM), we also used reverse

MR analysis.

Results: T1DM was associated with a higher risk of PBC (OR 1.1525; 95% CI

1.0612-1.2517; p = 0.0007) in the IVWmethod, but no evidence of a causal effect

T2DM on PBC was found (OR 0.9905; 95% CI 0.8446-1.1616; p = 0.9071) in IVW.

Results of the reverse MR analysis suggested genetic susceptibility that PBC was

associated with an increased risk of T1DM (IVW: OR 1.1991; 95% CI 1.12-1.2838;

p = 1.81E-07), but no evidence of a causal effect PBC on T2DM was found (IVW:

OR 1.0101; 95% CI 0.9892-1.0315; p = 0.3420).

Conclusion: The current study indicated that T1DM increased the risk of

developing PBC and vice versa. There was no proof of a causal connection

between PBC probability and T2DM. Our results require confirmation through

additional replication in larger populations.
KEYWORDS

primary biliary cholangitis, diabetes mellitus, type 1 diabetes, type 2 diabetes, Mendelian
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1 Introduction

Primary biliary cholangitis (PBC) is an autoimmune disease

characterized by positive serum antimitochondrial antibodies

(AMA), elevated alkaline phosphatase (ALP), and histological

manifestations of non-suppurative destructive cholangitis, which

ultimately leads to hepatic fibrosis as well as cirrhosis and

hepatocellular carcinoma, and the pathogenesis of which is yet to

be fully defined (1). Statistically, the prevalence of PBC per 100,000

people in Europe, North America, and the Asia-Pacific region

ranges from 1.91 to 40.2 (2). Ursodeoxycholic acid (UDCA) is

globally recognized as the most effective therapy for PBC because of

its ability to improve patients’ biochemical indexes, alleviate

pathological changes, and decrease disease development; however,

up to 40% of patients do not respond to UDCA treatment (3). PBC

has been linked to several extrahepatic immune-mediated disorders

in the past few years, including DM, celiac disease, inflammatory

bowel disease, and rheumatoid arthritis (4–7).

The incidence of DM is increasing globally, with the projected

global incidence of DM among individuals aged 20-79 years

estimated to reach 12.2% (783.2 million individuals) by 2045.

This surge poses a significant menace to individuals’ health and

well-being (8). Diabetes has a long history of causing liver damage.

In a retrospective cohort study in China, T2DMwas found to be one

of the major metabolic risk factors for PBC, with 11.9% of patients

with T2DM having lower albumin, platelet counts and a higher rate

of cirrhosis than non-T2DM patients; however, 54.3% of these

patients also had hyperlipidemia, hypertension and NAFLD (9),

which caused some interference in the study. In the most recent

years, several epidemiologic studies have demonstrated a strong

correlation between DM and autoimmune liver disease. A case-

control study including 36,467 patients with AIH, 39,924 patients

with PBC, and 4,877 patients with PSC showed an incidence of T1

DM of 1.7% and T2 DM of 18.1% in patients with PBC (10),

suggesting that raising awareness of the risk of diabetes in patients

with autoimmune liver disease is necessary. In another study, DM

was strongly associated with the progression of PBC. Six non-

invasive scores (FIB-4, APRI, RPR, MRS, the Newcastle model, and

ALBI scores) were used to predict the severity of hepatic fibrosis,

and it was found that non-invasive scores of PBC-DM were

significantly higher than those of PBC patients. Effective

management of DM could slow down the progression of PBC to

cirrhosis, as it was observed that the occurrence of cirrhosis was

notably higher in patients (62.2%) when compared to those with

PBC alone (42%) (7). It can be seen that improving the treatment

and monitoring of DM in patients with PBC is one of the most

essential tools to prevent disease progression (11). These findings

suggest a robust clinical association between PBC and DM.

However, there are limited studies on the potential causal

relationship and pathologic mechanisms between DM and PBC,

and further studies are needed to confirm this.

The ability of traditional observational studies to infer causality

is vulnerable to potential confounding and reverse causation. An

epidemiological methodology called MR analysis can support causal

inference by employing genetic variations as instrumental variables
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(IVs) for exposure (12).MR analysis is unique compared to

observational studies. It reduces confounding bias and prevents

reverse causation because genetic alleles are randomized at

conception, and disease cannot change germline genotype (13).

As a result, MR has been applied more frequently to evaluate likely

causal links between exposures and results (14). MR analysis uses

genetic variation as IVs to detect and quantify causal relationships

(15). The MR research method, which uses single nucleotide

polymorphisms (SNPs) as IVs, is unaffected by environmental

factors and can effectively control the interference of confounding

factors, similar to randomized trials. The present study

implemented a two-sample bidirectional MR study to investigate

the potential causality between two main subtypes of DM(T1DM

and T2DM) and PBC outcomes using large-scale GWAS data.
2 Materials and methods

2.1 Study design

We performed a two-sample bidirectional MR study using

openly published GWAS summarized data. The MR analysis

proceeded on the basis of three key assumptions: (1) IV must be

strictly related to DM (T1DM and T2DM); (2) IV must be

independent of confounders between DM (T1DM and T2DM)

and PBC; and (3) IV will not affect PBC due to factors besides

DM (T1DM and T2DM). The first analysis investigated causality

between DM (T1DM and T2DM) as an exposure and PBC as the

outcome, and the second analysis investigated reverse causality,

with PBC as the exposure factor and DM (T1DM and T2DM) as the

outcome. The flow for this MR study is shown in Figure 1.
2.2 Data sources

All summary statistics were obtained from the IEU OpenGWAS

database (https://gwas.mrcieu.ac.uk/). The T1DM GWAS included

2,649 cases and 183,674 controls(https://gwas.mrcieu.ac.uk/

datasets/finn-b-E4_DM1_STRICT/), while the T2DM GWAS

included 29,166 cases and 183,185 controls (https ://

gwas.mrcieu.ac.uk/datasets/finn-b-E4_DM2_STRICT/). The

T1DM and T2DM cohort populations were of European descent.

Meanwhile, the PBC GWAS dataset included 2764 cases and 10475

controls of European descent. (https://gwas.mrcieu.ac.uk/datasets/

ebi-a-GCST003129/ The PBC cases within the cohort fulfilled the

criteria the American Association for the Study of Liver Diseases set

forth for PBC (16). To mitigate population stratification bias, we

exclusively utilized data from studies that specifically focused on

populations of European origin. No additional ethical approval was

necessary as all the data were publicly available.
2.3 Selection of IVs

In this study, we selected single nucleotide polymorphisms

(SNPs) closely associated with T1DM (p < 5 × 10 - 6) and also
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identified SNPs closely related to T2DM and PBC (p < 5 × 10 - 8). In

order to guarantee the independence of SNPs, we eliminated those

with linkage disequilibrium (r2 = 0.001, genetic distance = 10,000

kb). To mitigate the influence of IVs on the causal analysis, we

incorporated the F statistic, which indicated a value higher than 10.

The computation of the F statistic followed the formula: F = (R2/(1 -

R2)) * ((n - k - 1)/k) (17); here, n represents the sample size, and R2

denotes the variance explained by the IVs. The calculation of R2

involved the minor allele frequency (MAF) and the value of b, as
follows: R2 = 2 * MAF * (1 - MAF) * b2. We then extracted the

remaining SNPs from the ending summary statistics. SNPs

significantly associated with the outcomes directly were dropped

to meet the third assumption. After harmonizing SNPs-exposure

and SNPs-outcome, we excluded SNPs in palindromes based on

allele frequencies, while to avoid potential pleiotropy, we used

PhenoScanner V2 (https://www.phenoscanner.medschl.cam.ac.uk/

) to exclude association with outcome confounders or risk factors of

IVs (18). To ensure the reliability of MR estimates (19), we

conducted MR-pleiotropy residual sum and outlier (MR-

PRESSO) analysis before the MR analysis. This analysis helped

identify and remove any outliers with potential pleiotropy. The

SNPs that remained after these analyses were then used as genetic

instruments, following the abovementioned steps.
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2.4 Estimation of causal effect

After compiling the list of SNPs based on the selection above

criteria, we performed a forward MR analysis to assess the total

impact of these selected SNPs for DM on PBC. IVW, simple mode,

weighted mode, MR-Egger regression, andWMwere all used in this

investigation. The validity of the results was verified by comparing

the effect estimates obtained from the five different MR methods

since the horizontal pleiotropy of the IVs could skew the results.

The identical MR methods were then applied to the reverse-

direction MR analysis. The odds ratios (OR) for effect estimates

were given with 95% confidence intervals (CI).
2.5 Sensitivity analysis

We employed the MR-Egger intercept test to determine

whether horizontal pleiotropy was present. The results should be

regarded cautiously if the intercept is significant (p < 0.05). The

MR-Egger intercept test findings were displayed using scatter plots.

Additionally, we looked at heterogeneity using Cochran’s Q

statistics, where substantial heterogeneity (p < 0.05) denotes the

existence of heterogeneity among the included studies. Funnel plots

were used to show the results. We apply the MR-PRESSO outlier
B

A

FIGURE 1

The flow diagram of the MR analysis. (A) DM SNPs were employed as the genetic instruments to examine the causal effect of DM on PBC. (B) PBC
SNPs were employed as the genetic instruments to examine the causal effect of PBC upon DM. DM, diabetes mellitus; T1DM, Type 1 diabetes;
T2DM, Type 2 diabetes; PBC, primary biliary cholangitis; MR, Mendelian randomization; IVW, inverse variance weighted; WM, weighted median.
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test to exclude aberrant SNPs (outliers) and estimate the adjusted

values to eliminate horizontal pleiotropy. In the leave-one-out

study, forest plots were created to visually assess the robustness of

the results after SNPs were removed one at a time.
2.6 Statistical analysis

The MR-PRESSO (version 1.0) and TwoSampleMR (version

0.5.7) packages in R Version 4.3.1 were used for these MR analyses.

Moreover, the ggplot2 package produced graphs. The sensitivity

and MR analysis results about the exposures and outcomes were

deemed statistically significant at p < 0.05 after both sides ran their

statistical tests.
3 Results

3.1 The causal effect of T1DM and T2DM
on PBC

3.1.1 Effect of T1DM on PBC
This study obtained 11 SNPs associated with T1DM, which met

the universally accepted genome-wide significance threshold (p < 5

× 10−6, r2 = 0.001, distance = 10,000 kb) for exposure. One SNP

(rs8029659) in T1DM was removed to eliminate smoking-related

confounding factors. Another SNP (rs11203203) related to PBC-

relevant trait was ruled out. Additionally, our MR analysis

demonstrated no instances where we utilized a feeble instrument

(all F-statistics>10). Finally, the remaining 9 SNPs were selected as

IVs for T1DM (Supplementary Table 1).

A strong association was discovered between T1DM and PBC

(IVW: OR 1.1525; 95% CI 1.0612-1.2517; p = 0.0007). WM (WM:

OR1.1513; 95% CI 1.0895-1.2166; p = 5.61E-07), Simple mode

(Simple mode: OR 1.29; 95% CI 1.1178-1.4888;p = 0.0082)and

weighted mode (weighted mode: OR 1.1520; 95% CI 1.0917-1.2157;

p = 0.0008) confirmed the T1DM - PBC association. MR-Egger

regression showed a consistent direction but insignificant result (OR

1.1554,95%CI 1.0191-1.3099, p = 0.0587) (Supplementary Table 4).

The analysis of T1DM on PBC showed significant heterogeneity

according to Cochran’s Q test (Q = 22.292; p = 0.0044). However,

the observed heterogeneity in some outcomes did not undermine

the MR estimates since the random-effect IVW adopted in this

study was able to mitigate the pooled heterogeneity. Furthermore,

the p-value was greater than 0.05 in the MR-PRESSO global tests,

indicating the absence of horizontal pleiotropy across the analyses.

(Supplementary Table 6).

3.1.2 Effect of T2DM on PBC
Based on the abovementioned procedures and criteria, 24 SNPs

(p < 5 × 10 - 8)were tentatively chosen as IVs for T2DM. Removing

the following SNPs for being palindromic with intermediate allele

frequencies: rs11712037, rs6780171, and rs745805, finally, 21 SNPs

were screened as genetic instruments for T2DM (Supplementary
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Table 2). After analysis, we found no evidence of a causal effect

T2DM on PBC (IVW: OR 0.9905; 95% CI 0.8446-1.1616;

p = 0.9071), WM (WM: OR 0.8710; 95% CI 0.7139-1.0627;

p = 0.1736), and MR Egger (MR Egger: OR 0.8415; 95%

CI 0.6148-1.1518; p= 0.2948) confirmed these findings

(Supplementary Table 4). No considerable or suggestive

correlation was found between the genetic predisposition for

T2DM and the likelihood of PBC (p> 0.05). Therefore, additional

examination of heterogeneity and pleiotropy was unnecessary.

However, it is important to note that our statistical power might

have been insufficient to identify these tenuous connections.
3.2 The causal effect of PBC on T1DM
and T2DM

3.2.1 Effect of PBC on T1DM
Furthermore, we performed an MR analysis in the opposite

direction, exploring the relationship between PBC and DM

subtypes. Throughout this reverse-direction MR analysis, 24 SNPs

were provisionally identified as IVs for PBC, exhibiting significance

at the genome-wide threshold (p < 5 × 10-8) and demonstrating

independent inheritance (r2 = 0.001 and distance = 10,000 kb) from

the pool of 1,124,241 SNPs. Two SNPs(rs12924729 and rs2304256)

associated with T1DM-relevant traits were found by inquiring

about the PhenoScanner V2 database. Six SNPs (rs10488631

rs485499 rs4938573 rs6679356 rs7774434 rs9591325) were

excluded from the analysis because of being outliers identified by

MR-PRESSO. In the end, MR analysis accepted 16 SNPs to evaluate

the causal impact of PBC on T1DM (Supplementary Table 3).

Assessing the appropriateness of genetic instruments for MR

analysis, they proved suitable based on F statistics and the

proportion of variance explained (R2).

A strong association was discovered between PBC and T1DM

(IVW: OR 1.1991; 95% CI 1.12-1.2838; p = 1.8E-07). WM (WM: OR

1.1947; 95% CI 1.0932-1.3056; p = 0.0001) and weighted mode

(weighted mode: OR 1.2095; 95% CI 1.0669-1.3711; p= 0.0087)

confirmed the PBC and T1DM association (Supplementary Table 5).

Cochran’s Q test revealed no significant heterogeneity in the

analysis of total PBC on T1DM(Q = 16.3371; p = 0.3600). No

directional pleiotropy bias was found in the MR-Egger test

(Intercept = 0.0061; p = 0.8640). No SNP outliers were found in

the MR-PRESSO global test (RSSobs = 18.0021; p = 0.4364) and

leave-one-out MR analysis (Supplementary Table 6).

3.2.2 Effect of PBC on T2DM
In the same way, we also performed a reverse magnetic

resonance investigation between T2DM and PBC. However, the

IVW approach did not uncover any reverse causal associations

(IVW: OR 1.0101; 95% CI 0.9892-1.0315; p = 0.3420). Consistent

results were obtained using WM, Simple mode, and Weighted

mode. The findings from the reverse MR analysis can be found in

Supplementary Table 5. Consequently, there was no need for

additional examination of heterogeneity and pleiotropy.
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The scatter plots of causal relationships of MR analyses are

shown in Figure 2. The causal relationships are shown in Figures 3

and 4. The funnel, leave-one-out and forest plots of MR analyses are

shown in Supplementary Figures 1–3.
4 Discussion

PBC is an autoimmune liver disease of which pathogenesis is

still unclear, and the clinical treatment effect is unsatisfactory. PBC’s

biochemical insensitivity to UDCA and the development of liver

cirrhosis or fibrosis put it at a markedly higher risk of progressing to

hepatocellular carcinoma (20). According to the results of a long-

term follow-up study on 1,615 patients with early-stage PBC, it was

found that 50% of the patients progressed to a more severe stage

within five years. This information can help healthcare

professionals identify those at higher risk and provide early

intervention to prevent or delay disease progression (21).

Investigating diseases that may increase the risk of developing

PBC cannot be overlooked. This critical step ensures early

detection and effective prevention strategies. Megyesi et al.

proposed the concept of Hepatic Diabetes (HD) in 1967, pointing

out that patients with chronic liver disease are more likely to have

impaired glucose tolerance and complicated diabetes (22). Although

some researchers have studied the relationship between DM and

liver disease, the majority of studies have solely focused on non-

alcoholic fatty liver disease (23, 24), and little information is
Frontiers in Endocrinology 05
available on the potential relationship between DM and PBC risk.

Meanwhile, previous findings in the literature were limited to

observing correlations, and reverse causality may not be avoided.

By leveraging the power of MR, we delved into the correlation

between DM and PBC risk, employing a vast array of genomic data.

Our findings present a compelling method for investigating this

crucial link. We selected two main DM subtypes (T1DM and

T2DM) with sufficient sample size. Investigating the relationship

between PBC and T1DM or T2DM susceptibility utilized multiple

MR methods and reverse MR. This approach allowed for a

comprehensive and in-depth analysis, providing valuable insights

into the underlying mechanisms. It is intriguing that genetically

determined T1DM has a suggestive correlation with an increased

risk of PBC. The pattern of association between genetically

determined T2DM and PBC risk was unclear. Reverse MR

Analysis found that patients with PBC were causally associated

with increased risks of T1DM, but no causal relationship between

PBC and T2DM. This groundbreaking MR study has provided the

first-ever estimation of the causal relationship between DM and

PBC, with sensitivity tests verifying that outliers, horizontal

pleiotropy, and reverse causality were not contributing factors.

However, the mechanisms underlying this association are

unidentified. As one of the chronic autoimmune diseases, T1DM is

characterized by pancreatic beta cell destruction or damage leading to

insulin deficiency and hyperglycemia (25). Over the years, the

incidence and prevalence of T1DM have been on the rise, bringing

a severe economic burden to patients’ families and lives (26–28).
B

C D

A

FIGURE 2

Scatter plots of primary MR analysis. (A) T1DM on PBC; (B) T2DM on PBC; (C) PBC on T1DM; (D) PBC on T2DM. T1DM, Type 1 diabetes; T2DM, Type
2 diabetes; PBC, primary biliary cholangitis; MR, Mendelian randomization; IVW, inverse variance weighted; WM, weighted median.
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T1DM and PBC are both autoimmune diseases involving interactions

between genetic and immune factors, raising the possibility that they

are somehow related. Observations of diverse autoimmune diseases

have been frequently reported (29, 30). Although there is insufficient

biochemical or genetic evidence, the idea or hypothesis of shared

autoimmunity has been established to recognize these concurrencies.

Through analysis, it was predicted that T1DM could be predicted

from the high expression of 7 pivot genes: DNA Damage Inducible

Transcript 4 (DDIT4), Establishment Of Sister Chromatid Cohesion

N-Acetyltransferase 2 (ESCO2), SH3 Domain Binding Protein 4

(SH3BP4), Prickle Planar Cell Polarity Protein 1 (PRICKLE1),

EPM2A Interacting Protein 1 (EPM2AIP1), Potassium Inwardly

Rectifying Channel Subfamily J Member 15 (KCNJ15) and

Glutamate Metabotropic Receptor 8 (GRM8). According to

genome enrichment analysis (GSEA), most of these central genes

may be primarily in alterations such as inflammation, infection,

immunity, cancer, and apoptosis. At the same time, the exposure

levels of these central genes have also changed in several other

autoimmune diseases, including PBC, suggesting that they may be

common targets in these autoimmune diseases (31). T1DM arises

from a somatic mutation occurring in the epitope-binding groove of

an HLA gene that is predisposed to risk. This mutation directly

impacts the binding affinity between the HLA-insulin-peptide-TCR

complex, thereby triggering an autoimmune pathway. The specific
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autoimmune disease that manifests is contingent upon the peptide

that binds to the mutated epitope-binding groove of the HLA gene.

This connection also gives rise to the potential occurrence of multiple

autoimmune diseases stemming from a single at-risk HLA locus.

Consequently, T1DM and common autoimmune diseases exhibit a

comparable etiology centred around somatic mutations (32). In

animal experiments, researchers utilized a traditional method of

recombining breeding to exhibit that the NOD background’s

existence of the altered Pkhd1del36-67 prompts the emergence of

autoimmune biliary disease, showcasing resemblances to human PBC

(33). It is interesting to note that reports of T1DM and PBC

development in humans have also been made (34). The occurrence

rate of primary biliary cholangitis (PBC) is considerably higher in

women compared to men; nonetheless, a case report highlights an

atypical occurrence of PBC in a male individual diagnosed with

T1DM (35). These echo the results of our study - T1DM and PBC

may be causally related.

Although some studies have shown that T2DM and PBC often

co-exist (10, 36, 37), our investigation utilizing MR analysis did not

reveal any substantiating proof for a causal influence of T2DM on

PBC, and vice versa. PBC causes minor bile duct epithelial cell injury,

cholestasis, and immune regulation disorders but also causes severe

metabolic abnormalities, especially glucose metabolism (38). In a

retrospective examination of the medical documents on individuals
FIGURE 4

Causal effects for PBC on DM (T1DM OR T2DM).
FIGURE 3

Causal effects for DM (T1DM OR T2DM) on PBC.
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diagnosed with PBC, the study gathered follow-up information by

conducting periodic, standardized telephone interviews. The results

unveiled a higher prevalence of type 2 diabetes and greater liver

ailment severity at the baseline among patients afflicted with gallstone

disease (39). A case report demonstrated that hepatic inflammation

plays a vital role in the pathogenesis of T2DM by systemic insulin

resistance in chronic liver disease, including PBC (40). Abnormal bile

acid metabolism is one of the essential mechanisms of PBC. At the

same time, bile acids also play an important role in glucose

metabolism (41). The reduced expression of farnesoid X receptor

(FXR) in PBC patients limits the role of bile acids, leading to insulin

resistance and thus affecting glucose metabolism (42). Previous

studies have demonstrated that FXR agonists improve

hyperglycemia and hyperlipidemia in diabetic mice by inhibiting

liver gluconeogenesis and enhancing insulin sensitivity by increasing

liver glycogen synthesis and glycogen content (42, 43). Nonetheless,

another study showed that FXR antagonists inhibit hepatic

gluconeogenesis through the FXR/miR-22-3p/PI3K/AKT/FoxO1

pathway and promote glycogen synthesis via the FXR/miR-22-3p/

PI3K/AKT/GSK3b pathway, thereby improving glucose homeostasis

in T2DMmice (44).In addition, it is currently believed that defects in

Anion exchanger-2 (AE2), a Cl-/HCO3- exchanger located in the

apical membrane of the BEC that pumps HCO3- out of the cell, is one

of the main contributors to changes in bile acid metabolism. Biliary

HCO3 secretion will prevent bile acids from invading bile duct cells

and inducing cytotoxicity. Studies have shown that reduced levels of

AE2 mRNA and AE2-associated dysfunction in liver and peripheral

blood mononuclear cell specimens from patients with PBC may play

a role in the pathogenesis of PBC (45, 46). Paradoxically, another

study showed that AE2 may be a glucose-sensitive transmembrane

transporter and a new potential therapeutic target for diabetic

vasculopathy. High glucose can upregulate the expression and

activity of AE2, increase [Cl(-)]i in a time- and concentration-

dependent manner, induce cell apoptosis, and produce diabetic

vasculopathy (47). In addition, it is now widely accepted that the

development of oxidative stress, lipotoxicity, and endoplasmic

reticulum stress (ERS) that accompanies episodes of T2DM leads

to hepatocellular inflammation, injury, hepatic tissue necrosis and

severe liver disease, suggesting that T2DM exacerbates the

progression of liver disease (48). Nonetheless, our study suggested

no causal relationship between T2DM and PBC, but further

elucidation of the mechanisms behind the association between

these two diseases could contribute to clinical prevention as

research progresses.

The primary contribution of our work is that we investigated

the bidirectional link between DM and PBC using a 2-sample MR

technique for the first time, to the best of our knowledge. This

approach is less vulnerable to reverse causality, confounding

variables, and exposures that are the same for all groups than

observational research. Moreover, the DM subtypes are narrowly

defined to remove the impact of coexisting diseases on results.

However, the current study has many areas for improvement as

well. Firstly, for this Mendelian analysis, we chose the DM subtypes
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T1DM and T2DM since they had a sample size that was

comparatively large enough. Due to the small sample size,

gestational diabetes mellitus and diabetes mellitus of specific

forms were excluded; these conditions will be further improved

after more extensive GWAS data are available. Secondly, despite

utilizing the largest GWAS on T1DM, only a limited number of

SNPs adhere to genome-wide significance, producing feeble genetic

instruments. To address this issue, we relaxed the statistical

threshold (p < 5 ×10−6) to incorporate supplementary SNPs.

More research will be required to support our conclusions when

more significant GWAS numbers become available. Thirdly, our

findings cannot be generalized to other racial groups because the

GWAS we used comes from individuals with European ancestry.

These constraints require Future research to establish causality and

look into probable processes. It is necessary to provide relevant

clinical recommendations.
5 Conclusions

Our MR analysis indicated a potential causal connection

between DM and PBC. However, this association was specific to

T1DM and PBC, and no causal link existed between T2DM and

PBC. Nevertheless, the available clinical research on the correlation

between DM and PBC is currently limited, and comprehensive

long-term prospective studies are imperative to enhance our

comprehension of the causal relationship between DM and PBC.
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