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Peng Cao2† and Chan Kang1*

1Department of Orthopedic Surgery, Chungnam National University School of Medicine,
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University, Wuxi, China
Background: Osteoporosis (OP) and cardiovascular disease (CVD) are major

global public health issues, especially exacerbated by the challenges of an aging

population. As these problems intensify, the associated burden on global health is

expected to increase significantly. Despite extensive epidemiological

investigations into the potential association between OP and CVD, establishing

a clear causal relationship remains elusive.

Methods: Instrumental variables were selected from summary statistics of the

IEU GWAS database. Five different components of BMD (heel BMD, LS BMD, FA

BMD, FN BMD, and TB BMD) were used as OP phenotypes. CHD, MI, and stroke

were selected to represent CVD. Multiple analysis methods were used to evaluate

the causal relationship between CVD and OP comprehensively. In addition,

sensitivity analyses(Cochran’s Q test, MR-Egger intercept test, and “leave one

out” analysis) were performed to verify the reliability of the results.

Results: The MR showed a significant causal relationship between CHD on heel

BMD and TB BMD; in the reverse analysis, there was no evidence that OP has a

significant causal effect on CVD. The reliability of the results was confirmed

through sensitivity analysis.

Conclusion: The study results revealed that CHD was causally associated with

Heel BMD and TB BMD, while in the reverse MR analysis, the causal relationship

between OP and CVD was not supported. This result posits CHD as a potential

etiological factor for OP and prompts that routine bone density assessment at

traditional sites (forearm, femoral neck, lumbar spine) using DAX may

inadequately discern underlying osteoporosis issues in CHD patients. The

recommendation is to synergistically incorporate heel ultrasound or DAX for

total body bone density examinations, ensuring clinical diagnostics are both

precise and reliable. Moreover, these findings provide valuable insights for public

health, contributing to the development of pertinent prevention and

treatment strategies.
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1 Introduction

Cardiovascular disease (CVD) stands as a predominant

contributor to global morbidity and mortality. The prevalence of

CVD nearly doubled from 1990 to 2019, rising from 271 million to

523 million. Concurrently, deaths from CVD surged from 12.1

million to 18.6 million (1). Notably, in 2019, CVD emerged as the

primary cause of death in Asia, claiming 10.8 million lives and

representing approximately 35% of total fatalities in the region (2).

According to the most recent published reports by the American

College of Cardiology, the global incidence of cardiovascular diseases

witnessed a 29.01% increase over the past decade, culminating in

607.64 million cases in 2020. Correspondingly, the death toll rose to

19.05 million, marking an 18.71% surge over the same period (3).

While the current trajectory of CVD prevention appears promising,

there remains a compelling imperative to formulate and implement

effective monitoring and prevention strategies aimed at alleviating the

burden of CVD, particularly in underserved global populations (4).

Additionally, with a trend toward younger onset of CVD, a pressing

need exists to comprehensively comprehend the pathogenesis of

CVD to confront this inevitable challenge (5).

Osteoporosis (OP), a metabolic bone disorder stemming from a

convergence of multifactorial elements, may result in a reduction of

bone density in mild cases, while in severe instances, it can

culminate in fractures. The fundamental etiology of the condition

lies in the dysregulation between bone formation and resorption

processes (6, 7). Epidemiological data underscores a staggering

global prevalence of osteoporosis is 19.7%, and osteopenia is as

high as 40.4% (8). Projections based solely on population aging

portend a substantial escalation in the majority of osteoporosis and

fragility fractures in the coming decade (9). Regrettably, a

worldwide survey targeting older demographics reveals an

osteoporosis prevalence of 21.7%, with the highest rates observed

in Asian countries at 24.3%, succeeded by Europe (16.7%) and the

United States (11.5%) (10). In light of these findings, some scholars

boldly advocate for universal osteoporosis assessment and

intervention, positing it as a requisite measure to mitigate the

direct and indirect global burden imposed by osteoporosis (11).

Evidently, osteoporosis’s disconcerting status necessitates urgently

exploring its causative factors to curtail its global impact.

OP and CVD commonly coexist in clinical settings. Despite

numerous observational studies attempting to ascertain the precise

relationship between them, a definitive consensus remains elusive.

Given this context, the imperative to clarify the causal link between

OP and CVD becomes even more pronounced. Not only does this

hold clinical significance, but it also fortifies our preparedness to

confront ensuing challenges. Observational studies, susceptible to

confounding factors, need to ascertain the causal relationship

between OP and CVD more adequately. To circumvent these

limitations, Mendelian randomization (MR) emerges as a potent

method for causal inference, utilizing genetic variation as an

instrumental variable (IV). This approach effectively mitigates

confounding biases inherent in traditional epidemiological research

(12). Consequently, to establish the causal relationship between OP

and CVD definitively, we conducted a bi-directional MR study.
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2 Materials and methods

2.1 Research design

This study adheres to the methodological tenets outlined in the

Guideline (13). Employing bi-directional Mendelian randomization

(MR) analysis involving two datasets, we sought to delineate the

directional causality between CVD and OP, encompassing diverse

analytical facets. Initially, we scrutinized potential causal

associations between CVD (coronary heart disease [CHD],

myocardial infarction [MI], Stroke) and OP indicators (total body

BMD [TB BMD], lumbar spine BMD [LS BMD], forearm BMD [FA

BMD], femoral neck BMD [FN BMD], Heel BMD). Subsequently,

we conducted a reciprocal analysis in the opposite direction. The bi-

directional MR analysis involving two datasets is depicted in

Figure 1 below. All data used in this study were obtained from

free and open databases or existing publications and did not require

ethical approval to be conducted.
2.2 Data sources

OP and cardiovascular disease CVD exhibit a substantial

hereditary component, with evidence suggesting heritability rates

of up to 40% to 60% for coronary artery disease and 60% to 80% for

BMD (14, 15). This hereditary influence poses significant challenges

to our endeavors to alleviate the burdens imposed by these

conditions. The most recent Global Burden of Disease (GBD)

statistics underscore the pivotal role of ischemic heart disease

(IHD) and stroke in contributing to the overall burden of CVD

(1). IHD, predominantly manifesting as coronary artery disease,

serves as the primary pathological process underlying IHD, with the

terms often employed interchangeably (16). Acute cardiovascular

events, including common strokes and myocardial infarctions,

constitute emergencies within the spectrum of CVD (5).

Consequently, representative CVDs such as CHD, stroke, and MI

were selected for investigation. Osteoporosis diagnosis, as per the

World Health Organization (WHO), is established when BMD

measured at the spine, hip, or wrist falls more than 2.5 standard

deviations below the average BMD reference value for young adults

(17). Currently, dual-energy X-ray absorptiometry (DXA) serves as

the standard clinical method for detecting osteoporosis. Despite its

widespread use, DXA measurements may yield errors for

individuals with immature bones, necessitating the adoption of

whole-body measurements, particularly in pediatric populations

(18). Given the limitations of DXA for large-scale osteoporosis

screening, quantitative ultrasound (QUS) emerges as a viable

alternative characterized by simplicity, portability, cost-

effectiveness, and the absence of ionizing radiation; it is suitable

for bone health assessments in diverse populations, including young

children. Furthermore, when juxtaposed with DXA for fracture

prediction, the overall advantages of QUS are relatively apparent

(19). Additionally, heel bone density estimation using ultrasound

has high heritability and a strong correlation with DXA-based bone

density (20). Consequently, our selection of LS BMD, FA BMD, and
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FN BMD measured by DXA, along with TB BMD and Heel BMD,

as representative components for OP aimed to guarantee the

reliability and persuasiveness of the chosen BMD parameters. In

assembling the largest GWAS database to date, encompassing three

separate GWAS summary statistics for LS BMD (n = 28,498), FN

BMD (n = 32,735), and FA BMD (n = 8143), our study stands at the

forefront of DXA-measured BMD research. While age is a

recognized common risk factor for both OP and CVD, the

majority of prior investigations have concentrated on adults,

particularly older women. However, compelling evidence

indicates that children with congenital heart disease are also

susceptible to severe metabolic bone disease and fragility-related

fractures (21). Motivated by this insight, our study explored the

potential age-specific relationship between CVD and TB BMD

across five distinct age groups (0–15, 15–30, 30–45, 45–60, and

over 60 years old) as detected by DXA. This targeted approach aims

to facilitate early and precise intervention in corresponding age

cohorts While fortifying the reliability of our research outcomes. To

the best of our knowledge, this study represents the first relatively

comprehensive evaluation of Mendelian randomization between

CVD and OP. Detailed information on the data employed is

available in (Table 1).
2.3 Genetic instrumental variable
selection criteria

To identify Proper single nucleotide polymorphisms(SNPs) of

CVD and BMD, our approach in the OPEN GWAS databases

involved a meticulous series of steps. Firstly, SNPs demonstrating

robust association (p < 5E-8), independent inheritance (r2 < 0.001,
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kb = 10,000), and lack of linkage disequilibrium (LD) were

meticulously selected from the GWAS data of CVD or BMD.

This curation process was executed through the clump data

function within the Two-Sample Mendelian Randomization (MR)

package in R software (version 4.3.1). Subsequently, outcome-

associated SNPs were systematically eliminated by querying each

one individually using the PhenoScanner database (http://

www.phenoscanner.medschl.cam.ac.uk). Following this, SNPs

featuring palindromic alleles and incompatible variations were

systematically excluded to preclude chain ambiguity issues. The

remaining SNPs underwent F-statistics calculation to assess the

correlation between exposure and SNPs, with the value less than 10

indicating weakness and necessitating elimination (22). The

resultant SNPs, which were deemed robust, were employed for

the subsequent MR analysis. To evaluate the efficacy of instrumental

variables (IVs), F statistics for each SNP were computed using the

formula F = R2(N-2)/(1-R2). The calculation formula for R2 is

articulated as R2 = (2 x EAF x (1 - EAF) x beta^2)/[(2 x EAF x (1 -

EAF) x beta^2) + (2 x EAF x (1 - EAF) x N x (SE(beta)^2))], where

EAF represents the effect allele frequency, N is the sample size, beta

signifies the estimated impact of the genetic effect on the outcome,

and SE denotes the standard error of the genetic effect (23).
2.4 MR analysis

To fortify the robustness of our study findings, we employed a

comprehensive approach encompassing four distinct methods

within the MR analysis framework. These methodologies included

inverse variance weighting (IVW), MR-Egger regression, weighted

mode, and weighted median. The selection of IVW as the primary
FIGURE 1

Design and hypotheses of a bi-directional Mendelian randomization study of causality in cardiovascular disease and osteoporosis. MR, Mendelian
randomization. CHD, coronary heart disease; MI, myocardial infarction; FA BMD, Forearm bone mineral density; FN BMD, Femoral neck bone
mineral density; LS BMD, Lumbar spine bone mineral density; TB BMD, Total body bone mineral density.
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analytical method stems from its superior statistical power in

scenarios where instrumental variables (IVs) exhibit no

pleiotropic effects (24). The utilization of either fixed effects IVW

or random effects IVW models depends on the presence or absence

of heterogeneity within the dataset (25). In cases over 50% of data is

obtained from null instrumental variables, the weighted median

approach provides an impartial causal estimate (26). The MR-Egger

method, capable of accommodating horizontal pleiotropic effects in

all SNPs, serves as a valuable tool for estimating the causal

possibility of exposure on the outcome (27). The Bonferroni

method was applied to mitigate the risk of false positives resulting

from multiple comparisons. Consequently, associations with a P

value <0.003 (0.05 divided by 3*5) were deemed significant evidence

of a causal link, while the P value less than 0.05 but greater than

0.003 were considered suggestive evidence.
2.5 Sensitivity analysis

In order to fortify the reliability of the outcomes derived from

MR analysis, a thorough assessment of both heterogeneity and

horizontal pleiotropy was meticulously conducted (28). Cochran’s

Q test estimates, derived from IVW estimates, were used to rule out

heterogeneity among IVs (29). A P value < 0.05 denoted the

presence of substantial heterogeneity. The assessment of

horizontal pleiotropy and the correction of potential outliers were

performed using MR Pleiotropy Residual Sum and Outliers (MR-

Presso) (30). A P value < 0.05 in this context was considered

indicative of significant horizontal pleiotropy. Additionally, the

leave-one-out sensitivity analysis was employed to discern the

potential influence of individual SNPs (31).
3 Results

3.1 Effects of CVD characteristics on BMD
in different parts or at different ages

3.1.1 Set the following conditions
The Instrumental Variable Selection (IVS) exhibited no linkage

disequilibrium (LD) (r2 < 0.001), adhered to the physical distance

threshold (10,000 kb), and possessed genome-wide dominance (p<

5E-8). The data extracted from the Genome-Wide Association

Study (GWAS) database underwent meticulous screening for

Coronary Heart Disease (CHD) (15 SNPs), Myocardial Infarction

(MI) (80 SNPs), and Stroke (17 SNPs) within IVS, as outlined in

Supplementary Table 2; Supplementary Figure S1. Subsequently,

SNPs associated with Bone Mineral Density (BMD) risk factors

were systematically eliminated one by one, aided by the website

(http://www.phenoscanner.medschl.cam.ac.uk), with detailed

information presented in Supplementary Table 2; Supplementary

Figure S2. Following this, the Minor Allele Frequency (MAF)

threshold (>0.01) was applied via the two-sample Mendelian

Randomization (MR) function of the R package to exclude

pal indromic or incompatible SNPs, as e lucidated in

Supplementary Table 2; Supplementary Figure S3. F statistics
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computed for the ultimately obtained SNPs revealed values

exceeding 10, affirming the absence of weak instruments.

Comprehensive details are available in (Supplementary Table 2;

Supplementary Figure S1).
3.1.2 The causal impact of CVD on BMD in
different parts

The outcomes of the IVW method analysis are depicted in

Figure 2. During the MR-Presso global test evaluating CVD impact

on BMD across diverse regions, outliers were identified between

CHD and BMD (LS BMD, Heel BMD), between MI and Heel BMD,

and between stroke and BMD (LS BMD, Heel BMD)

(Supplementary Table 2; Supplementary Figure S4). Following

their removal and subsequent reanalysis, no outliers were

observed (Table 1). Notably, a substantial causal association

emerged between genetically predicted CHD and Heel BMD, as

well as Total Body BMD (Heel BMD: Odds Ratio [OR]: 0.949, 95%

Confidence Interval [CI]: 0.928–0.970, p< 0.001; TB BMD: OR:

0.940, 95% CI: 0.903–0.976, p= 0.002), as depicted in Figure 2. The

beta values direction acquired through IVW analysis aligned

consistently with those analyses with the MR-Egger regression,

weighted mode, and weighted median. Cochran’s Q test revealed

no evidence of heterogeneity in the effects of CHD on Heel BMD

and TB BMD (p > 0.05) (Table 2). Furthermore, MR-Egger

intercept tests indicated no horizontal pleiotropy (Table 2).

Leave-one-out analysis results demonstrated that the IVW

outcomes were not forced by potent ia l s ingle SNPs

(Supplementary Table 1; Supplementary Figure S8, S10), affirming

the significant causal relationship. Similarly, the IVW results

indicated suggestive causal associations between Stroke and LS

BMD and Heel BMD (LS BMD: OR = 1.113, 95% CI: 1.000–

1.237, p = 0.049; Heel BMD: OR = 0.962, 95% CI: 0.933–0.992, p =

0.013), with related Cochran’s Q test and MR-Egger intercept test P

values exceeding 0.05 (Table 2). MR-Presso global tests identified

no outliers, signifying the absence of heterogeneity and horizontal

pleiotropy. However, inconsistencies were noted in the direction of

IVW and MR-Egger results for Stroke on Lumbar Spine BMD and

Heel BMD (Supplementary Table 2; Supplementary Figure S5),

urging caution regarding the robustness of the suggestive

causal relationship.

The IVW method proves that no discernible causal relationship

was identified between other CVDs and BMD at different sites (p >

0.05). Due to heterogeneity between MI and TB BMD and Heel

BMD (p < 0.05) (Table 2), the random-effects IVW method was

employed for analysis. Rigorous sensitivity analyses confirmed the

steadfastness of these Mendelian Randomization effect estimates

(Table 2). Detailed scatter plots, leave-one-out analyses, forest plots,

and funnel plots elucidating the causal relationship between the

remaining CVD and BMD at various sites are available in

Supplementary Table 1; Supplementary Figures S1-S20.
3.1.3 The causal impact of CVD on BMD at
different ages

The results of the IVW test suggest a potential causal

association between CHD and TB BMD in the age group of 0–15
frontiersin.org
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years (OR: 0.876, 95% CI: 0.800–0.959, p= 0.004> 0.003) (Figure 3).

Cochran’s Q test revealed no marked heterogeneity (p > 0.05)

(Table 3). Both MR-Egger regression and the assessment of

horizontal pleiotropy through the MR-Presso global test for CHD

and TB BMD (0–15 years old) indicated no compelling evidence of

horizontal pleiotropic effects (Table 3). Leave-one-out test

confirmed the result’s robustness against the influence of any

single SNP driver (Supplementary Table 1; Supplementary Figure
Frontiers in Endocrinology 05
S26). Detailed scatter plots, forest maps, and funnel plots

illustrating the relationship between CHD and TB BMB(0-15

years old) are provided in Supplementary Table 1; Supplementary

Figure S21, S31, S36. Similarly, it can be seen that there is a potential

causal relationship between MI and TB BMD in the age group of 0-

15 years (OR: 0.917, 95% CI: 0.849-0.990, p= 0.027>

0.003) (Figure 3).

Other IVW results indicated no evidence of a significant causal

relationship between various CVD and TB BMD across different

age groups (Figure 3). While outliers were initially identified in the

MR-Presso global test for MI on TB BMD in the age group of 15–30

years, subsequent removal of outliers (Supplementary Table 2;

Supplementary Figure S4) did not alter the findings. Sensitivity

analysis further supported the stability of these results (Table 3).

Additional visualization results are presented in Supplementary

Table 1. In summary, there is no discernible proof supporting a

causal rapport between CVD and TB BMD across different

age groups.
3.2 Impact of OP characteristics on CVD

3.2.1 Set the following conditions
The Instrumental Variable Selection (IVS) exhibits no linkage

disequilibrium (r2 < 0.001), adheres to the physical distance threshold

(10,000 kb), and possesses significant genome-wide prominence (p <

5E-8). Our comprehensive screening of IVS for TB BMD (85 SNPs),

FA BMD (3 SNPs), FN BMD (21 SNPs), LS BMD (24 SNPs), and

Heel BMD (359 SNPs) is outlined in Supplementary Table 2;

Supplementary Figure S1. Subsequently, aided by professional tools

(http://www.phenoscanner.medschl.cam.ac.uk), we manually

removed SNPs connection with risk factors for different BMDs,

detailed in Supplementary Table 2; Supplementary Figure S2. The

Minor Allele Frequency (MAF) threshold (> 0.01) was applied using

the two-sample Mendelian Randomization (MR) function settings of

the R package to eliminate outliers (Supplementary Table 2;

Supplementary Figure S3). F statistics calculated for the ultimately

obtained SNPs revealed values all exceeding 10, affirming the absence

of weak instruments. Detailed information is provided in

Supplementary Table 2; Supplementary Figure S1.
3.2.2 Causal impact of OP on CVD
The Reverse Mendelian Randomization (MR) analysis is

depicted in Figure 4. Overall, no evidence of a reverse causal

relationship between OP indicators (Heel BMD, TB BMD, LS

BMD, FA BMD, FN BMD) and CVD (CHD, MI, Stroke) was

observed. Only a suggestive causal association emerged between

Heel BMD and CHD (OR= 1.083, 95% CI: 1.000–1.172, p =

0.049), as well as LS BMD and MI (OR= 1.090, 95% CI: 1.029–

1.155, p = 0.004). In the sensitivity analysis, only an abnormal

SNP association between Heel BMD and TB BMD on MI was

identified (Supplementary Table 2; Supplementary Figure S4).

Upon removal and re-analysis, no evidence of horizontal

pleiotropy persisted (Table 4). Cochran’s Q test discovered

heterogeneity in the causal impact of Femoral Neck BMD on
FIGURE 2

CHD, coronary heart disease; MI, myocardial infarction; FA BMD,
Forearm bone mineral density; FN BMD, Femoral neck bone mineral
density; LS BMD, Lumbar spine bone mineral density; TB BMD, Total
body bone mineral density; IVW, inverse variance weighted.
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CHD (p = 0.041) and Heel BMD on MI (p< 0.001). To address

this heterogeneity, a random-effects IVW analysis was employed,

ensuring the robustness and reliability of the IVW results.

Additionally, leave-one-out analysis yielded no evidence of
Frontiers in Endocrinology 06
potential SNP-driven influences (Supplementary Table 1;

Supplementary Figures S44-S46). Detailed scatter plots, forest

maps, and funnel plots related to these findings can be found in

Supplementary Table 1.
TABLE 1 The GWAS datasets used for MR analysis.

Traits Year Sample Population PMID/Dataset

BMD FA BMD 2015 8,143 European 26367794

FN BMD 2015 32,735 European 26367794

LS BMD 2015 28,498 European 26367794

Heel BMD 2018 265627 European ukb-b-8875

TB BMD 2018 56284 European 29304378

TB BMD (age 0–15) 2018 11807 Mixed 29304378

TB BMD (age 15–30) 2018 4180 Mixed 29304378

TB BMD (age 30–45) 2018 10062 Mixed 29304378

TB BMD (age 45–60) 2018 18805 European 29304378

TB BMD (age over 60) 2018 22504 Mixed 29304378

CVD CHD 2011 86995 European 21378990

Stroke 2018 446696 Mixed 29531354

MI 2021 395,795 European 33532862
CHD, coronary heart disease; MI, myocardial infarction; FA BMD, Forearm bone mineral density; FN BMD, Femoral neck bone mineral density; LS BMD, Lumbar spine bone mineral density;
TB BMD, Total body bone density.
TABLE 2 Heterogeneity, pleiotropy test and MR-PRESSO Global test of exposure (Cardiovascular diseases) on bone density in different parts of
the body.

Exposure Outcome
Cochran
Q statistic

Heterogeneity
P-value

MR-
Egger
Intercept

Intercept
p-value

MR-PRESSO Global test
P-value

CHD FA BMD 9.981257188 0.266343882 -0.021708211 0.333103117 0.239

CHD FN BMD 12.08571868 0.14742011 0.011001709 0.368521369 0.181

CHD LS BMD 6.002037674 0.422961858 0.004317761 0.731418586 0.438

CHD Heel BMD 6.223863792 0.285041471 -0.001767004 0.79939395 0.342

CHD TB BMD 7.502252345 0.483534629 -0.000336768 0.965948036 0.528

MI FA BMD 39.44951252 0.805513645 0.001558789 0.789557916 0.769

MI FN BMD 40.67336071 0.615000025 0.00496603 0.102940633 0.642

MI LS BMD 58.76266838 0.067447088 0.00275713 0.497732763 0.076

MI Heel BMD 109.195188 7.37644E-07 0.000432389 0.757968854 NA

MI TB BMD 78.76635325 0.007556748 -4.81662E-05 0.98528366 NA

Stroke FA BMD 19.49416314 0.052779715 -0.002917025 0.046735383 0.053

Stroke FN BMD 9.855103431 0.543465987 0.015080821 0.375462836 0.557

Stroke LS BMD 13.84694923 0.180087894 0.032675732 0.160174796 0.188

Stroke Heel BMD 14.43156378 0.154200894 -0.005762571 0.405716145 0.186

Stroke TB BMD 13.81145052 0.243602861 -0.011021547 0.445767771 0.264
CHD, coronary heart disease; MI, myocardial infarction; FA BMD, Forearm bone mineral density; FN BMD, Femoral neck bone mineral density; LS BMD, Lumbar spine bone mineral density;
TB BMD, Total body bone mineral density.
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Due to insufficient variables for FA BMD, MR-Presso analysis

could not be conducted. Nevertheless, the MR multi-effect residual

P-value exceeded 0.05, and the identified Instrumental Variables

(IVs) have been previously applied in related MR studies (32, 33).

Furthermore, screening conditions from the same database with p<

5E-6, r2 < 0.001, and kb = 10000 were employed to obtain

additional FA BMD IVs (16 SNPs). No evidence of causal

association was observed (Figure 4), and sensitivity analysis

confirmed the stability of the results (Table 4). In summary, we

assert that there is no compelling evidence supporting a causal

relationship between OP and CVD, affirming the reliability of

our findings.
4 Discussion

In this bidirectional MR study, we assessed the causal association

between CVD and OP. The results indicate a causal relationship

between genetically predicted CHD and Heel BMD, as well as TB

BMD. Reverse MR analysis found no evidence linking genetic

predispositions for BMD in different anatomical sites to these

CVDs. Although we did not observe a significant causal

relationship between the genetic predisposition to BMD at different

sites and these CVD diseases, we did observe a significant causal

association between CHD with Heel BMD and TB BMD. Initially, we

conducted thorough sensitivity analyses to validate adherence to the
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three fundamental assumptions inherent in MR. The outcomes of the

MR study, employing diverse methodologies, consistently exhibited

coherence. Subsequently, we systematically examined each

instrumental variable independently to alleviate the impact of

confounding factors. This meticulous scrutiny involved a step-by-

step screening of instrumental variables to minimize the potential

interference of confounding factors. Given that FA BMD presented

fewer instrumental variables and the possibility of outliers could not

be ruled out, we undertook rigorous efforts to substantiate this aspect.

Ultimately, we applied the rigorous Bonferroni method to address

multiple comparisons, eliminating the risk of false positive results.

Consequently, our MR findings stand as robust and reliable, ensuring

the validity of the study outcomes.

As prevalent public health issues with widespread impact and

significant consequences, OP and CVD have consistently garnered

considerable attention. While numerous prior epidemiological

studies have reported the connection between these conditions,

the precise association remains elusive (34–43). Several factors may

contribute to this ambiguity. Firstly, common risk factors such as

age, vitamin D deficiency, inactivity, smoking, and diabetes are

shared between osteoporosis and CVD (44). Early investigations

highlighted a potential “bone-vascular axis,” and subsequent

research recognized shared pathogenic processes involving

oxidative stress, inflammation, and lipid metabolism, mediated by

common regulatory factors like bone morphogenetic protein

(BMP), osteopontin (OPN), matrix GLA protein (MGP),
TABLE 3 Heterogeneity, pleiotropy test and MR-PRESSO Global test of exposure (Cardiovascular diseases) on bone density in different ages of
the body.

Exposure Outcome
Cochran
Q statistic

Heterogeneity
P-value

MR-
Egger Intercept

Intercept
p-value

MR-PRESSO Global test
P-value

CHD TB BMD(0–15) 15.24543109 0.054545261 -3.68793E-05 0.998895535 0.069

CHD TB BMD(15–30) 1.62705036 0.99039186 -0.002622299 0.933568547 0.989

CHD TB BMD(30–45) 11.50377187 0.17475509 -0.030391399 0.201769059 0.189

CHD TB BMD(45–60) 5.791901082 0.670529056 0.01298506 0.362509046 0.666

CHD
TB BMD
(over 60)

6.310036709 0.612546448 0.009398325 0.486422765 0.607

MI TB BMD(0–15) 91.04625989 0.000481157 -0.005731015 0.370706372 NA

MI TB BMD(15–30) 61.42786061 0.128963805 -0.005689807 0.536746683 0.146

MI TB BMD(30–45) 46.17481527 0.66535308 -0.002433807 0.646606169 0.644

MI TB BMD(45–60) 55.30637531 0.315410365 0.00525933 0.194744373 0.354

MI
TB BMD
(over 60)

46.29174082 0.660843888 0.002462153 0.496651743 0.63

Stroke TB BMD(0–15) 5.662353483 0.894916813 0.030383226 0.297748447 0.901

Stroke TB BMD(15–30) 6.960129909 0.802303007 -0.028194446 0.577522332 0.794

Stroke TB BMD(30–45) 12.46657314 0.329612743 -0.024649746 0.493198086 0.338

Stroke TB BMD(45–60) 13.1239661 0.285300354 -0.03850296 0.130545905 0.288

Stroke
TB BMD
(over 60)

11.49791518 0.40253988 0.016636366 0.459810141 0.408
CHD, coronary heart disease; MI, myocardial infarction; FA BMD, Forearm bone mineral density; FN BMD, Femoral neck bone mineral density; LS BMD, Lumbar spine bone mineral density;
TB BMD, Total body bone density.
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proinflammatory cytokines (IL-6 and tumor necrosis factor-a
(TNFa)), sclerostin, gamma-carboxy glutamic acid-rich matrix

(GLA) protein (MGP), and fibroblast growth factor (FGF)-23

(45–49). Additionally, pathways such as the RANKL/RANK/OPG

(osteoprotegerin) and Wnt signaling are implicated in the

pathogenesis of vascular calcification and cardiovascular disease

(50). Hyperhomocysteinemia has also been identified as a

contributor to both vascular and bone diseases (51), emphasizing
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a shared pathological basis between OP and CVD. Furthermore,

observations of patients’ drug use and diet have reinforced the link

between the two conditions. For instance, anticoagulants like

warfarin and unfractionated heparin, commonly used in stroke

and myocardial infarction patients, may increase the risk of OP

(52). Conversely, excessive calcium supplements, particularly in a

calcium-sufficient diet, have been associated with elevated

cardiovascular risk, especially myocardial infarction risk (53).

Statins, commonly used lipid-lowering drugs in CVD treatment,

have been linked to bone changes (54). Various medications,

including sclerostin-targeted drugs, SERMs, hypoglycemic drugs,

antihypertensive drugs, selective estrogen receptor modulators, and

anti-bone resorption drugs, have demonstrated effects on both OP

and CVD. Even specific treatments like vitamin D have shown

potential in reducing CVD risk (55, 56). Finally, the reliability of

results from prior studies is constrained by divergent methodologies

and populations (57). Notably, a substantial portion of past

observational inquiries has disproportionately focused on the

elderly, particularly postmenopausal women, introducing inherent

crowd bias that undermines result generalizability. Moreover,

inadequacies in sample sizes, potential bias in article selection,

and methodological disparities can induce instability in research

outcomes. For the first time, we posit CHD as a potential cause of

OP from a genetic perspective. Acknowledging that MR studies may

not represent the pinnacle of evidence-based medicine, we

anticipate that future investigations with higher evidential levels

will corroborate our findings. Nevertheless, in juxtaposition with

observational research, the clinical significance of our MR results

remains considerable. Simultaneously, in auxiliary examinations,

conventional anatomical sites (forearm, femoral neck, lumbar

spine) can be utilized for Dual-Energy DAX examination. Vice

versa, for instance, Romosozumab, approved by the FDA, is

accompanied by a black box warning indicating a potential

increase in the risk of cardiovascular disease (58). If an

osteoporotic patient requires the use of this medication for

treatment, clinicians are encouraged to make a decision regarding

the drug based on the individual patient’s specific condition, even if

cardiovascular disease is present. Conversely, disapprove that the

use of the drug’s potential risks is overly interpreted as an absolute

contraindication, instigating apprehension and reluctance towards

adoption. It is noteworthy that, following the prevailing gold

standards in osteoporosis (OP) diagnosis—utilizing FN BMD, FA

BMD, and LS BMD—our results are similar to the MR results of HE

B, Gua C, and Bhatta L and others (32, 59). This not only bolsters

the robustness of our research findings but also underscores

pertinent clinical considerations. Grounded in the established

diagnostic approach of DAX presently in common use, it may

not sufficiently discern potential skeletal issues in patients with

CHD. Particularly within adult cohorts enduring congenital heart

disease over an extended duration, susceptibility to bone diseases is

heightened (60, 61). Consequently, we advocate that, under the

precondition of examining bone density in conventional anatomical

regions (forearms, femoral neck, lumbar spine) through DAX for

CHD patients, if circumstances allow, simultaneous consideration

should be given to bone density assessments via heel ultrasound or

DAX throughout the body. This holistic approach is good for
FIGURE 3

CHD, coronary heart disease; MI, myocardial infarction; FA BMD,
Forearm bone mineral density; FN BMD, Femoral neck bone mineral
density; LS BMD, Lumbar spine bone mineral density; TB BMD, Total
body bone mineral density; IVW, inverse variance weighted.
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preventing and treating skeletal diseases with them. As highlighted

earlier, the advantages of bone ultrasound render it a preferred

choice. Furthermore, our MR results offer valuable insights for

public health in crafting comprehensive prevention and treatment

strategies. These strategies stand to exert positive effects on a wide

population, ultimately contributing to the effective management of
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the substantial burden imposed by both osteoporosis and

cardiovascular diseases.

Our study has several limitations. First, this study is primarily

from a European population, and our findings cannot be

generalized to other populations. Second, due to the limited

exposure variance explained by the SNP instrument or the limited
FIGURE 4

CHD, coronary heart disease; MI, myocardial infarction; FA BMD, Forearm bone mineral density(p < 5E-8); FA BMD*, Forearm bone mineral density(p
< 5E-6); FN BMD, Femoral neck bone mineral density; LS BMD, Lumbar spine bone mineral density; TB BMD, Total body bone mineral density; IVW,
inverse variance weighted.
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sample size of the resulting GWAS (for example, there are only 3

SNPs with strong FA BMD correlations we extracted), it may lead to

weak instrumental variable bias, so we relax the settings Conditional

extraction of more FA BMD SNPs replicated the reliability of the

results. However, larger-scale GWAS are still needed to enhance the

ability of correlational MR studies to detect associations. Third, due

to the limitations of GWAS summary statistics, MR analysis cannot

be stratified according to gender, race, underlying diseases, etc. We

studied the causal association between CVD and TB BMD in

different age groups; the results showed a strong relationship

between CHD and TB BMD. But, we only observed suggestive

evidence of a causal association between CHD and MI and the 0-15

population. This may be due to the small number of TB BMD

samples in each age group and the fact that they come from a mixed

population. In the future, more data from the same population

sample size will be needed to evaluate the relationship between

CVD and TB BMD in different age groups further. Fourth, OP and

CVD data sources employed in Mendelian Randomization analyses

of two samples should refrain from including overlapping

participants. Accurate estimation poses a significant challenge.

Nonetheless, the utilization of robust instrumentation has the

potential to effectively mitigate sample overlap, exemplified by F

statistics that markedly exceed 10.
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The study results revealed that CHD was causally associated

with Heel BMD and TB BMD, while in the reverse MR analysis, the

causal relationship between OP and CVD was not supported. This

result posits CHD as a potential etiological factor for OP and

prompts that routine bone density assessment at traditional sites

(forearm, femoral neck, lumbar spine) using DAX may

inadequately discern underlying osteoporosis issues in CHD

patients. The recommendation is to synergistically incorporate

heel ultrasound or DAX for total body bone density

examinations, ensuring clinical diagnostics are both precise and

reliable. Moreover, these findings provide valuable insights for

public health, contributing to the development of pertinent

prevention and treatment strategies.
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TABLE 4 Heterogeneity, pleiotropy test, and MR-PRESSO Global test of exposure (Bone density) on cardiovascular diseases.

Exposure Outcome
Cochran
Q statistic

Heterogeneity
P-value

MR-
Egger
Intercept

Intercept
p-value

MR-PRESSO Global test
P-value

FA BMD CHD 0.17724079 0.915192919 0.010774879 0.755795167

FA BMD MI 0.842662038 0.65617286 -0.012808958 0.52730918

FA BMD Stroke 0.3326947 0.846752064 -0.003861565 0.843207372

FA BMD* CHD 5.469318279 0.791629648 -0.002911733 0.869737391 0.843

FA BMD* MI 9.538775337 0.731144943 0.000877126 0.89910032 0.755

FA BMD* Stroke 11.60054438 0.560639223 0.001009422 0.887301414 0.535

FN BMD CHD 13.13664354 0.040916632 -0.032766747 0.624154903 0.059

FN BMD MI 11.22098217 0.424940202 0.000872913 0.950565157 0.429

FN BMD Stroke 12.46940067 0.329412951 -0.013581485 0.375703225 0.358

LS BMD CHD 11.67929149 0.307093553 -0.022747696 0.430148672 0.357

LS BMD MI 12.75957677 0.690248768 -0.000394365 0.961316768 0.687

LS BMD Stroke 11.80310411 0.757418946 -0.003313896 0.717270374 0.765

Heel BMD CHD 197.3724078 0.054068931 -0.000298103 0.910782468 0.058

Heel BMD MI 315.2117255 0.000683149 0.0014408 0.234462054 NA

Heel BMD Stroke 235.0078903 0.542655969 0.001035209 0.361120025 0.513

TB BMD CHD 41.39537014 0.324748774 -0.009833151 0.149198444 0.332

TB BMD MI 66.23340869 0.164585572 -0.003632699 0.274125272 0.641

TB BMD Stroke 53.59576291 0.603573546 -0.002499529 0.448277601 0.61
CHD, coronary heart disease; MI, myocardial infarction; FA BMD*, Forearm bone mineral density (p<5E-6); FN BMD, Femoral neck bone mineral density; LS BMD, Lumbar spine bone mineral
density; TB BMD, Total bone mineral density.
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