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Background: Previous studies have identified several genetic and environmental

risk factors for chronic kidney disease (CKD). However, little is known about the

relationship between serum metals and CKD risk.

Methods: We investigated associations between serum metals levels and CKD

risk among 100medical examiners and 443 CKD patients in themedical center of

the First Hospital Affiliated to China Medical University. Serum metal

concentrations were measured using inductively coupled plasma mass

spectrometry (ICP-MS). We analyzed factors influencing CKD, including

abnormalities in Creatine and Cystatin C, using univariate and multiple analysis

such as Lasso and Logistic regression. Metal levels among CKD patients at

different stages were also explored. The study utilized machine learning and

Bayesian Kernel Machine Regression (BKMR) to assess associations and predict

CKD risk based on serum metals. A chained mediation model was applied to

investigate how interventions with different heavymetals influence renal function

indicators (creatinine and cystatin C) and their impact on diagnosing and treating

renal impairment.

Results: Serum potassium (K), sodium (Na), and calcium (Ca) showed positive

trends with CKD, while selenium (Se) and molybdenum (Mo) showed negative

trends. Metal mixtures had a significant negative effect on CKD when

concentrations were all from 30th to 45th percentiles compared to the median,

but the opposite was observed for the 55th to 60th percentiles. For example, a

change in serum K concentration from the 25th to the 75th percentile was

associated with a significant increase in CKD risk of 5.15(1.77,8.53), 13.62

(8.91,18.33) and 31.81(14.03,49.58) when other metals were fixed at the 25th,

50th and 75th percentiles, respectively.
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Conclusions: Cumulative metal exposures, especially double-exposure to serum

K and Se may impact CKD risk. Machine learning methods validated the external

relevance of the metal factors. Our study highlights the importance of employing

diverse methodologies to evaluate health effects of metal mixtures.
KEYWORDS

Chronic Kidney Disease, Bayesian kernel machine regression, metal mixtures, machine
learning, mediating effect
Introduction

Chronic Kidney Disease (CKD) is a condition that occurs when

the kidneys sustain damage and exhibit abnormalities in blood

parameters and urine for a duration of more than 3 months. It is

also diagnosed when the effective glomerular filtration rate falls

below 60% (1). The global prevalence of CKD has been increasing,

with a 29.3% rise between 1990 and 2017. This disease carries a

substantial global burden, affecting approximately 10% of the adult

population and resulting in 1.2 million deaths and 28 million years

of life lost annually (2). In China, CKD has emerged as a major

health concern, causing significant loss of healthy life expectancy for

individuals (3), and imposing a heavy financial and disease burden

on the healthcare system.

CKD is a complex condition influenced by both genetic

predispositions and environmental factors. Alongside well-known

risk factors like aging, diabetes, and hypertension, certain

environmental chemicals, such as metals, air pollutants, bisphenol

A, and melamine, also play significant roles in CKD development

and progression (4–6). Metals, whether essential or non-essential,

are commonly found in water, soil, and air, with human exposure

increasing due to industrialization. Cadmium(Cd) exposure, in

particular, has been associated with severe kidney damage

through the downregulation of specific microRNAs, thereby

promoting apoptosis induced by cadmium and other heavy

metals (7). Studies in Bangladesh have reported higher levels of

lead (Pb), cadmium and chromium (Cr) in the urine of CKD

patients compared to controls, suggesting a potential link between

heavy metal exposure and CKD (8). However, existing research

often fails to address combined exposure to multiple metals,

overlooks covariance between them, and does not clarify the

correlation between metal exposure and renal function

parameters. The investigation into whether a linear or nonlinear

dose-effect relationship exists between metal exposure and CKD

progression remains an urgent matter for further exploration.

The objectives of this study are as follows: (1) Investigate the

predictors of CKD and metal mixtures, both overall and across

different subgroups. Analyze the variations in metal indicators

based on different stages of CKD. (2) Compare the performance

of various machine learning techniques in predicting metal features

for CKD. (3) Evaluate the overall effect, interactions and non-linear
02
relationships of metal mixtures on CKD. (4) Analyze the

moderating effect of different metals on Creatine and Cystatin C,

which influence the development of CKD.
Patients and methods

Study population and validation process

This cross-sectional study is based on data obtained from the

Health and Examination Survey of Patients with CKD in Shenyang

City, Liaoning Province, China. Conducted between November

2021 and August 2022, the survey comprehensively collected

demographic and health data from 100 medical examiners and

443 CKD patients at the medical center of First Hospital Affiliated

to China Medical University. The sample size was determined using

equation recommended by Adhikari et al. (9), incorporating a

significance level (a) of 0.05, an expected presenteeism rate (p) of

0.5, and a permissible error (d) of 0.15p. This calculation yielded an

estimated sample size of 267.

N = 1:5� z21−a=2
d 2 � p� (1 − p)

The inclusion criteria for study participation in the study were

as follows: subjects with good compliance, capable of cooperating

with investigators to complete the study and no history of infectious

diseases, Parkinson’s disease, Alzheimer’s disease, etc. within the

last 3 months. The exclusion criteria included: (1) subjects with

abnormal results in routine laboratory tests; (2) patients currently

diagnosed with diabetes mellitus, systemic lupus erythematosus,

chronic hepatitis B with urinary tract infections, severe

cardiopulmonary and hepatic diseases or other vital organ

dysfunctions; and (3) patients currently taking traditional Chinese

medicines, psychotropic medicines, non-steroidal anti-

inflammatory medicines, glucocorticosteroids, or any other

medications that could potentially affect renal function indicators.

The studies involving human participants were reviewed and

approved by Ethics Committee of the First Hospital of China

Medical University (ID: AF-SOP-07-1.1-01, Number: 2020-238.2).

The patients/participants provided their written informed consent

to participate in this study.
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Sociodemographic and
disease characteristics

After reviewing the consultation platform and inpatient

information system of the First Affiliated Hospital of China

Medical University, we gathered data on study participants,

including age, gender, and results from clinical examinations such

as urea, creatinine, estimated glomerular filtration rate (eGFR),

cystatin C. Continuous variables were described using mean

(standard deviation) for symmetric distributions, or median

(interquartile range (IQR)) for asymmetric distributions.
Measurement of metal concentrations
in serum

The remaining blood samples obtained after venous blood

collection from the study subjects were centrifuged at 400 g/min

for 5 minutes. Following centrifugation, the supernatant was carefully

collected using a pipette and transferred to clean polypropylene tubes.

Subsequently, the processed blood samples were stored at -20°C in a

refrigerator before being uniformly transported to a deep-freeze

refrigerator at -80°C in China Medical University for long-term

storage. Special attention was given to maintaining low

temperatures during transportation. For the determination of metal

concentrations in the serum, an Agilent 7700x inductively coupled

plasma mass spectrometer (ICP-MS, Agilent, USA) was utilized. This

analysis covered 30 metals, including lithium (Li), beryllium (Be),

boron (B), sodium (Na), magnesium (Mg), aluminum (Al),

potassium (K), calcium (Ca), vanadium (V), Cr, manganese (Mn),

iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium

(Ga), arsenic (As), selenium (Se), rubidium (Rb), strontium (Sr),

molybdenum (Mo), silver (Ag), Cd, antimony (Sb), cesium (Cs),

barium (Ba), thallium (TI), Pb, and uranium (U). The procedure

involved several steps: (1) Thawing the frozen serum samples

overnight at 4°C, ensuring thorough mixing after thawing. (2)

Pipetting 0.8 ml of 65% nitric acid and 0.2 ml of 30% hydrogen

peroxide(CIAC, China) into 15 mL polypropylene tubes, then

accurately measuring 0.25 mL of serum samples into the same

tubes. The tubes were then placed uncapped on an electric heating

plate to undergo a reaction at 90°C for 1 hour, followed by warming

up the heating plate(Shenglan, China) to 110°C for acid expulsion

over a 4-hour period. After cooling to room temperature, all samples

were removed from the heating plate. (3) Diluting the solution to 10

mLwith ultrapure water, capping the tube and mixing it upside down

several times. Subsequently, 2-4 mL of the solution was filtered into a

sample tube for sampling by ICP-MS. (4) Metal concentrations in

samples below the Limit of Detection (LOD) were considered non-

detected. These values were included in the analysis by replacing

them with LOD/2, following the method established by the

Experimental Laboratory Center and existing literature.
Variable screening and correlation analysis

For this study, multiple imputation was conducted to fill in

missing values, using a parameter m=5 and predictive mean
Frontiers in Endocrinology 03
matching (pmm) method. Factors influencing CKD, abnormal

Creatine and Cystatin C levels were analyzed separately through

univariate and multiple analyses. Additionally, differences in metal

levels among CKD patients at various stages were explored. In

univariate analyses, ANOVA and parametric tests were applied,

while the LSD-t test or non-parametric tests were utilized for two-

way comparisons. Multiple regression analysis involved two

methods: lasso regression to examine the association between

metal elements and CKD, and logistic regression to explore the

relationship between metal elements and abnormal Creatinine and

Cystatin C levels. In both multiple regression analyses, significant

clinical and personal characteristic factors identified in univariate

analysis were included as covariates to control the model.
Machine learning training process

In this study, R software (version 4.1.3) was utilized. The input

parameters consisted of metals and other factors associated with CKD

disease, Creatine andCystatinC abnormalities in themultiple regression

models. To ensure consistent training, eachmodelwas trained on 75%of

the training sample. A common 25% holdout set was retained for all

models and used to generate statistics for result comparisons.

For predicting CKD problems, two alogorithms, namely

Gaussian Process Regression (GPR) and Support Vector Machine

(SVM), were employed. Each algorithm employed four kernel

functions. After training, the performance of these algorithms was

evaluated using various metrics of interest. Accuracy, AUC

(internal validation), and F1 score were used to compare the

performance of the classification algorithms. The algorithms

exhibiting the best performance were chosen for external validation.
Bayesian kernel machine regression
(BKMR) model

We employed the BKMR model, a non-parametric Bayesian

variable selection framework, to assess the combined effect of metals

on CKD, Creatine and Cystatin C abnormalities. BKMR integrates

Bayesian and statistical learning methods to iteratively regress an

exposure–response function using a Gaussian kernel function.

Given the high correlation among the metals in our analysis, we

utilized a variable selection method with 20,000 iterations via a

Markov chain Monte Carlo algorithm (10). Based on multiple

regression techniques (logistic and lasso regression), we

categorized certain metals into groups related to CKD disease,

Creatine and Cystatin C abnormalities.

Yi = h(zi1,…, ziM) + bTXi + ei

Here h() was the exposure–response function, which accounts

for nonlinearity and/or interaction among the mixture components,

Zi denotes metals, while Xi and b represent covariates and their

coefficients, respectively. Covariates were selected through

Spearman’s correlation analysis, prioritizing those with higher

coefficients. Typically, a PIP threshold of 0.5 is employed to

determine their importance (11).
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Analysis of moderating effects

In this study, Hayes process (v.3.5) within SPSS 21.0 (SPSS Inc.,

Chicago, IL, USA) was employed to validate the mediation

hypotheses regarding a recent study. To assess the mediation

effect of CKD diseases, Creatine and Cystatin C abnormalities on

the predicted variables, a Hayes process moderation analysis was

conducted, with 5000 bootstrapping-based resamples chosen (12).

The mediating factors selected were the metal factors exhibiting

significance and substantial effect values in the multiple analyses.
Results

Comparison of general and clinical
characteristics within groups

Supplementary Table 1 demonstrates that there were

statistically significant differences in the general and clinical

characteristics between the case and control groups, particularly

in age, gender, Na ion, K ion, serum albumin, and platelet count.

Notably, the eGFR in the case group was significantly lower

compared to the control group, while leukocyte count and

granulocyte ratio were notably higher. Similarly, significant

differences in general characteristics were observed between

abnormal and normal creatinine groups, with exceptions noted

for chloride ion. Variables such as eGFR, Na ion, bicarbonate ion,

Ca ion, serum albumin, lymphocyte ratio, hemoglobin

concentration, and platelet count were lower in the abnormal

creatinine group compared to the normal creatinine group.

Conversely, age, K ion, anion gap, phosphorus ion, Mg ion,

leukocyte count, and granulocyte ratio were higher in the

abnormal creatine group. Similar variations were observed

between the normal and abnormal Cystatin C groups.
Comparison of serum concentrations of
metallic elements between
different subgroups

Table 1 illustrates the variations in metal concentrations across

different groups. With the exception of Li, Al, V, Co, Zn, Sb, TI, and

Pb, all other metals exhibited significant differences between the

case and control groups. Specifically, concentrations of Be, B, Na, K,

Cr, As, Rb, Mo, Cd, Cs, and U were notably higher in the case group

compared to the control group (P<0.05). Moreover, in the abnormal

creatinine group, concentrations of Mg, Ca, Fe, Cu, Se and Pb, were

significantly lower compared to the normal creatinine group

(P<0.05). Similarly, in the cystatin C abnormal group,

concentrations of Mg, Ca, Mn, Fe, Cu, Se and Pb were markedly

lower than those in the cystatin C normal group.

In the CKD population, a 5-fold cross-validation approach was

employed to select stable models with minimal error fluctuations

for analysis. Parameter l values of 0.016 for Model 1 and 0.017 for

Model 2 were utilized. The results, presented in Table 2 and

Supplementary Figure 1. indicated that after adjusting for
Frontiers in Endocrinology 04
covariates such as sex, age, ethnicity, marital status, occupation,

and region of residence, Mg, Ca, Cu, and Se were negatively

associated with CKD (coefficient<0), while Na, K, and Ag showed

positive associations with CKD (coefficient >0).
Variability in metal levels across
CKD stages

Regarding the variability in metal levels across different stages of

CKD, significant differences were observed among the stages for

twenty metal indicators (Supplementary Table 2). Except for Na,

Cd, and Sb, which mainly differed between the early and late stages,

all other metallic elements exhibited variations across different

stages. Metals that significantly differed between each stage were

present throughout all stages. Further details can be found in

Supplementary Table 2.
Multifactorial regression

Supplementary Table 3 presents the results of multifactorial

regression analysis for the creatinine abnormality group. In both

Model 1 and Model 2, Se demonstrated a negative effect, while As

exhibited a negative effect only in Model 2. Additionally, Fe and Rb

showed positive effects in Model 2. Supplementary Table 4 displays

the aggregated and stratified regression results for individuals with

abnormal cystatin C levels. Both models indicated that K and Pb

had positive effects, while Mo showed a positive effect only in Model

2. Se had a negative effect in both Model 1 and Model 2

(Supplementary Tables 3, 4).
Algorithm selection and prediction effect

To select an appropriate algorithm for prediction, we conducted

multifactorial regression analysis and summarized the performance

of six maximum likelihood algorithms in estimating indicators such

as laboratory tests and metal concentrations, as well as predicting

the onset of CKD and abnormalities in creatinine and cystatin C

levels (Figure 1; Supplementary Figures 2-6). Based on the results,

SVM-Radial and GPR-Laplacedot demonstrated the best

performance. Subsequently, we trained and validated both

models, and the results in Supplementary Table 5 indicated a

good fit between the training and test sets (R2∈(0.7-0.9)).
BKMR analyses

We presented the visualization of the BKMR model with

Supplementary Table 6 summarizing the probabilities of inclusion

(PIPs), which were relatively high in both models. Initially, we

observed the cumulative effect of metal mixtures on CKD disease

showing a trend of increasing and then decreasing total effect with

exposure time. Particularly, the overall effect was statistically

significant when all metabolites were between the 30th and 60th
frontiersin.org

https://doi.org/10.3389/fendo.2024.1362085
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


TABLE 1 Description of CKD, creatinine and cystatin C abnormalities with metals.

)

CystatinC (Median (IQR)) P
(CystatinC)Abnormal Normal

16.64(0,61.24) 18.39(0,52.65) 0.596

0.99(0,2.8) 0.14(0,2.65) 0.045

110.15(32.09,185.29) 0(0,49.22) <0.001

6725231
(6358463.92,7029559.91)

3716379.17
(3166540.65,6729512.78)

<0.001

13513.5
(10516.32,20611.8)

24765.02
(11891.26,40736.03)

<0.001

2365.3(0,6414.44) 1916.36(429.77,3999.72) 0.197

730161.02
(636411.31,821191.03)

184895.82
(158421.36,710716.03)

<0.001

12113.8
(8470.12,16761.39)

17570.8
(6833.32,27426.66)

<0.001

0(0,0.57) 0(0,0.59) 0.857

8.4(0,23.63) 0(0,9.45) <0.001

0(0,13.47) 8.19(0,25.18) <0.001

985.11(663.24,1584.26) 1416.71(931.58,2219.08) <0.001

0.23(0,0.69) 0.16(0,0.57) 0.01

1.01(0,4.79) 1.65(0,6.47) 0.052

633.13(481.09,793.46) 792.39(608.13,992.37) <0.001

877.44(83.79,2398.25) 978.41(122.12,1687.15) 0.897

0(0,0) 0(0,0) <0.001

1.18(0.19,2.4) 0(0,1.1) <0.001

49.32(38.59,62.05) 82.3(56.48,94.77) <0.001

153.89(134.84,177.88) 148.49(133.71,165.12) 0.027

61.23(38.16,84.29) 35.13(12.84,84.48) <0.001

4.95(0,13.99) 0(0,4.55) <0.001

0(0,0.1) 0(0,0) <0.001
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Metallic
Element

CKD (Median (IQR)) P
(CKD)

Creatine (Median (IQR)) P
(CreatineCase Control Abnormal Normal

Li(mg/L) 15.72(0,59.43) 23.07(1.06,51.52) 0.289 17.64(0,60.32) 16.48(0,53.68) 0.758

B(mg/L) 0.97(0,2.88) 0.03(0,2.44) 0.021 0.95(0,2.69) 0.22(0,3.04) 0.187

B(mg/L) 103.35(24.23,174.85) 0(0,0) <0.001 112.11(26.31,186.33) 0(0,67.46) <0.001

Na(mg/L)
6737834.75

(6382079.43,7037459.44)
3207461.19

(3097188.28,3520188.66)
<0.001

6671799.31
(6288770.52,7005872.31)

6313184.58
(3241400.2,6896912.15)

<0.001

Mg(mg/L)
13108.06

(10219.86,19225.54)
38918.49

(28942.95,51146.2)
<0.001

13910.46
(10639.6,21449.06)

18381.57
(11357.94,36250.18)

<0.001

Al(mg/L) 2331.03(0,6484.49) 1878.82(885.87,2588.08) 0.057 2178.01(0,6202.72) 2009.56(274.38,5149.17) 0.787

K(mg/L)
729880.74

(641934,817517.94)
160351.52

(150978.58,175536.14)
<0.001

721782.7
(619240.7,819146.9)

587167.47
(163921.42,755359.58)

<0.001

Ca(mg/L)
11378.59

(7195.44,15920.71)
25620.31

(20288.31,33822.64)
<0.001

13101.26
(8779.52,18242.53)

13372.63
(6003.23,24498.74)

0.0452

V(mg/L) 0(0,0.55) 0.04(0,0.79) 0.072 0(0,0.61) 0(0,0.55) 0.457

Cr(mg/L) 5.28(0,22.19) 0(0,7.71) 0.001 6.07(0,23.14) 0(0,12.98) 0.001

Mn(mg/L) 0(0,11.93) 18.63(8.55,37.21) <0.001 0(0,16.82) 0.04(0,20.06) 0.078

Fe(mg/L) 984.55(657.95,1534.15) 1902.78(1378.06,2546.68) <0.001 1035.41(674.55,1705.04) 1331.4(825.37,2035.75) 0.001

Co(mg/L) 0.22(0,0.64) 0.21(0,0.61) 0.12 0.23(0,0.69) 0.17(0,0.6) 0.061

Ni(mg/L) 0.77(0,4.94) 2.65(0.6,6.51) <0.001 1.15(0,5.08) 1.14(0,5.9) 0.354

Cu(mg/L) 622.32(481.49,777.51) 957.14(802.06,1142.33) <0.001 635.15(483.42,785.37) 788.86(577.78,980.35) <0.001

Zn(mg/L) 878.03(82.99,2776.85) 1006.85(136.87,1526.86) 0.685 889.79(104,2161.02) 963.4(104.56,1690.28) 0.625

Ga(mg/L) 0(0,0) 0(0,0.02) <0.001 0(0,0) 0(0,0) 0.001

As(mg/L) 0.95(0,2.21) 0.14(0,1.31) <0.001 1.24(0.2,2.4) 0.02(0,1.08) <0.001

Se(mg/L) 50.08(39.21,62.75) 92.77(85.69,105) <0.001 50.02(39.64,63.94) 72.72(50.78,89.19) <0.001

Rb(mg/L) 153.92(134.99,176.36) 147.38(130.17,161.87) 0.027 154.93(135.75,177.85) 147.54(131.24,165.08) 0.003

Sr(mg/L) 54.98(28.38,80.54) 57.81(26.95,103.86) 0.023 63.73(40.08,86.43) 33.28(11.21,61.67) <0.001

Mo(mg/L) 4.91(0,15.53) 0(0,0) <0.001 4.81(0,11.73) 0(0,6.72) 0.004

Ag(mg/L) 0(0,0.09) 0(0,0) <0.001 0(0,0.07) 0(0,0) 0.004
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percentile compared to when all metal mixtures were at their

median values (Figure 2A). Next, we examined the individual

effects of metal mixtures by analyzing the change in CKD disease

associated with variations in single metal mixtures from their 25th

percentile to 75th percentile while keeping other metals at specific

thresholds (25th, 50th, or 75th percentiles). Serum K and Ca

exhibited significant positive effects. For instance, an increase in

serum K concentration from the 25th to the 75th percentile was

associated with a significant rise in CKD disease of 5.15(1.77,8.53),

13.62(8.91,18.33) and 31.81(14.03,49.58) when other metals are

fixed at the 25th, 50th and 75th percentiles, respectively. In the

same way, serum Ca concentration from 25th to 50th is associated

with a significant decrease in CKD disease of 9.60(5.58,13.62), 1.88

(-0.19,3.95) and -5.65(-17.56,6.27) (Figure 2B). To explore potential

nonlinearity in the exposure-response function, we analyzed the

univariate relationship between each metal and CKD disease, with

other metals fixed at the 50th percentile. The plot suggested

nonlinear effects of serum Na, Mg and K, showing an inverted U-

shaped relationship with CKD disease (Figure 2C). Further

investigating the relationship between serum metal mixtures, we

plotted bivariate cross-sections of exposure-response function.

Figure 2D illustrates differences in CKD disease as a function of

Se, varying Se concentrations from the 25th to 50th and to 75th

percentiles while fixing all other metal mixtures at their medians.

Although no statistically significant difference was found in the

abnormal Creatine model, there was an increasing trend

(Supplementary Figure 7A). We observed that serum Ca and Rb

had a significant positive effect, while the opposite was true for Se.

Specifically, a change in serum Ca and Rb concentration from the

25th to the 75th percentile was associated with a significant increase

in abnormal Creatine by 0.58(-0.17,0.99) and 0.86(-0.22,1.50),

respectively, whereas a change in serum Se concentration showed

a significant decrease by 0.30(-0.04,0.57) and 0.37(-0.14,0.59)

(Supplementary Figure 7B). The plot suggested linear effects of
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TABLE 2 Multivariate analysis of the association of CKD and
concentration changes in serum metals.

Parameters
(mg/L)

Model 1 Model 2

Coefficients Coefficients

B 4.03E-05 –

Na 7.89E-08 7.88E-08

Mg -9.51E-07 -6.73E-07

K 3.17E-07 2.22E-07

Ca -4.59E-06 -5.82E-06

Cu -9.26E-05 -1.01E-04

Se -3.72E-03 -3.38E-03

Rb -2.09E-04 –

Ag 3.27E-03 1.62E-03

Model parameters
l=0.016
CV=5

l=0.017
CV=5
Model 1: adjusted for metals for univariate analyzes.
Model 2: model 1 plus sociodemographic and general blood indicators for univariate analyzes.
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FIGURE 1

Classifiers’ performance metrics comparison in CKD disease model of different machine learning algorithms. Each model’s accuracy was checked by
an accuracy, precision, recall, F1 score, sensitivity and specificity.
A B

DC

FIGURE 2

Associations between serum metal mixtures and CKD disease among the study population by BKMR model. Model adjust for Sex, Age and other
laboratory indicators by using Spearman correlation. (A) The cumulative effect of the serum metal mixtures (estimates and 95% credible intervals).
Metal mixtures are at a particular percentile (X-axis) compared to when exposures are all at 50th percentile. (B) The single-exposure effect (estimates
and 95% credible intervals). (C) Univariate exposure-response functions and 95% confidence bands for each serum metal with the other mixtures
fixed at the median. (D) Multiple exposure-response functions for: the other metal when one metal fixed at either the 25th, 50th, or 75th percentile
and the test of metal mixtures is fixed at the median.
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serum Na, K and Se, with increasing levels of serum K and Se

correlating with a significant decrease in abnormal Creatine

(Supplementary Figure 7C). Evidence of interaction between

serum Ca and Se was demonstrated by parallel exposure-response

relationships (Supplementary Figure 7D).

We observed that the total effect of abnormal Cystatin C

tended to decrease with increasing exposure time. Particularly, the

overall effect was statistically significant when all metabolites were

between the 45th and 65th percentile compared to when all metal

mixtures were at their median values (Supplementary Figure 8A).

Serum Se and Mo exhibited a significant negative effect, whereas K

showed the opposite trend. Specifically, a change in serum Se and

Mo concentration from the 25th to the 75th percentile was

associated with a significant decrease in the abnormal Cystatin

C by -1.12(-1.57,-0.66), -1.14(-1.48,-0.79) and -1.73(-2.38,-1.08),

-0.25(-0.74,0.24), -0.75(-1.15,-0.34) and -1.02(-1.63,-0.40),

respectively. Conversely, a change in serum K concentration

from the 25th to the 75th percentile was associated with a

significant increase in abnormal Cystatin C by 0.28(-0.05,0.61),

0.34(-0.06,0.61) and 0.39(-0.01,0.79) (Supplementary Figure 8B).

The plot suggested linear effects of serum K, where increasing

serum K levels correlate with a significant increase in abnormal

Creatine (Supplementary Figure 8C). Evidence of interaction

between serum K and Mo was shown by parallel exposure-

response relationships (Supplementary Figure 8D).
Analysis of the mediating effect

As shown in Table 3, after screening for various metallic

elements, the bootstrap 95% confidence intervals (CI) for the total

indirect effect of K and Se did not contain 0, indicating a significant

mediating role of K and Se in CKD. Moreover, all four pathways

contributed to mediating effects in both models, with showing

significant indirect effects. The pathways of creatinine and

cystatin C on CKD are illustrated in Figures 3A, B.
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Discussion

In this study we employed multifactorial regression to

investigate the association between serum metals and CKD.

Interestingly, our findings diverged significantly from previous

studies (13, 14), which could be attributed to geographic

variations, differences in dietary habits, lifestyles, and

environmental conditions (15) across different regions. Through

LASSO regression analysis, we identified a positive association

between Na and CKD, even after adjusting for covariates such as

general characteristics and routine blood markers. This aligns with

the results of a retrospective cohort study (16), possibly because

excessive Na intake can elevate blood pressure, a known risk factor

for CKD (17). However, it has also been observed that both low and

high concentrations of Na ion are associated with increased

mortality risk in CKD patients (18). The mechanisms underlying

how Na affects renal function remain inadequately understood and

warrant further investigation in future studies. Studies have

indicated an independent and statistically significant U-shaped

association between serum K levels and mortality in CKD

patients (19). In contrast, our study only found a positive

correlation between serum K and CKD, which may be attributed

to disparities in study populations, regions, and statistical methods.

Prior research has consistently shown that serum Mg concentration

is lower in CKD patients compared to controls and is negatively

correlated with CKD development, consistent with the findings of

Vermeulen and Vervloet (20). As an essential trace element, the

positive influence of Se supplementation on CKD pathogenesis

reaffirms our results of this study (21–23). However, the association

between Se and CKD remains contentious, as some studies have

suggested that Se supplementation may be detrimental to CKD

patients (24, 25). Our study observed a significant correlation

between plasma Rb and rapid decline in renal function. However,

limited data exists regarding the role of Rb in renal dysfunction (26,

27). Usuda et al. proposed that Rb can exhibit diverse biological

effects depending on its anionic valence state (28).
TABLE 3 Proportion of the mediating effect.

Model Effect Path relationships Coefficient Boot[LLCI,ULCI]

1

Direct effect Creatine→CKD -0.0835 [-0.0917,-0.0753]

Mediating effect

Creatine→K→CKD -0.007 [-0.0106,-0.0041]

Creatine→Se→CKD 0.001 [-0.0106,-0.0041]

Creatine→K→Se→CKD -0.0035 [-0.0059,-0.0019]

Total effect -0.0095 [-0.0135,-0.0059]

2

Direct effect Cystatin C→CKD -15.4473 [-16.5321,-14.3626]

Mediating effect

Cystatin C→K→CKD -0.7613 [-1.2052,-0.3313]

Cystatin C→Se→CKD -0.2228 [-0.4757,-0.0009]

Cystatin C→K→Se→CKD -0.3007 [-0.5554,-0.1393]

Total effect -1.2847 [-1.7778,-0.8125]
Model 1:Creatine→K→Se→CKD.
Model 2:Cystatin C→K→Se→CKD.
Bold font indicates statistical significance at the 0.05 level.
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Traditional logistic regression analysis revealed positive

correlations between Na and K levels with CKD, while Se showed

a negative correlation. Utilizing the BKMR-CKD model, significant

positive cumulative effects were observed for metals such as K, Ca

concentration in serum at 50-60th percentile. Conversely, the

BKMR-Cystatin C model indicated a positive exposure effect of

serum K at 40-50th percentile for metal mixtures, along with a

negative exposure effect of Se, Mo at 50-70th percentile. Disruptions

in high levels of K ions distribution due to tissue damage, metabolic

acidosis with normal anion gap, and increased tension may

adversely affect renal function and its complications (29).

Regarding Ca’s effect, both positive and negative effects were

noted, reflecting the importance of maintaining balance in CKD

patients. Negative balance could heighten the risk of osteoporosis

and fractures, while positive balance may increase the likelihood of

vascular calcification and cardiovascular events (30).Se has been

shown to modulate eGFR in patients with environmental toxicant-

induced chronic renal failure, playing a crucial role in mitigating

CKD. These findings offer potential insights into environmental

exposures and the role of Creatine- and Cystatin C-mediated CKD

progression. In the context of metal mixtures, one study revealed

that high plasma Se concentrations interacted additively and

multiplicatively with low erythrocyte Pb and Cd levels,

significantly impacting CKD (31). The interaction of K and Se in

CKD progression in this study remains unconfirmed, possibly

stemming from oxidative stress and the elemental balance within

serum metals.

This study employed various modeling methods, to effectively

address different research objectives. Initially, traditional logistic

regression was used to explore the association between serum metal

levels and CKD, but the results were unsatisfactory. Therefore,

regularization techniques such as lasso regression were utilized to

overcome the limitations of the traditional approach. Through lasso

regression, which aimed to investigate the link between serummetal

levels and abnormal kidney indicators, numerous metal factors

were selected, making it challenging to draw specific conclusions.

Hence, for this study, employing the traditional logistic regression

model for the indicators help reduce the interference from metal

factors with lower weights. Subsequently, BKMR model analysis

was conducted. After selecting appropriate metals via logistic and

lasso regression, it delved deeper into the key metal factors

influencing the indicators. Moreover, it conducted analyses on

overall effect, dose-response relationships, and interactions of
Frontiers in Endocrinology 09
metal mixtures. This approach effectively addressed the

limitations of traditional models, which often focused solely on

singular effects of factors.

The current study has several strengths. Firstly, it includes

multiple renal function indicators, providing a comprehensive

understanding of the effects of metals on renal function. This

holistic approach enhances the validity of the findings. Secondly,

the study takes into account the interactions between metals,

recognizing that other metals can either mask or exaggerate the

true associations with renal impairment. This consideration lays a

theoretical foundation for future research exploring and validating

the effects of metal mixtures on CKD. Thirdly, a new flexible

statistical method, the BKMR model is utilized to quantify and

visualize the cumulative effects and dose-response relationships of

serum metal mixtures in continuous variables. This approach

reduces measurement bias and overcomes limitations associated

with traditional analytical methods (32). However, this study also

has some limitations. Firstly, it is a cross-sectional study, which only

examines the correlation between metals and indicators of renal

impairment without confirming a causal relationship between

metals and CKD. Future longitudinal cohort studies and animal

experiments are needed to establish causality. Additionally, the

study acknowledges that dialysis patients with renal impairment

may have altered clearance of metals, leading to elevated serum

metal concentrations that may not reflect the actual situation. This

may introduce errors in the results. Furthermore, confounding

factors such as genetic variants, medication use, and other

environmental pollutants in the residential area are potential

sources of bias that cannot be ruled out. The study highlights the

need for further longitudinal investigations to deeply explore the

relationship between heavy metal concentrations and kidney

function damage.
Conclusion

We utilized multivariable logistic regression and BKMR models

to assess the relationship between CKD and metal mixtures. The

findings revealed positive associations between CKD and serum

levels of K, Na and Ca, while Se and Mo exhibited negative

associations. This highlights the importance of employing diverse

methods to evaluate the health effects of metal mixtures.

Additionally, our results suggest that BKMR model may serve as
A B

FIGURE 3

Association of Creatine & Cystatin C (A, B) and CKD disease (Y) mediated by potassium (M1) and selenium (M2).
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a useful tool for larger-scale mixture studies in the future. Machine

learning techniques could be employed to validate the external

validity of the identified metal factors.
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