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Anti-Müllerian hormone (AMH) is a Sertoli cell-secreted glycoprotein involved in

male fetal sex differentiation: it provokes the regression of Müllerian ducts, which

otherwise give rise to the Fallopian tubes, the uterus and the upper part of the

vagina. In the first trimester of fetal life, AMH is expressed independently of

gonadotropins, whereas from the second trimester onwards AMH testicular

production is stimulated by FSH and oestrogens; at puberty, AMH expression is

inhibited by androgens. AMH has also been suggested to participate in testicular

descent during fetal life, but its role remains unclear. Serum AMH is a well-

recognized biomarker of testicular function from birth to the first stages of

puberty. Especially in boys with nonpalpable gonads, serum AMH is the most

useful marker of the existence of testicular tissue. In boys with cryptorchidism,

serum AMH levels reflect the mass of functional Sertoli cells: they are lower in

patients with bilateral than in those with unilateral cryptorchidism. Interestingly,

serum AMH increases after testis relocation to the scrotum, suggesting that the

ectopic position result in testicular dysfunction, which may be at least partially

reversible. In boys with cryptorchidism associated with micropenis, low AMH and

FSH are indicative of central hypogonadism, and serum AMH is a good marker of

effective FSH treatment. In patients with cryptorchidism in the context of

disorders of sex development, low serum AMH is suggestive of gonadal

dysgenesis, whereas normal or high AMH is found in patients with isolated

androgen synthesis defects or with androgen insensitivity. In syndromic

disorders, assessment of serum AMH has shown that Sertoli cell function is

preserved in boys with Klinefelter syndrome until mid-puberty, while it is affected

in patients with Noonan, Prader-Willi or Down syndromes.
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1 Introduction

The existence of a second testicular factor, in addition to

testosterone, involved in fetal male sex differentiation was first

suggested by the pioneering work carried out by the French

scientist Alfred Jost in the 1940’s and 1950’s (1, 2). He called this

factor “the Müllerian inhibitor” because it provoked the regression

of the Müllerian ducts, the anlagen of the Fallopian tubes, the uterus

and the upper portion of the vagina (Figure 1A). One of his trainees,

the Parisian pediatrician Nathalie Josso, subsequently led the group

that demonstrated that the “Müllerian inhibitor” −also called

Müllerian inhibiting substance (MIS) or factor (MIF)− was a

glycoprotein (7) secreted by the immature Sertoli cell (8), and

named it anti-Müllerian hormone (AMH) (9).
1.1 AMH: the protein and the gene

AMH is a 560-aminoacid glycoprotein that contains a 24-

aminoacid signal sequence. It is synthesized by the fetal Sertoli

cell as a precursor homodimer of approximately 140 kDa,

composed of a 110-kDa N-terminal pro-region and a 25-kDa C-

terminal region. After post-translational modifications due to

proteolysis (10), the N-terminal and C-terminal dimers stay

associated forming a biologically active non-covalent complex

(11, 12). When AMH binds to its receptor through its C-terminal

domain, the N-terminal pro-region is displaced from the non-

covalent complex (13). A cysteine knot motif in the C-terminal

region of AMH and its post-translational processing are typical of

the transforming growth factor beta (TGFb) superfamily, to which

AMH belongs (14).

The human AMH gene is approximately 2.75-kb long and

consists of 5 exons (14). It maps to the short arm of chromosome

19 at position 13.3 (15), between SF3A2, encoding splicing factor 3A

subunit 2 [also known as SAP62 (16)] and JSRP1, coding for the

junctional sarcoplasmic reticulum protein 1. Interestingly, both

genes are less than 400 bp distant from AMH. The major

transcription initiation site in the male gonad is 10 bp upstream

of the ATG codon (17), the biologically active C-terminal domain is

encoded by the 3’ end of the 5th exon, and the polyadenylation

signal is 90 nucleotides downstream of the TGA codon (14). A

functional initiator (Inr) element in the human AMH gene is

specifically recognized by transcription factor TFII-I (18). The

proximal promoter has binding sites for SOX9, the main

transactivating factor in the fetal Sertoli cell (3, 19), and for SF1,

which is also a major regulator of AMH expression in humans (20)

and rodents (3, 21–23). Response elements for GATA factors (22,

24, 25), SP1 (17) and AP1 (3) have also been found in the proximal

500 bp of the human AMH promoter (Figure 1B). Initially, the

finding of SF3A2/SAP62 less than 800 bp upstream of the ATG

codon in the human AMH gene and less than 500 bp upstream in

the mouse gene (16) abridged the attention to the proximal

promoter. However, in vivo experimental studies in mice showed

that more distant sequences are necessary for the maintenance of

Amh expression after birth (26). Subsequent studies identified the
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physiological relevance of binding sites for AP2, NFkB (27) and the

oestrogen receptor a (ERa) (28), present more than 1700 bp

upstream of the ATG codon.
1.2 AMH expression

The testes are by far the most important source of AMH. The

ovaries also produce AMH, though in much lesser amounts. In

agonadal individuals, e.g. pure gonadal dysgenesis, bilateral

anorchia, complete primary ovarian failure or post-castration,

AMH is undetectable in serum (Figure 1C). Very tiny quantities

of AMH have been detected in other organs, as discussed below.
1.2.1 AMH expression in the testis and
its regulation

AMH activity and its best known function are related to its

testicular origin (1). AMH begins to be expressed in the fetal male

gonad as soon as Sertoli cells differentiate, i.e. in the 6th embryonic

week (8 weeks of amenorrhea) in humans (29). Thus, AMH is one of

the earliest markers of Sertoli cell differentiation and function. AMH

protein expression is limited to the rough endoplasmic reticulum

and the Golgi apparatus of Sertoli cells (30, 31). Although its best

characterized action, provoking the regression of Müllerian ducts, is

completed by the 10th fetal week (32), AMH continues to be secreted

by the testis throughout fetal and postnatal life.

Due to its time-restricted and sex-specific action during early

fetal life, AMH synthesis and secretion is tightly regulated. The

initiation of AMH expression in fetal Sertoli cells is independent of

gonadotropins. The SRY-family transcription factor SOX9 triggers

AMH gene transcription after binding to a specific response

element present in the proximal promoter (19, 33, 34), 151 bp

upstream of translation initiation site ATG, according to the most

recent consensus nomenclature (35). Subsequently, SF1 upregulates

AMH expression (21, 34) after binding to specific response

elements at -102 and -228 of the human AMH promoter (20).

Therefore, Müllerian duct regression occurs without any need for

gonadotropin regulation of testicular function.

Sertoli cells continue to express high amounts of AMH during

fetal life, infancy and childhood. FSH plays a role in the increase of

AMH production by the testes, through two mechanisms

(Figure 1B): it induces Sertoli cell proliferation and upregulates

AMH gene expression (27, 36). FSH action is transduced by the

classical G protein-coupled FSH receptor pathway involving the

Gsa subunit (37) and cyclic AMP (27, 38). Three downstream

kinase-mediated mechanisms are involved in AMH transcriptional

upregulation through proximal promoter sequences: PKA increases

Sertoli cell expression of SOX9, SF1 and GATA4 as well as nuclear

translocation of SF1; PI3K/PKB action increases the effects of SF1

and GATA4; and MEK1/2 and p38 MAPK enhance GATA4-

mediated AMH upregulation (3). SF1 cooperates with GATA4

(39) and WT1 (40) to upregulate AMH transcription, while

DAX1 counteracts the SF1/GATA4 action on AMH expression

(41). On the other hand, PKA also boosts distal AMH promoter

activity mediated by transcription factors AP2 and NFkB (27).
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Finally, FSH induces aromatization of androgens to oestrogens,

which upregulate AMH transcription involving ERa binding to

distal AMH promoter sequences and, to a lesser extent, the G-

coupled oestrogen receptor GPER, also called GPER1 or

GPR30 (28).

During pubertal development, Sertoli cells undergo maturation,

which is characterized by their proliferation arrest, a progressive

decrease in AMH expression (42) and a switch of AMH directional

secretion from the basal compartment, driving AMH to blood
Frontiers in Endocrinology 03
vessels in the interstitial tissue, to the adluminal compartment,

directing AMH to the seminal fluid (43). Androgens are the major

regulators of Sertoli cell maturation (44) and of AMH

downregulation. Indeed, in Tfm mice with a natural androgen

receptor (AR) defect (36) and in genetically modified mice

lacking the AR in Sertoli cells (45), AMH expression persists high

at pubertal age. Testosterone and dihydrotestosterone (DHT)

downregulate the activity of the human AMH promoter despite

the absence of canonical androgen response elements (ARE). The
B C

D
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FIGURE 1

(A) AMH involvement in male fetal sex differentiation. (B) Regulation of testicular AMH production by FSH. (C) Serum AMH levels in boys with
nonpalpable gonads; the shaded area represents normal levels. (D) PMDS: persistent Müllerian duct syndrome. a, b and g, subunits of the Gs protein
involved in FSH receptor signalling; AC, adenylyl cyclase; AP2, GATA4, IkB, NFkB, SF1 and SOX9, transcription factors involved in AMH expression
regulation; AR, androgen receptor; cAMP, cyclic adenosine monophosphate; P, phosphorylated proteins; PKA, protein kinase A; prolif, proliferation.
Modified with permission from: Rey and Grinspon (2) © 2010 Elsevier Ltd. (part A), Lasala et al. (3) © 2011 American Physiological Society (part B), and
Josso et al. (4) © 2013 Hindawi Publishing Corporation (part C). Data in part C were obtained from Grinspon et al. (5) and Grinspon et al. (6).
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inhibitory effect of androgens on AMH expression is mediated

either through blockage by interaction, i.e. an interaction between

the AR and SF1, or through blockage by competition due to a direct

binding of the AR on SF1 response elements in the proximal AMH

promoter (23). The inhibitory effect of androgens prevails over the

stimulating effect of FSH and oestrogens during pubertal

maturation and adulthood (Figure 1C). The downregulation of

testicular AMH production is coincident with other androgen-

dependent processes, such as the establishment of the blood-testis

barrier and the onset of adult spermatogenesis (36, 46, 47).

Although intratesticular testosterone concentrations are high in

the fetus and neonate, AMH is not downregulated owing to the lack

of expression of the AR in Sertoli cells in those periods of life (48–

50). In the adult male, AMH levels are 10- to 20-fold lower as

compared to childhood (51), yet 2-fold higher than in females (52).

1.2.2 AMH expression in other organs
In the ovary, AMH begins to be expressed in the 25th fetal week

(53), when Müllerian ducts are no longer sensitive to its action (32,

54). In humans, like shown in other mammals in the 1980´s (55,

56), AMH is produced mainly by granulosa cells of primary and

small antral follicles, and decreases in large follicles; no AMH

expression is seen in the corpus luteum, corpus albicans or atretic

follicles (57, 58). As compared to the testis, ovarian AMH secretion

is much lower and more stable throughout life, with a moderate

peak during puberty or early adulthood and a decrease from the age

of 25-30 years until menopause, when it becomes undetectable in

serum (52, 59–61). The regulation of AMH expression in the ovary

has received less attention than in the testis. FOXL2 and WNT4 are

believed to trigger AMH expression in granulosa cells, with SF1 and

GATA involved as upregulators. FSH and cyclic AMP, as well as

members of the BMP family, have been shown to enhance AMH

production in the ovary, whereas the effects of oestrogens and

androgens remain unclear, probably depending on follicular stage

[for review, see ref. (62)].

AMH mRNA has been found in other organs, such as neurons

and gonadotrophs, using ultrasensitive techniques, which has

prompted the hypothesis that AMH has other functions in the

central nervous system (62–64). The fact that AMH cannot be

detected in circulation in individuals lacking gonadal tissue and that

patients with biallelic pathogenic variants in AMH or its specific

receptor AMHR2 only show the persistence of the uterus, with no

neurologic symptoms (35) challenge these new findings or, at least,

indicate that the proposed actions for AMH beyond fetal

development are redundantly assured by other factors.
1.3 AMH action in target tissues

In concordance with members of the TGFb family, AMH

signals through two membrane-bound receptors with serine-

threonine kinase activity. AMH must be cleaved −although the

dissociation of the N-terminal and C-terminal fragments is not

absolutely necessary− to bind to the specific AMH type 2 receptor

(AMHR2). Subsequently, a nonspecific type 1 receptor is recruited

by AMHR2 to transduce its signal (65). The type 1 receptor used
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varies according to the target tissue: in the mesenchymal cells that

surround the Müllerian duct epithelium, AMHR2 recruits type 1

receptors ACVR1 and BMPR1A to phosphorylate intracellular

proteins SMAD1/5/8 (62). A few target genes have been identified

in rodents, including Osx, Mmp2 and Wif1 (66). AMH induces

apoptosis and epithelial-mesenchymal transformation, finally

leading to Müllerian duct regression (67). In the female fetus,

lacking AMH expression during the critical period, and in male

fetuses with abolished AMH production, owing to AMH gene

mutations, or action, due to AMHR2 mutations, Müllerian ducts

are maintained and differentiate into the Fallopian tubes, the uterus

and the upper third of the vagina. This condition, replicated in male

mice with Amh (68) or Amhr2 (69) gene knockouts, is known as the

persistent Müllerian duct syndrome (PMDS, Figure 1D) (65).

Müllerian derivatives also persist in individuals with dysgenetic

gonads leading to insufficient testicular hormone production and

resulting in disorders of sex development (DSD) (70).
2 AMH and testicular descent during
fetal life

The biphasic model of fetal testicular descent is the most

accepted proposal to explain how the testes descend from their

original intra-abdominal position, when they differentiate from the

urogenital ridge in the 7th week, to the scrotum a few weeks before

birth (71–74). The three hormones produced by the differentiating

testis, AMH, androgens and insulin-like peptide 3 (INSL3), have

been suggested to promote testis descent (Figure 2). The fetal testis

is attached to the abdominal wall by the cranial suspensory ligament

at its upper pole and the gubernaculum at its lower pole together

with the epididymis. The initial or transabdominal phase of

testicular descent is characterized by the regression of the cranial

ligament and the thickening of the gubernaculum attaching to the

inguinal region. In the second or inguino-scrotal phase, the testis

descends along the inguinal canal into the scrotum.

INSL3 is the main testicular factor that controls the

enlargement of the gubernaculum (73, 74), whereas androgens

play some role in the gubernaculum swelling reaction. Androgens
FIGURE 2

Hormones involved in male sex differentiation, including testicular
descent during fetal life.
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also provoke the regression of the cranial suspensory ligament (71).

Both INSL3 and androgens are secreted by Leydig cells under the

stimulus of human chorionic gonadotrophin (hCG) in the first 10-

20 weeks of fetal life and LH in the second part of gestation.

The role of AMH in testis descent remains controversial. Until

the 1990´s AMH was proposed as a candidate for the swelling

reaction of the gubernaculum (75), but INSL3 was later recognized

as the main responsible (71). Further observations in mice provided

experimental evidence against an action for AMH on the

gubernaculum (68, 76). However, in vitro studies showed that

AMH might enhance the effect of INSL3 on the gubernaculum

(77). Furthermore, in patients with PMDS due to AMH or AMHR2

inactivating mutations, testicular descent does not occur normally.

There are 3 presentations of cryptorchidism in patients with PMDS

(35, 71): in the first one, both testes remain in intraabdominal

position attached to the uterus and Fallopian tubes (similar to the

normal ovarian position); in the second presentation, one testis is

scrotal tracking the homolateral Fallopian tube and the

contralateral testis remains intraabdominal (this is known as

“hernia uteri inguinalis”); finally, the third situation is

characterized by the presence of both testes, Fallopian tubes and

uterus in one hemi-scrotum (known as “transverse testicular

ectopia”). In all conditions the gubernaculum is long, indicating a

lack of the swelling reaction, which could be explained by AMH

signaling failure (71). The unusually long gubernaculum allows

abnormal mobility of the testes, which are at increased risk of

torsion (78). Alternatively, cryptorchidism in patients with PMDS

could be explained by the retention of Müllerian derivatives which

prevent testicular descent owing to a mechanical obstruction (35).

In summary, there is no clear evidence that AMH is involved in

testicular descent: although clinical observations in patients with

PMDS seem to suggest a role for AMH in the INSL3-mediated

swelling of the gubernaculum, experimental evidence could not be

obtained from rodent models, probably due to species differences as

regard the physiology of testicular descent between rodents and

humans (71). In fact, in the human the gubernacular cord shortens

in mid gestation explaining in part that testicular descent is usually

complete by birth, whereas rodents have a long gubernacular cord

that enables the testis inside the abdomen or the inguinal canal until

puberty. Therefore, AMH may have a more impactful effect on

INSL3-mediated control of the gubernacular swelling reaction in

humans than in rodents (71). The demonstration of a timely

expression of AMHR2 and its downstream signaling pathway in

the gubernaculum is essential to support the hypothesis of AMH

involvement in testicular descent during fetal life.
3 AMH as a biomarker of
testicular function

Beyond its physiological role in Müllerian duct regression

during the first trimester of fetal life and its potential roles in the

physiology of the ovary and the hypothalamic-gonadotroph axis,

AMH has proved to be a useful biomarker of testicular function

and, especially, of its most conspicuous cell population, the

immature Sertoli cell, in pediatric ages (4, 79–81).
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The circulating AMH levels are commensurate with the mass of

functional Sertoli cells in the fetus (29), newborns (82), infants and

children (51, 83). In males of pubertal age, serum AMH is indicative

of the maturation status of Sertoli cells, reflecting testosterone

concentration and action within the testis (84, 85). This is

especially useful in the early stages of pubertal development, i.e.

Tanner stages 2 and 3 (86), when circulating testosterone may still

be very low or undetectable (51, 87, 88).

Measurement of serum AMH is informative of the amount of

functional testicular tissue in patients with DSD (89). Serum AMH is

undetectable, indicating a complete absence of functional testicular

tissue, in patients with complete gonadal dysgenesis, while it is below

the male range −and probably above the female range− in patients

with partial testicular dysgenesis. Conversely, serum AMH is in the

male range or above in patients with isolated steroidogenic defects or

androgen insensitivity. In 46,XX virilized patients, serum AMH is

within the female range, indicating absence of testicular tissue, when

the etiology is aromatase deficiency, androgen-secreting tumors or

congenital adrenal hyperplasia. Conversely, it is above the female

range in the case of 46,XX ovotesticular or testicular DSD (90).

In normally virilized 46,XY boys of prepubertal age with

enlarged testes, low serum AMH is suggestive of precocious

puberty, either central (87, 91) or peripheral (87), and its increase

after treatment is indicative of successful reduction of intratesticular

hormone concentration (87, 91). On the other hand, normal or high

AMH levels rule out precocious maturation and suggest prepubertal

macroorchidism in boys under 9 years with testicular volume ≥4 ml.

High AMH may also reflect the existence of hypoestrogenic states

(28), excessive FSH downstream signaling (37) or Sertoli cell tumors

(92). The usefulness of serum AMH as a biomarker in patients with

conditions that may present with cryptorchidism will be addressed

in detail below.
4 AMH in boys with cryptorchidism

Cryptorchidism is the clinical sign resulting from an impaired

testicular descent during fetal life (93), or from the re-ascent

occurring later in life, when the cremasteric reflex is established

(94). Cryptorchidism may be the consequence of a primary

testicular dysfunction, of a central disorder affecting the GnRH-

gonadotroph axis, or of an anatomic malformation independent of

any endocrine disorder (Table 1) (72). Whichever the case may be,

cryptorchidism is a frequent complaint in infants and children

brought to the pediatrician at an age when the LH-Leydig cell axis is

quiescent. Therefore, the assessment of the existence and the mass

of functional testicular tissue relies mainly on the assessment of the

Sertoli cell population. The clinical utility of measuring serum

AMH levels in boys with cryptorchidism will be discussed.
4.1 Boys with nonpalpable gonads:
cryptorchidism vs anorchia

When the gonads are not in the scrotum and cannot be detected

in the inguinal regions by palpation or by ultrasonography, the first
frontiersin.org
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step in the diagnostic process is to establish the existence of functional

testicular tissue. Basal serum gonadotropins and testosterone do not

prove useful: testosterone is usually undetectable in serum after the

age of 3-6 months (51, 95) and gonadotrophin levels may be normal

even in the absence of testicular tissue (5). Testosterone levels

measured after hCG stimulation were used in the past searching

for the existence of functional testicular tissue; however, it is no longer

a choice except when there is a specific interest in assessing Leydig cell

function. Direct markers of the existence of prepubertal testicular

tissue, such as AMH or inhibin B, have become the first choice.

Indeed, basal serum AMH proves to be more informative than

testosterone post-hCG both in boys with abdominal testes and in

boys with anorchia (96). The predictive value of detectable serum

AMH for the presence of testes was 98% and that of undetectable

serum AMH for anorchia was 92% (Figure 3); the only false negative

result was observed in a boy with PMDS due to an AMH mutation

who had testes but serum AMH was undetectable.

Furthermore, serum AMH assessment has better predictive

values than imaging studies for abdominal testes (97, 98) and
Frontiers in Endocrinology 06
may be more sensitive than surgical procedures for the

identification of the existence of testicular tissue (99).
4.2 Assessment of testicular function in
boys with isolated cryptorchidism

For decades, the treatment of cryptorchidism has focused on

bringing the testes to the scrotum in an adequate and timely

manner, as if placing the gonads in their proper position solved

everything, without much attention having been paid to their

functional status. However, it seems clear that assessing testicular

function at the time of diagnosis can help to understand the

pathophysiology of cryptorchidism in each patient and its

potential fertility prognosis, as well as to appraise the effect

of treatment.

Serum AMH levels are commensurate with the amount of

functional testicular tissue. Most studies have found that serum

AMH is overall lower in boys with cryptorchidism than in the

general population (100, 101). However, AMH levels are not

systematically decreased in all boys with cryptorchidism, and a

few studies could not detect a significant difference as compared to

control boys (102, 103). In boys with cryptorchidism, low serum

AMH is suggestive of hypogonadism, reflecting a decreased Sertoli

cell mass and, therefore, a reduced testicular size and/or an

impaired Sertoli cell function (6, 104–112). Low AMH levels have

also been suggested to predict a decreased number of germ cells in

the testes (113, 114)

4.2.1 Unilateral vs bilateral cryptorchidism
Since cryptorchidism is a sign of heterogeneous disorders

(Table 1) (72), a wide range of serum AMH levels can be found

in patients with undescended testes. As expected, testicular AMH

output is more affected in boys with bilateral undescended testes

than in those with unilateral cryptorchidism (Figure 4A). Mean or

median serum AMH is significantly lower (approximately -420 to

-560 pmol/l, equivalent to -60 to -80 ng/ml) in boys with bilateral

cryptorchidism than in age-matched controls, while a significant

difference is not always evident between boys with unilateral

cryptorchidism and controls (6, 104, 113, 115). Nevertheless, a

large study showed that serum AMH was clearly below the normal

range in 16% of boys with unilateral cryptorchidism aged 1-6

months and in 7% of older infants and prepubertal boys. In

patients with bilaterally undescended testes, serum AMH was

abnormally low in 14% of infants < 6 months-old and in 19-37%

of older infants and prepubertal children (6). Another study showed

that serum AMH was normal in only half of the boys with

cryptorchidism, without distinguishing between unilateral and

bilateral forms (105). Preterm birth does not seem to have an

influence on testicular function in cryptorchid boys before puberty

(Figure 4B) (6).

4.2.2 Before and after orchiopexy
The impaired testicular function in patients with

cryptorchidism may have two explanations: a primary gonadal

dysfunction that results in a disordered testicular descent to the
TABLE 1 Pathophysiology of congenital cryptorchidism.

Primary
hypogonadism

Whole
testicular dysfunction

Testicular dysgenesis in 46,XY
DSD
Testicular dysgenesis in sex
chromosome DSD with a Y
chromosome (45,X/46,XY, 46,XX/
47,XXY, etc.)
46,XX ovotesticular DSD
46,XX testicular DSD
46,XY testicular regression
syndrome
Klinefelter syndrome
Noonan syndrome
Trisomy 21
Prader-Willi syndrome
Other rarer syndromes

Leydig cell-
specific dysfunction

Leydig cell hypoplasia/aplasia
Steroidogenic defects
INSL3 defects

Central
hypogonadism

Whole
testicular dysfunction

Combined pituitary hormone
deficiency
Isolated gonadotropin deficiency
with hyposmia/anosmia (Kallmann
syndrome)
Isolated gonadotropin deficiency
without hyposmia/anosmia

Leydig cell-
specific dysfunction

LHb-subunit deficiency

Target
organ defects

DHT deficiency 5a-reductase type 2 deficiency

Androgen
insensitivity syndrome

Androgen receptor defects

Anatomic
defects

Abdominal
wall defects

Prune belly syndrome
Cloacal malformations

Ill-
known
mechanisms

PMDS AMH mutations
AMHR2 mutations

Idiopathic
isolated
cryptorchidism
DHT, dihydrotestosterone; DSD, disorder of sex development; PMDS, persistent Müllerian
duct syndrome.
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scrotum and, on the other hand, the longstanding stay of the gonad

in an ectopic position that affects its normal function. In boys with

cryptorchidism, serum AMH increases after successful orchiopexy

(6, 106, 111), indicating that the correction of the abnormal position

may have a positive influence, even if partial, on testicular

function (Figure 5).
4.3 Assessment of testicular function in
boys with cryptorchidism and associated
genital anomalies

The co-occurrence of cryptorchidism with other genital

anomalies, such as micropenis, hypospadias or ambiguous
Frontiers in Endocrinology 07
genitalia, or with syndromic features increases the risk of

testicular dysfunction.

4.3.1 Cryptorchidism and micropenis
The existence of micropenis may be a sign of defective androgen

action during the second half of fetal life, which can be due to a

primary testicular dysfunction such as testicular regression syndrome

or to central (hypogonadotrophic) hypogonadism (116). In a

newborn or infant <6 months-old with cryptorchidism and

micropenis, low serum AMH associated with low testosterone and

gonadotrophins are strongly suggestive of congenital central

hypogonadism (108, 117). Treatment with gonadotrophins results

in an increase in serum AMH and testis volume, reflecting FSH

action on Sertoli cells, as well as a rise in serum testosterone, reflecting
BA

FIGURE 4

Levels of serum AMH, expressed in standard deviation scores (SDS), in boys with unilateral or bilateral cryptorchidism (A), and in boys with unilateral
or bilateral cryptorchidism born pre-term or full-term (B). Modified with permission, from Grinspon et al. (6).
FIGURE 3

Predictive values of serum AMH and testosterone (T) post-hCG in boys with nonpalpable gonads for the existence of functional testicular tissue.
Data from: Lee et al. (96). N.D., non-detectable.
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LH action on Leydig cells and leading to penile enlargement and testis

descent (117–120). Testicular regression results in very low or

undetectable AMH levels, together with low or undetectable levels

of the other testicular hormones and elevated gonadotrophins.

4.3.2 Cryptorchidism and hypospadias or
ambiguous genitalia

The coexistence of cryptorchidism with hypospadias and

incompletely fused labioscrotal swellings is indicative of insufficient

androgen action in the first trimester of fetal life in a 46,XY individual

resulting in disorders of sex development (DSD) (70). This can be due

to a disorder of gonadal development (testicular dysgenesis), or to a

disorder of androgen biosynthesis (Leydig cell hypoplasia, steroidogenic

enzyme defects) or action (androgen insensitivity). Serum testosterone

is below the male range in both disorders of gonadal development and

of androgen biosynthesis. Serum AMH determination can be useful to

distinguish between them (Figure 6), since it is below the male range in

patients with testicular dysgenesis but within the normal range or above

in patients with defects of androgen synthesis (112, 121–126). The

coexistence of testosterone and AMH levels in the male range is

suggestive of partial androgen insensitivity (121, 124, 126).

4.3.3 Cryptorchidism in genetic syndromes
Cryptorchidism is a relatively common feature of genetic

syndromes resulting from sex chromosome (47,XXY Klinefelter

syndrome) or autosome (Trisomy 21, Down syndrome)

aneuploidies, or from single locus disorders, such as Noonan and

Prader-Willi syndromes (72).

In patients with Klinefelter syndrome, serum AMH, as well as

other reproductive hormones, are within the normal range in
Frontiers in Endocrinology 08
infants and children, indicating that endocrine testis function is

not affected before puberty (127–130).

Trisomy 21 is characterized by an early establishment of primary

hypogonadism, as reflected by lower serum AMH levels, as compared

to age-matched controls, during infancy and childhood. Sertoli cell

dysfunction was independent from the occurrence of cryptorchidism

in patients with Down syndrome (51).

In boys with Noonan syndrome associated with PTPN11 gene

variants, serum AMH is low as compared to the general population,

which suggests a Sertoli cell dysfunction; conversely, normal AMH

levels have been found in boys with Noonan syndrome with

pathogenic variants in SOS1 (131).

Boys with Prader-Willi syndrome show a mild Sertoli cell

dysfunction, resulting in serum AMH levels in the lower half of

the reference range, with a mild increase in gonadotrophins, from

early infancy (132) throughout puberty (133, 134)
5 Concluding remarks

AMH is a well-established biomarker of the immature Sertoli cell,

from the fetal stage until mid-puberty. Its unequivocal role is to

induce the regression of Müllerian ducts in the male fetus. Other

physiological roles of AMH, such as its involvement in testicular

descent, remain to be ascertained. Nonetheless, serum AMH

determination is a useful tool to assess the existence and functional

capacity of testicular tissue during infancy, childhood and early

puberty in boys with cryptorchidism, either isolated or associated

with micropenis or with other signs of fetal undervirilization.
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Glossary

ACVR1 Activin receptor type 1

AMH anti-Müllerian hormone

AMHR2 AMH receptor type 2

AP1 Activating protein 1

AP2 Activating protein 2

AR Androgen receptor

BMP Bone morphogenetic protein

BMPR1A BMP receptor type 1A

cAMP Cyclic adenosine monophosphate

DHT Dihydrotestosterone

DSD Disorders of sex development

ERa Estrogen receptor a

FOXL2 Forkhead transcription factor 2

FSH follicle stimulating hormone

GATA Protein binding to GATA DNA sequences

GnRH Gonadotropin-releasing hormone

GPER (GPER1
or GPR30)

G protein -coupled estrogen receptor

hCG human chorionic gonadotropin

IkB Inhibitor of nuclear factor kappa B

INSL3 Insulin-like peptide 3

JSRP1 Junctional sarcoplasmic reticulum 60 protein 1

LH luteinising hormone

MAPK Mitogen-activated protein kinase

MEK MAPK kinase

MIF Müllerian inhibiting factor

MIS Müllerian inhibiting substance

Mmp2 Matrix metalloprotease 2

NFkB Nuclear factor kappa B

Osx Osterix

PI3K Phosphatidylinositol 3-kinase

PKA Protein kinase A

PKB Protein kinase B

PMDS Persistent Müllerian duct syndrome

PTPN11 Protein-tyrosine phosphatase nonreceptor-type 11

SF1 steroidogenic factor 1

SF3A2 (SAP62) Splicing factor 3A 59 subunit 2

SMAD Mothers against decapapentaplegic signalling protein

SOX9 SRY-Related HMG box gene 9

(Continued)
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SP1 Specificity protein 1

SRY Sex-determining region on the Y chromosome

TFII-I General transcription factor II-I

TGFb Transforming factor beta

Wif1 Wnt inhibitory factor 1

WNT4 Wingless-type MMTV integration site family,
member 4
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