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Diabetes mellitus, commonly referred to as diabetes, is a group of metabolic

disorders characterized by chronic elevation in blood glucose levels, resulting

from inadequate insulin production, defective cellular response to extracellular

insulin, and/or impaired glucose metabolism. The two main types that account

for most diabetics are type 1 diabetesmellitus (T1DM) and type 2 diabetesmellitus

(T2DM), each with their own pathophysiological features. T1D is an autoimmune

condition where the body’s immune system attacks and destroys the insulin-

producing beta cells in the pancreas. This leads to lack of insulin, a vital hormone

for regulating blood sugar levels and cellular glucose uptake. As a result, those

with T1D depend on lifelong insulin therapy to control their blood glucose level.

In contrast, T2DM is characterized by insulin resistance, where the body’s cells do

not respond effectively to insulin, coupled with a relative insulin deficiency. This

form of diabetes is often associated with obesity, sedentary lifestyle, and/or

genetic factors, and it is managed with lifestyle changes and oral medications.

Animal models play a crucial role in diabetes research. However, given the

distinct differences between T1DM and T2DM, it is imperative for researchers

to employ specific animal models tailored to each condition for a better

understanding of the impaired mechanisms underlying each condition, and for

assessing the efficacy of new therapeutics. In this review, we discuss the distinct

animal models used in type 1 and type 2 diabetes mellitus research and discuss

their strengths and limitations.
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1 Introduction

Diabetes mellitus, commonly referred to as diabetes, is a group

of metabolic disorders characterized by chronic elevation in blood

glucose levels, resulting from inadequate insulin production,

impaired cellular response to extracellular insulin, and/or

impaired glucose metabolism (1–3). Nearly 10% of the world’s

population is impacted by diabetes. As of 2021, about 537 million

adults globally are living with this condition, a figure expected to

rise to 643 million by 2030 and 783 million by 2045, based on data

from the International Diabetes Federation (accessed on January

29, 2024).

Diabetes has been associated with severe and potentially life-

threatening complications, such as cardiovascular diseases,

neuropathy, retinopathy, nephropathy, hearing impairment, and

chronic ulcers which can lead to lower extremity amputation with

high mortality rates (1, 4, 5). In addition, diabetes has also been

associated with increased risk of certain cancers and is a recognized

risk factor for mental disorders, such as Alzheimer’s disease (6, 7).

Moreover, diabetes significantly increases the susceptibility to

bacterial, fungal, and viral infections, which in turn, contribute

significantly to the morbidity and mortality rates among individuals

with diabetes (8–13).

Diabetes is a complex disease that can take multiple different

forms. The two main types that account for most diabetics are type

1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM),

which account for approximately 9.5% and 90% of all diabetes

respectively (1, 14).

T1DM, (a.k.a., juvenile diabetes or insulin-dependent diabetes),

is an autoimmune disorder whereby the body views its insulin-

producing pancreatic beta (b) cells as a foreign threat, and

subsequently, directs the immune system to attack and destroy

them, leading to insulin insufficiency (15, 16). The exact underlying

cause(s) remain uncertain, but T1DM typically manifests during

childhood or early adolescence (14). Patients diagnosed with T1DM

must rely on exogenous insulin administration to allow glucose

cellular uptake cells and metabolism (14, 16).

T2DM is not an autoimmune condition. Rather, it is a

metabolic disorder that develops through a combination of

lifestyle and genetic factors (1). Other than the characteristic high

blood glucose levels, it is defined by insulin resistance where cells do

not respond appropriately to insulin, or relative insulin deficiency

where the body does not produce enough insulin (15, 16). There are

several risk factors that can increase the likelihood of T2DM. These

factors include ageing, sedentary lifestyle, obesity, metabolic

syndrome and its components, ethnicity, depression, high blood

pressure, family history, and low socioeconomic status (17, 18).

Proper lifestyle modifications, including consuming a balanced

nutritional diet, losing weight, and engaging in routine exercise,

can play a crucial role in the management of T2DM and may even

allow some individuals to control diabetes without the need for

medications (19, 20). This approach is often referred to as “lifestyle

management” or “lifestyle therapy” for diabetes (19, 20).

With this alarming increase in diabetes cases, ongoing research

into its causes and innovative treatments remains crucial. Animal

models have and continue to be important tools for discovering
Frontiers in Endocrinology 02
defective mechanisms underlying co-morbidities associated with

both type 1 and type 2 diabetes in patients and for evaluating novel

therapeutics to treat these diseases (21, 22). However, every animal

model has its own unique advantages and limitations; therefore,

selecting an appropriate model for addressing a specific problem or

situation can vastly influence the study results and interpretation.

With the number of animal models rising, it is critical that we

continue to consider their potential roles within the numerous

aspects of diabetes research and discovery.

Considering the distinct differences between T1DM and T2DM,

it is of imperative for researchers to utilize tailored animal models

specific to each condition. This approach is essential to gain a

deeper understanding of the underlying mechanisms and to assess

the effectiveness of therapeutic interventions designed for these

particular types of diabetes. In this review article, we categorize

diabetes animal models based on the methodologies used for their

development. These methodologies include chemically induced,

genetically/spontaneously induced, virus-induced, surgically

constructed, and diet/nutrition-induced animal models. We delve

into these distinct animal model categories used in research for type

1 and type 2 diabetes mellitus and discuss their respective strengths

and limitations.
2 Type 1 diabetic animal models

In the T1DM research, major animal models include those

generated chemically, genetically or by spontaneous mutations,

surgically, and by employing viral infections. These animal

models are discussed below and summarized in Tables 1–4.
2.1 Chemically induced T1D animal models

There are several chemically induced animal models for T1DM.

The most common chemicals used to generate T1DM animals are

alloxan and streptozotocin (STZ), but other chemicals such as

cyclophosphamide and multiple low-dose streptozotocin (MLD-

STZ) have also been. These animal models are discussed below and

summarized in Table 1.

Streptozotocin and Alloxan are the most frequently used agents

to chemically induce T1DM in animals (53). Both diabetogenic

agents are toxic to pancreatic islet b cells which can consequently

induce hyperglycemia within a few days (22). The dose required for

inducing diabetes by these drugs depends on the animal species,

route of administration, and nutritional status (53).

Streptozotocin (STZ) is a nitrosourea related antibiotic and

antineoplastic drug that is produced by Streptomyces achromogenes

(26). It destroys insulin-producing pancreatic b cells by DNA

fragmentation through alkylation and alteration of macromolecules;

thereby, causing insulin-dependent like diabetic conditions like

hypoinsulinemia and hyperglycemia (54, 55). STZ may prevent

DNA synthesis in both mammalian and bacterial cells by causing

DNA fragmentation (56). This drug induces diabetes in animal

models gradually within a few days, and it is the most common

chemical used for the induction of diabetes in murine (particularly
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rats) and large animals (26, 57–62) (Table 1). This cytotoxic death of

pancreatic b cells can be explained based on DNA methylation

through the formation of carbonium ion, which ultimately results

in NAD+ depletion, nitric oxide production, and free radical

formation (55). The STZ chemically induced rodent model

reproduces many of the acute and chronic complications of
TABLE 1 Chemically Induced T1DM Animal Models.

Animal Chemical Advantages Limitations

Rat Alloxan Cost-effective
(23)

Ease of handling
(23)

Shares similar
numerous
pathophysiology
and pathological
features with
humans (23)

A reduced
amount of stress
by human
contact (23)

Loose skin with dense
hair (23, 24)

Healing of wound occur
via wound contraction
(23, 24)

Partial-thickness wounds
are difficult to create
because skin is too thin
(23, 24)

Chemical can be toxic at
other organs of the body
(25)

Hyperglycemia mainly
develops through the
direct cytotoxic action on
pancreatic b-cells and
insulin deficiency rather
than the adverse effects
of insulin resistance (24)

STZ*

Cyclophosphamide

MLD-STZ*

Mouse Alloxan

STZ

Cyclophosphamide

MLD-STZ

Cost-effective
(23)

Easy housing
(23)

Shares similar
numerous
pathophysiology
and pathological
features with
humans (23)

Less rate of
morbidity (23)

Loose skin with dense
hair (23, 24)

Wound healing occurs
primarily by wound
contraction (23, 24)

Partial-thickness wounds
are difficult to create
because skin is too thin
(23, 24)
Chemical can be toxic at
other organs of the body
(25)

Hyperglycemia mainly
develops through the
direct cytotoxic action on
pancreatic b-cells and
insulin deficiency rather
than the adverse effects
of insulin resistance
(24, 26)

Rabbit Alloxan

STZ

Cyclophosphamide

More cost
effective than
other larger
animals (23, 24)

Share similar
metabolic and

Difficult to produce
irreversible diabetes (27)

Risk of infections and
morbidity compared to
mouse and rat (23, 24)

(Continued)
TABLE 1 Continued

Animal Chemical Advantages Limitations

MLD-STZ

pathological
profile of burn
wounds to that
of humans
(23, 24)

Dog Alloxan

STZ

MLD-STZ

Shares similar
numerous
pathophysiology
and pathological
features with
humans (23)

Mimics similar
symptoms and
pathophysiology
of thermal burn
wounds (23, 24)

Expensive animal model
(23)

Loose skin (23)

Difficult to produce
irreversible diabetes (27)

May develop moderate
hyperglycemia without
clear alterations in body
weight or blood insulin
levels (26)

Pig Alloxan

STZ

MLD-STZ

Anatomy and
physiology of
diabetes matches
closely to that of
humans (27)

Useful for
studying T1DM*
and T2DM* (27)

Expensive animal model
with more cost for care
and housing (23)

Administration of
anesthesia requires a
skilled veterinarian (23)

Requires higher doses to
produce diabetic
conditions (27)

Difficult to produce
irreversible diabetes (27)

Primate Alloxan

STZ

MLD-STZ

A multiple low-
dose STZ model
has been
described in
primates and
shown
beneficiary
results for
T1DM (27)

Shares similar
numerous
pathophysiology
and pathological
features with
humans (27)

Expensive animal model
(27)

Difficult to produce
irreversible diabetes (27)

Administration of a drug
requires a skilled handler
and researcher (23)
*STZ, Streptozotocin; T1DM, Type 1 Diabetes Mellitus; T2DM, Type 2 Diabetes Mellitus;
MLD-STZ, Multiple Low Dose- Streptozotocin.
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diabetes in humans (22). However, STZ also has some limitations

that need to be considered. Due to its strong oncogenic actions,

precautions must be taken to avoid danger to the investigators (49,

56). In addition has shown to cause insulinoma and elevated

incidence of kidney and liver tumors in some experiments (49, 56).

Alloxan is a urea derivative that induces selective necrosis

within pancreatic islet b-cells (49). Alloxan generates its toxic

effects by creating highly reactive hydroxyl radicals that can cause

DNA fragmentation (63). Alloxan also mediates the selective

inhibition of glucose-stimulated insulin secretion and decreases

hepatic glycogen storage within a few days after administration

(25, 64). It is used to produce experimental diabetes in various

animals such as rabbits, rats, mice, pigs, and dogs (27) (Table 1).

The advantages of alloxan is its cost-effectiveness and its efficacy in

creating animal models that mimic the human condition of T1DM

(23). In addition, the hyperglycemia primarily results through the

cytotoxicity of pancreatic islet b cells rather than insulin resistance,

which is what is normally observed in type 1 diabetic patients (24).

However, researchers must have sufficient training in managing

alloxan-induced diabetic animals and should be cognizant of the

potential health hazards posed to the animals by this chemical. The

survival rates of alloxan induced T1DM animals remains a key

challenge, due to the risk of lethal hypoglycemia triggered by

alloxan injection (65). However, because STZ is more stable in

solution, effective in more species, and offers greater reproducibility,

it is the preferred drug of choice over alloxan to cause T1DM in

animals (55).

Cyclophosphamide and multiple low-dose streptozotocin

(MLD-STZ) have also been employed to generate T1DM animal

models. Cyclophosphamide, an alkylating compound, directly

damages pancreatic b cells through its DNA cross-linking actions

and also triggers autoimmune reactions against pancreatic b cells,

thus mimicking T1DM condition in human (22, 56).

Cyclophosphamide-induced T1DM animals allow researchers to

explore the immune mechanisms associated with T1DM. Moreover,

the MLD-STZ approach - where small doses of STZ are given to

animals (particularly mice) over multiple days - offers a more

controlled way to induce T1DM in rodents (22, 24, 26). The

MLD-STZ model closely resembles the gradual pancreatic b cell

destruction seen in human T1DM patients (22, 24, 26).
TABLE 2 Genetically/spontaneously induced T1D animal models.

Animal Gene(s) Advantages Limitations

NOD*
Mouse

Polygenic model that
displays
hyperglycemia,
leukocytic infiltration,
and destruction of the
pancreatic b-cells (27)

Widely used to
study T1DM*
(28)

Exploring genetics
of T1DM (27)

Expensive (27,
29)

Difficult to
handle (27, 29)

KDP*
Rat

Formed from a
nonsense mutation in
the Cbl-b (30)

Rapid onset of
diabetes with no
significant T-
lymphopenia (31)

Both male and
female rats
develop T1DM at
high and similar
frequencies of
approximately
70% (26)

Expensive (27,
31)

Only a handful of
studies have been
based on this
model, which
were largely
genotype
studies (31)

LETL*
Rat

Mirrors the pathology
and phenotypic nature
of human T1DM such
as the sudden onset of
polyuria, polyphagia,
and
hyperglycemia (32)

First discovered
rat model that
spontaneously
formed an
autoimmune
destruction of its
islet b-cells (26)
Spontaneously
forms
autoimmune
diabetes without
lymphopenia (33)

Developing rapid
diabetes at only a
20 percent rate
(26)

Expensive (32,
33)

Does not
completely
replicate the
T1DM conditions
seen in human
subjects (32, 33)

LEW-
IDDM
Rat

Spontaneously
develops insulin-
dependent
autoimmune diabetes
through pancreatic b
cell apoptosis (34)

Can create T1DM
in male and
females with
indistinguishable
frequency (35)

Used to
investigate
possible
treatments that
may prevent the
destruction of
pancreatic b-
cells (27)

Expensive (27,
34)

May not
completely mimic
the T1DM
condition seen in
humans (27, 34,
36, 37)

BB* Rat Presents with
hyperglycemia and
ketoacidosis, which is
associated with the
clinical onset of
T1DM (27)

BB rat is
preferably utilized
for investigating
islet
transplantation
tolerance
induction (34, 38)

Animal models
show
hypoinsulinemia,
ketonuria, and
weight loss (34)

Diabetes is
associated with T-
cell lymphopenia
(26)

Expensive (26)

Akita
Mouse

Develops diabetes due
to a mutation affecting
insulin 2. Exhibits key
characteristics of
T1DM in human, such

Genetic clarity:
Caused by a
single mutation in
insulin 2. This
can simplify the

Not due to an
autoimmune
process which
occurs in human.

(Continued)
TABLE 2 Continued

Animal Gene(s) Advantages Limitations

as insulin deficiency
and hyperglycemia due
to b cell destruction
(39, 40).

Commonly used to
investigate diabetic
related complications
such as modest levels
of albuminuria and
mild-to-moderate
glomerular mesangial
expansion (41)

study of diabetes
pathogenesis
compared to
polygenic
models (42)

Has a greater
capacity for b cell
regeneration
compared to
humans, which
may affect the
translation of
findings from
Akita mice to
human
T1DM (43)
*BB, Bio-Breeder; KDP, Komeda Diabetes-Prone; LETL, Long Evans Tokushima Lean; LEW-
IDDM, LEW.1AR1-iddm; NOD, Nonobese Diabetic; T1DM, Type 1 Diabetes Mellitus.
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There are also limitations with all these chemically induced

animal models that investigators need to consider. These limitations

include lack of disease heterogeneity, species differences,

standardization challenges of achieving consistency and

reproducibility, narrow focus on specific pathways, and ethical

considerations (22, 26).
2.2 Genetically/spontaneously induced
T1DM animal models

Animal models for T1DM have been developed through both

spontaneous induction and genetic engineering. Some examples of

these animal models include the Long Evans Tokushima Lean

(LETL) rat, the Nonobese diabetic (NOD) mouse, Komeda

diabetes-prone (KDP) rat, LEW.1AR1-iddm (LEW-IDDM) rat,

and the Bio-Breeder (BB) rat (26, 34). These animal models are

discussed below and summarized in Table 2.

The LETL (Long Evans Tokushima Lean) rat was the first rat

model to spontaneously undergo autoimmune destruction of its

islet b cells, leading to the development of diabetes at a frequency of

20 percent (26). Initial genetic analysis identified at least two

recessive genes responsible for the induction of insulitis, one of

which is closely linked with rat MHC RT1u haplotype (32). LETL is

widely used for investigating T1DM because it closely mirrors the

pathology and phenotypic characteristics of human type 1 diabetics,

such as sudden onset of polyuria, polyphagia, and hyperglycemia

(32). In addition, this model spontaneously generates autoimmune

diabetes without T cell lymphopenia, which is rarely seen in type 1

diabetic patients (33). While the LETL rat model offers valuable

insights, there are notable constraints, including the low frequency

of diabetes development in the rat, the substantial cost associated

with these animals, and their inability to fully mimic human Type 1

diabetic mellitus conditions (32, 33). For instance, the LETL rat

naturally exhibits autoimmune destruction of b-cells, but the pace
and the pathophysiological mechanisms may not align with human

experiences (32, 33). Furthermore, the LETL rats’ response to

potential treatments or therapies may not always parallel human

reactions, complicating direct comparisons (36).

The NOD mouse model is a polygenic model of T1D, which

mimics many genetic and immunological traits seen in T1D human

patients, such as hyperglycemia and immune cell-driven

destruction of pancreatic b cells (27, 28). This model is one of the

most widely used animal models for studying T1D, and it is

particularly useful for understanding the genetics of T1DM (26,

27). However, there are also limitations with this animal model that

should be considered, such as, its high costs, handling difficulties,

and high vulnerability of these animals to infection (27, 29).

The KDP rat is another valuable animal model frequently used

in T1D. It displays remarkable resemblance to human T1D,

especially with regard to immune-mediated destruction of

pancreatic b cells and its rapid onset of diabetes without marked

T cell lymphopenia (31). The origin of this spontaneous model is a

mutation in the Casitas B-lineage lymphoma proto-oncogene-b

(Cbl-b) (30). Both genders of KDP rats develop type 1 diabetes at

high frequency, with approximately 70 percent manifesting the
TABLE 3 Virally induced T1DM animal models.

Animal Virus
Type

Advantage Limitations

Mouse EMC*
virus

Coxsackie
virus

LCMV*

Clinical diabetes formed from
the destruction of pancreatic
b-cells after EMC viral
induction (44)

Coxsackie B virus is passed in
pancreatic b-cells before
infection develops (45)

Develops T1DM* (44)

Complete
mechanism for
getting diabetes is
unknown (45)

Lack of specificity
and may affect
other organs (33,
44–46)

Ethical
considerations for
safety to prevent
accidental
infections or
outbreaks (33)

Hamster EMC
virus

Coxsackie
virus

LCMV*

Clinical diabetes formed from
the destruction of pancreatic
b-cells after EMC viral
induction (45)

Coxsackie B virus is passed in
pancreatic b-cells before
infection develops (45)
LCMV induces immune
mediated destruction causing
T1DM (33, 34)

Complete
mechanism for
getting diabetes is
unknown (45)

Lack of specificity
and may affect
other organs (33,
44–46)

Ethical
considerations for
safety to prevent
accidental
infections or
outbreaks (33)

Monkey EMC
virus

Coxsackie
virus

Clinical diabetes formed from
the destruction of pancreatic
b-cells after EMC viral
induction (45)

Coxsackie B virus is passed in
pancreatic b-cells before
infection develops (45)

Complete
mechanism for
getting diabetes is
unknown (45)

Lack of specificity
and may affect
other organs (33,
44–46)

Ethical
considerations for
safety to prevent
accidental
infections or
outbreaks (33)

Rat RCMV*

KRV*

RCMV model utilized to study
the mechanisms by which viral
infections can induce or
worsen T1DM (33, 34, 47)

KRV model is useful for
investigating the possible
connection between viral
infections and the formation
of type 1 diabetes mellitus
(33, 34)

Complete
mechanism for
getting diabetes is
unknown (45)

Lack of specificity
and may affect
other organs (33,
44–46)
Ethical
considerations for
safety to prevent
accidental
infections or
outbreaks (33)
*EMC, Encephalomyocarditis; T1DM, Type 1 Diabetes Mellitus; LCMV, Lymphocytic
Choriomeningitis Virus; RCMV, Rat Cytomegalovirus; KRV, Kilham Rat Virus.
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disease (26). Despite its promise, the high cost of these animals has

limited their use to only a handful of largely genotype focused

research studies (31).

The LEW.1AR1-iddm (a.k.a., LEW-IDDM) rat arose following

a spontaneous mutation associated with the telomeric region of rat

chromosome 1 (Iddm8) in a colony of LEWIS.1AR1 rats (35, 66).

LEW-IDDM develops insulin-dependent autoimmune diabetes

through pancreatic b cell apoptosis (34). Both male and female

rats develop type 1 diabetes with nearly identical frequencies, and

this unique characteristic differentiates this model from other

spontaneously induced animal models used for T1DM (35). This

model is useful for early prediction of T1DM, focusing on disease

prevention rather than cure (37). This rat model also allows

researchers to investigate possible treatments that may prevent

the destruction of b cells (27). Unlike other models, this group

does not show autoantibodies against glutamic acid decarboxylase

(GAD) or IA-2 at increased rates, and instead, it displays infiltrative

immune cells attacking only the pancreas and no other glands (36).

Like most other spontaneously autoimmune animal models, this

model is expensive and may not completely mimic the type 1

diabetic condition seen in human diabetics (27, 34, 36, 37).

The Bio-Breeder (BB) rat model spontaneously develops diabetes

with a high frequency between 60 to 120 days of age, displaying

hyperglycemia and ketoacidosis, which are commonly seen at the onset

of T1DM (27). This model also exhibits hypoinsulinemia, ketonuria,

and weight loss (34). Researchers often employ the BB rat to study the

induction of islet transplantation tolerance (34, 38). Despite these

obvious advantages, the model has its drawbacks, including its high

cost, and the diabetes in these rats is associated with T-cell

lymphopenia, which is uncommon in type 1 diabetes in humans.

Specifically, the rats lack CD8+ T-cells and have significantly reduced

CD4+ T-cells, a condition not usually seen in humans (26).

The Akita mouse is a spontaneous model for T1DM, specifically

carrying a mutation in the Ins2 gene that leads to misfolded insulin

and subsequent pancreatic b cells death (39, 40). This model

exhibits some of the key characteristics of human T1D, such as

insulin deficiency and hyperglycemia. This model is commonly

used to investigate diabetic related complications such as modest

levels of albuminuria and mild-to-moderate glomerular mesangial

expansion (41).

The Akita mouse model is beneficial for studying T1DM because

genetic factors may influence susceptibility to diabetic nephropathy

like in human disease (41). In addition, genetic clarity, due to a single

mutation in this model, is advantageous, as it offers a clear genetic

basis for the diabetes phenotype which can simplify the study of
TABLE 4 Surgical T1D anima models.

Animal Surgery
Type

Advantage Limitations

Rat Pancreatomy

Islet
Transplantation

Thymectomy

Reflects the isolated
effects of a reduced b cell
mass (48)

Cost effective, easy
handling, and
housing (49)

Partial-thickness
wounds are
difficult to create
because skin is
too thin (23, 50)

High possibly of
exocrine acinar
cells being
excised too (48)

Mouse Pancreatomy

Islet
Transplantation

Thymectomy

Reflects the isolated
effects of a reduced b cell
mass (48)

Cost effective and easy
housing (49)

Partial-thickness
wounds are
difficult to create
because skin is
too thin (23, 50)

High possibly of
exocrine acinar
cells being
excised as
well (48)

Rabbit Pancreatomy

Islet
Transplantation

Thymectomy

Easy to handle and house
(51)

May work with larger
sample of animals (51)

Live in an
artificial
environment
(51)

Have a
standardized diet
(51)

High cost (49)

High technical
skills needed (49)

Dog Pancreatomy

Islet
Transplantation

Thymectomy

Model is a reliable
method to induce
hyperglycemia (27)

Large size and longer
lifespan (27)

Invasive surgery
(27)

Increased chance
of hypoglycemia
(27)

High cost (49)

High technical
skills needed (49)

Pig Pancreatomy

Islet
Transplantation

Thymectomy

Pancreatectomy followed
by autotransplantation of
the isolated islets largely
matches that seen in
human diabetics (27)

Invasive surgery
(23, 27)

Increased chance
of hypoglycemia
(23, 27)

High cost (49)

High technical
skills needed (49)

Primate Pancreatomy

Islet
Transplantation

Thymectomy

Higher lifespans (48, 52)
Remarkable similarities to
the human physiology
(52)

Limited
availability (52)

Ethical concerns
(48)

(Continued)
TABLE 4 Continued

Animal Surgery
Type

Advantage Limitations

High cost for
handling and
housing (52)
High technical
skills needed (49)
*T1DM, Type 1 Diabetes Mellitus.
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diabetes pathogenesis compared to polygenic models (42). In

addition, the development of diabetes in the Akita mouse does not

require chemical induction or other external interventions, which

mirrors the spontaneous nature of human T1DM. This animal model

also has its own limitations. For example, unlike human T1DM,

which is primarily an autoimmune disease, the diabetes in the Akita

mouse is not due to an autoimmune process. This limits its use for

studying autoimmune aspects of T1DM. In addition, Akita mice have

a greater capacity for b cell regeneration compared to humans, which

may affect the translation of findings from Akita mice to human

T1DM (43).
2.3 Virally induced T1D animal models

Viruses have also been used as a tool to target and destroy b cells
in the pancreas, in order to generate T1D animal models. Notable

viruses used in these animal models include the Coxsackie B virus

(CBV), Encephalomyocarditis virus (EMCV), Lymphocytic

choriomeningitis virus (LCMV), Cytomegalovirus (RCMV), and

the Kilham virus (34, 46, 47). These animal models are described

below and summarized in Table 3.

The CBV was originally discovered to be the cause of diabetic

ketoacidosis in a healthy nondiabetic 10-year old child, and was

shown to induce T1D in mice by causing necrosis in pancreatic b cells
(47). This virus is the most predominantly found enterovirus in the

diabetic individuals (46, 67). The mechanism by which CBV induces

T1D in mice involves the release of a sequestered islet antigen

resembling the autoantigen glutamic acid decarboxylase in human,

which reactivates resting autoreactive T cells, thereby enhancing the

autoimmune assault on pancreatic b cells (44). Additionally, CBV is

known to upregulate the pancreatic expression of glutamic acid

decarboxylase 65, a significant target in the autoimmune response

of both humans and NOD mice (34, 45, 47).

EMCV is a picornavirus which has been shown to infect and

cause necrosis in pancreatic b cells, inducing insulin-dependent

hyperglycemia in mice and hamsters (34, 68).

LCMV, an arenavirus, can produce persistent infections in mice

and infect pancreatic b cells by inducing immune mediated

destruction causing T1DM (33, 34). Researchers use the LCMV

induced animal model to study the diabetes pathogenesis and the

immune response to viral infections (34, 45, 47).

RCMV, a herpesvirus, can initiate diabetes in susceptible stains

of rats by involving immune-mediated pancreatic b cell destruction.

Researchers use this model to study the mechanisms by which viral

infections can induce or exacerbate T1DM (34, 45, 47).

KRV is a natural virus that can infect certain rat strains and

induce diabetes through the inflammation of pancreatic b cells. Like

other viral models, the KRV model is valuable for investigating the

possible connection between viral infections and the formation of

type 1 diabetes mellitus (33, 34, 45).

The use of viral models in the investigation of T1DM does come

with certain limitations that warrant careful consideration. For

example, the correlation between viruses and the development of

diabetes in humans is complex and not as definitively understood as it

might be in animal studies, potentially reducing the direct
Frontiers in Endocrinology 07
applicability of these findings to human conditions (33, 34).

Moreover, viruses used in these models also have systemic effects,

leading to a range of additional pathologies that extend beyond

diabetes. For instance, infections with CBV can result in diverse

health complications such as gastrointestinal disorders, myocarditis,

pneumonia, aseptic meningitis, encephalitis, and hepatitis (69).

Similarly, EMCV can also cause myocarditis and mural and

valvular endocarditis and RCMV can also cause viral retinitis,

myocarditis, and endocarditis (54, 70). In addition, there are also

ethical considerations to be mindful of when using viruses to

investigate diabetic outcomes as viruses can spread to other

laboratory animals or even the researchers themselves (33, 34, 45,

47). Each of these factors highlights the need for rigorous standards

and precautions in the use of viral models for diabetes research.
2.4 Surgical T1D animal models

Surgical interventions have also been employed both to create

animal models of T1D and to assess therapeutic strategies. Key surgical

methodologies utilized in the study of T1DM include complete

removal of the pancreas, (pancreatectomy), transplantation of

insulin-producing islets, and surgical removal of the thymus gland

(thymectomy) (34, 71). These animal models are described below and

summarized in Table 4.

To study the consequences of pancreatic b cell loss, researchers

have performed complete pancreatectomy in both small and large

animals to assess the detrimental effects of insulin deficiency on glucose

metabolism and the eventual development of diabetes in both small

and large animals (22, 49, 71) (Table 4). The Islet transplantation

surgical approach involves the implantation of clusters of insulin-

producing pancreatic b cells into other organs, such as liver, in the

recipient animals. Upon glucose stimulation, these transplanted islets

secrete insulin, contributing to the restoration of glucose homeostasis.

This surgical approach has been shown to be useful for investigating

immune responses to islet transplantation and the therapeutic

assessment of survival of transplanted islets in small and large

T1DM animals (22, 71) (Table 4). Thymectomy surgical models

have been invaluable for researchers investigating the autoreactive T

lymphocytes that mediate the autoimmune destruction of pancreatic b
cells in T1D (34, 71). The importance of these models lies in the

thymus’s key role in T cell development and the process by which T

cells become educated to recognize self from non-self antigens.

These surgical animal models for T1D research come with a set

of limitations, such as a significant loss of animals due to surgical

complications, the necessity for highly skilled surgeons to perform

the operations, and considerable cost, among other limitations

(22, 49).
3 Type 2 diabetic mellitus
animal models

The main type 2 diabetic mellitus (T2DM) animal models

include chemically induced T2DM animal models, genetically/

spontaneously induced T2DM animal models, surgically induced
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TABLE 5 Chemically induced T2D animal models.

Animal Chemical Advantages Limitations

Rat Alloxan at
sub-
diabetogenic
doses

STZ* at sub-
diabetogenic
doses

STZ in
combination
with
nicotinamide

Cost-effective
(23)

Easy to handle
and house (23)

Shares several
pathophysiology
and pathological
features with
T2D in human
(23)

A reduced
amount of stress
by human
contact (23)

Similar limitations in
murine models as discussed
below.

The susceptibility to alloxan
and STZ varies among
different species and even
among different strains of
the same species. This can
limit the generalizability of
the findings (72).

Off-target effects (25, 73).

STZ and alloxan typically
induce an acute model of
diabetes, which does not
represent the chronic nature
of T2DM in humans (74).

Different anatomic features,
such as loose skin with
dense hair in murine skins
(23, 24).

Different physiological
features. For example,
wound healing occurs
primarily via wound
contraction in murine
models as opposed to
reepithelization in human
skin (23, 24)

Hyperglycemia mainly
develops through the direct
cytotoxic action on
pancreatic b-cells and
insulin deficiency rather
than the adverse effects of
insulin resistance (24, 26)

Mouse Alloxan at
sub-
diabetogenic
doses

STZ* at sub-
diabetogenic
doses

STZ in
combination
with
nicotinamide

Cost-effective
(23)

Easy to house
(23)

Shares
numerous
pathophysiology
and pathological
features with
humans (23)

Less rate of
morbidity (23)

Rabbit Alloxan

STZ

STZ
plus
nicotinamide

More cost
effective than
other larger
animals (23, 24)

Similar
metabolic and
pathological
profile of burn
wound in
humans (23, 24)

Difficult to produce
irreversible diabetes (27)

Risk of infections and
morbidity compared to
mouse and rat (23, 24)

(Continued)
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TABLE 5 Continued

Animal Chemical Advantages Limitations

Pig STZ

STZ
plus
nicotinamide

Anatomy and
physiology of
diabetes matches
closely to that of
humans (27)

Useful for
studying T1DM*
and T2DM* (27)

Expensive animal model
with more cost for care and
housing (23)

Administration of anesthesia
requires a skilled
veterinarian (23)

Requires higher doses to
produce diabetic conditions
(27)

Difficult to produce
irreversible diabetes (27)
*STZ, Streptozotocin; T1DM, Type 1 Diabetes Mellitus; T2DM, Type 2 Diabetes Mellitus.
TABLE 6 Genetically/spontaneously induced T2D animal models.

Animal Description Advantages Limitations

db/db* mouse Autosomal
recessive point
mutation, Gly-
to-Thr

Most widely
used mouse
model in T2D
research (75–80)

Show
hyperglycemia,
hyperphagia,
and insulin
resistance
alongside the
obesity (75)

Wounds in db/db
mice heal primarily
by contraction, as
opposed re-
epithelialization seen
in humans, although
this limitation can
be overcome using
splinted wound
models (81, 82).
db/db mice are
sterile, the
maintenance of db/
db mice requires
breeding between
heterozygous (db/+)
pairs, thus adding to
the cost and effort
(83, 84).

Ob/ob* mouse ob/ob mutant, a
nonsense
mutation

Used in
obesity-induced
T2D research
(34)

Used to assess
drugs to counter
hyperphagia
associated with
obesity (85)

The limitations with
the ob/ob mouse
model are similar to
db/db mice (34, 81,
82).
ob/ob males can
occasionally
reproduce if
maintained on a
restricted diet. Ob/
ob females are
always sterile, but
their sterility is
corrected via leptin
treatment (86).

GK* rat Repeated
inbreeding of
glucose
intolerant
Wistar rats
(87)

Best used to
study T2DM
due to their liver
and skeletal
muscle insulin
resistance (88)

Early b cell
destruction remains
a limitation for
mimicking
T2DM (26)

(Continued)
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TABLE 6 Continued

Animal Description Advantages Limitations

Finding
treatments to
advance b cell
function (27)

Finding
treatments to
advance b cell
survival (27)

OSHR* rat Hypertensive
female rats
mated with
normotensive
male rats over
multiple
generations (85)

Used to study
the relationship
between
endocrine and
metabolic
abnormalities to
obesity (85)

Useful for
examining the
relationship of
arthrosclerosis
with high blood
pressure and
hyperlipemia
(89)

Rats sometimes
forced to consume a
high-calorie diet to
become diabetic (90)

Akita mouse Ins-2 autosomal
dominant
mutation

Investigate
albuminuria
and glomerular
mesangial
expansion
(41)

Studying
potential
alleviators of
chronic stress in
pancreatic islet;
therefore,
making some
useful for
investigating
T2DM* (41)

Model can
also be used to
study T1DM
(41)

Not confirmed by
anti-diabetic or anti-
neuropathic drugs
(91)

Underlying
mechanism for the
increase of
mesangial matrix is
currently unknown,
and therefore,
observations for
mesangial
immunoglobulin A
deposits is of limited
value (92)

Zucker
fatty rat

Mating of the
Sherman and
Merck stock M
rats; thus,
inherit an
autosomal
recessive
mutation

Most widely
used rat model
for T2D (85)

Utilized as a
model of human
obesity
accompanied
with
hyperlipidemia
and
hypertension
(24, 26)

Develops severe
diabetes in only
males (24, 93)

(Continued)
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TABLE 6 Continued

Animal Description Advantages Limitations

Zucker
diabetic
fatty rat

Missense
mutation in the
gene coding the
leptin receptor
(fa/fa)

Studying the
development
from prediabetic
to diabetic state
in T2DM (94)

Shows
functional and
morphological
renal lesions
that closely
resemble the
ones seen in
humans with
T2DM (95)

Complete
descriptions of
insulin resistance are
unknown (96)

ZDSD* rat Developed by
crossing two
different rat
models and
selectively bred
for obesity and
diabetes
traits (97)

Important for
investigating
diabetic ulcer
conditions (98)

Used to study
T2DM (97, 98)

May display an
impaired renal
function (98)

May display
progressive
albuminuria (98)

NONcNZO10
mouse

A recombinant
congenic strain
that was
developed at
The
Jackson
Laboratory

Good model to
study the
etiology of
obesity induced
T2D and
metabolic
syndrome (99–
101)

Good model for
wound healing
impairment
studies if
splinted (99)

Only male mice
develop
hyperglycemia (100),

TALLYHO/
Jng
(TH) mouse

Inbred
polygenic model
for type 2
diabetes (T2D)
with moderate
obesity (102)

Exhibit many
similarities with
NONcNZO10/
LtJ with respect
to T2D
phenotypes
(102, 103)

Glucose intolerance
and hyperglycemia
are exhibited only in
males, which is also
a limitation of this
model (102, 103).

KK mouse Polygenic
diabetic model
characterized by
moderate
obesity,
polyphagia, and
polyuria
features (104)

Represent the
human
condition more
closely than
monogenic
species (24)

Used to study
T2DM (27, 71,
105)

Used to discover
insulin resistance
treatment (27,
71, 105)

High cost (71, 105)

Limited availability
(71, 105)

Possible genetic
variations between
individual mice
(71, 105)
*db/db, diabetic/diabetic; Leptin receptor mutant homozygous; GK, Goto Kakizaki; ob/ob, obese/
obese; Leptin mutant homozygous; OSHR, Obese Spontaneously Hypersensitive Rat; T1DM, Type
1 Diabetes Mellitus; T2DM, Type 2 Diabetes Mellitus; ZDSD, Zucker Diabetic-Sprague Dawley.
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T2DM animal models, and diet/nutrition induced T2DM animal

models. These models are discussed in the following sections and

summarized in Tables 5–8.
3.1 Chemically induced T2DM
animal models

While alloxan and streptozotocin (STZ) are most commonly

used to induce T1DM in laboratory animals, these agents are also

used in developing T2DM animal models under certain

experimental conditions. Sub-diabetogenic doses of STZ or

alloxan can lead to a state of impaired glucose tolerance, which

mirrors the initial phase of T2DM (110) (Table 7). In addition,

when combined with high-fat diets (HFD), nicotinamide, or used

within genetically susceptible animals, these agents induce

conditions that more accurately reflect T2DM, characterized by

insulin resistance and progressive b cell dysfunctions (26, 53, 55, 74,

110, 111). These combinations enable researchers to generate a

more controlled and reproducible T2DM phenotype in animals. For

example, the addition of nicotinamide protects pancreatic b cells

from the cytotoxicity of alloxan or STZ, while still allowing the

manifestation of key T2DM features such as impaired insulin

secretion, b cell fatigue, and a decline in b cell mass (112–114).

The use of these chemicals in T2DM research might seem

counterintuitive since T2DM is typically characterized by insulin

resistance followed by a relative, rather than absolute, deficiency in

insulin secretion. However, such models are valuable for dissecting

the mechanisms underlying b cell failure and the onset of insulin

deficiency as T2DM progresses.

Like all animal models, those induced chemically by alloxan and

STZ have their own inherent limitations. Notably, the inducing

agents may produce off-target effects, interfering with other

biological functions and thus complicating the interpretation of

outcomes (25, 73) (Table 5). Reproducing the human form of

T2DM, which is chronic and progresses over time, is yet another

challenge for chemically induced T2DM animal models. This
TABLE 7 Surgical T2D animal models .

Animal Surgery
Type

Advantage Limitations

Rat Partial
pancreatomy

Bariatric
surgery
and

Renal
Denervation

Reflects the isolated effects of
a reduced b cell mass (48,
106, 107)

High reproductive rate (23,
48, 106, 107)

Cost effective, easy handling,
and housing (23, 48,
106, 107)

Partial-thickness
wounds are
difficult to create
because skin is
too thin
(23, 50, 106, 107)

High possibly of
exocrine acinar
cells being
excised too (48,
106, 107)

Mouse Partial
pancreatomy

Reflects the isolated effects of
a reduced b cell mass (48)

Partial-thickness
wounds are

(Continued)
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TABLE 7 Continued

Animal Surgery
Type

Advantage Limitations

Bariatric
surgery
and

Renal
Denervation

High reproductive rate (23,
48, 106, 107)

Cost effective and housing
(23, 48, 106, 107)

difficult to create
because skin is
too thin
(23, 50, 106, 107)

High possibly of
exocrine acinar
cells being
excised too (48,
106, 107)

Zebrafish Partial
pancreatomy

Bariatric
surgery
and

Renal
Denervation

Study specific genes and
similarity in genetic
pathways involved in glucose
metabolism (108)

High reproductive capacity
and rapid development
(106–108)

Cost effective and easy to
maintain (106–108)

Live in an
artificial
environment
(108)

Have a
standardized diet
(49)
(49, 108)

High technical
skills needed
(49, 108)

Dog Partial
pancreatomy
Bariatric
surgery

and

Renal
Denervation

Model is a reliable method to
induce hyperglycemia (27)

Large size and longer
lifespan (27)

Natural
development of T2DM*-like
conditions (27, 106, 107)

Invasive surgery
(27)
Increased chance
of hypoglycemia
(27)

High cost (49)

High technical
skills needed (49)

Pig Partial
pancreatomy
Bariatric
surgery and

Renal
Denervation

Pancreatectomy followed by
autotransplantation of the
isolated islets largely matches
that seen in human diabetics
(27)

Useful for studying T1DM*
and T2DM (27)

Invasive surgery
(23, 27)
Increased chance
of hypoglycemia
(23, 27)
High cost (49)

High technical
skills needed (49)

Primate Partial
pancreatomy
Bariatric
surgery
and

Renal
Denervation

Higher lifespans (48, 52)

Remarkable similarities to
the human physiology
(52)

Limited
availability (52)

Ethical concerns
(48)

High cost for
handling and
housing (52)

High technical
skills needed (49)
*T1DM, Type 1 Diabetes Mellitus; T2DM, Type 2 Diabetes Mellitus.
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complexity often confounds the extrapolation of findings to human

T2DM conditions, particularly considering the distinct metabolic

dysfunctions in humans as compared to animals (22, 26).
3.2 Genetically/spontaneously induced T2D
animal models

There are many widely used T2DM animal models generated

genetically or by spontaneous mutations. These T2DM animal

models include the db/db and ob/ob obese mice, the Goto-

Kakizaki (GK) rat, the Obese Spontaneously Hypertensive Rat

(OSHR), the Zucker Diabetic Fatty (ZDF) rat, the NONcNZO10

mouse, the TALLYHO/Jng (TH) mouse, and the KK mice. These

animal models are discussed in more details below and summarized

in Table 6.

The db/db mouse model is the most widely used animal model

in T2D research. It was created through an autosomal recessive

homozygous point mutation in the leptin receptor (LepR) gene (34,

75). db/db mice are obese due to hyperphagia (excessive eating),

and display insulin resistance, polydipsia (excessive thirst), and

polyuria (excessive urination), and are used for obesity-induced

T2DM research (75). db/db mice specifically exhibit certain aspects

of human T2D that are not present in the high fat diet (HFD)-

induced obese T2DM mice (described below), despite similar body

mass. They exhibit adipose tissue inflammation and distinct

alterations in metabolic flexibility seen in humans with T2DM

(115). The db/db mice have been instrumental in exploring the

pathogenesis of common human T2DM complications, such as,

susceptibility to infection and wound healing impairment (76–79,

116–118). However, a limitation of db/db mouse model is its

inability to fully reproduce the diabetic conditions in humans (34,

81). For example, the db/db mice primarily heal their wounds

through contraction, which is in contrast with the re-

epithelialization that is seen in humans, although this limitation

can be overcome using splinted wound models (81, 82, 99). Another

limitation is that homozygous db/db mice are sterile and the

maintenance of db/db mice requires breeding between

heterozygous (db/+) pairs, thus adding to the cost and effort

(83, 84).

The ob/ob mouse was caused by a homozygous point mutation

of cytosine to thymine in Exon 2 of the Leptin gene, which is

responsible for the production of the leptin peptide hormone (119,

120). This nonsense mutation leads to the synthesis of a truncated

leptin which is apparently degraded in the adipose tissue (119, 120).

By approximately 4-weeks of age, the ob/ob mice become obese due
TABLE 8 Diet/nutrition induced T2D animal models.

Animal Description Advantage Limitations

Sand Rat Most widely used diet-
induced, polygenic
diabetic rat
model (109)

Toxicity of
chemicals on
other organs can
be avoided (24,
26)

Utilized for
studying the
interaction
between obesity
and diabetes (24)

Useful for
studying the
effects of diet and
exercise and for
pharmacological
research (24)

Requiring
extended
periods of time
for treatment
(24)

Not suitable for
screening
antidiabetic
agents (24)

Spiny
Mouse

Characteristically have
massive hyperplasia of
pancreatic islets and
increased pancreatic
insulin content (56)

Toxicity of
chemicals on
other organs can
be avoided (24,
26)

Useful for
studying T2DM
and its
pathogenesis
(24, 56)

Requiring
extended
periods of time
for treatment
(24)

Not suitable for
screening
antidiabetic
agents (24)

C57BL/
6J Mouse

Characterized by
marked obesity,
hyperinsulinemia,
insulin resistance and
glucose intolerance (24)

Toxicity of
chemicals on
other organs can
be avoided (24,
26)

Useful for
studying T2DM
and its
pathogenesis
(24, 56)

Requiring
extended
periods of time
for treatment
(24)

Not suitable for
screening
antidiabetic
agents (24)

Rhesus
macaque
(Monkey)

Rapidly lose their
previously accumulated
adipose tissue and
become ketotic;
therefore, requiring
insulin to survive (24)

The final secretion loss
is linked with
deposition of amylin or
amyloid in pancreatic
b-cells (24)

Capable of
developing
characteristics of
metabolic
syndrome and
coronary artery
disease (26)

Diabetic
complications
similar to human
T2DM (24)

Requiring
extended
periods of time
for treatment
(24)
Not suitable for
screening
antidiabetic
agents (24)
Limited
availability (52)

Ethical
concerns (48)

High cost for
handling and
housing (52)

Gottingen
Minipigs

Require a high fat diet
background to become
firstly obese and
afterwards to become
characteristically
T2DM (26)

Useful for
studying T2DM
and its
pathogenesis (24,
56)
Capable of

Requiring
extended
periods of time
for treatment
(24)

(Continued)
TABLE 8 Continued

Animal Description Advantage Limitations

developing
characteristics of
metabolic
syndrome and
coronary artery
disease (26)

Not suitable for
screening
antidiabetic
agents (24)
*T2DM, Type 2 Diabetes Mellitus.
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to hyperphagia (26, 119, 121). These obese hyperglycemic mice are

very similar to db/db in that they present with hyperglycemia,

insulin resistance and glycosuria (glucose in the urine) without any

ketonuria or coma, mimicking obese type 2 diabetic human

condition (34, 122). In these mice, the islets of Langerhans are

hypertrophied, which leads to an increase in insulin content and a

general state of insulin resistance (34, 122). The limitations with the

ob/ob mouse model are like db/db mice (34, 81, 82). It is worth

noting that although ob/ob males can occasionally reproduce if

maintained on a restricted diet, ob/ob females are always sterile, but

their sterility can be corrected through repeated treatment with

leptin (86).

The GK rat model was generated through repeated inbreeding

of glucose intolerant Wistar rats (87). These rats are non-obese,

insulin-resistant, and exhibit decreased pancreatic b cell mass (123,

124). Because the GK rats display liver and skeletal muscle insulin

resistance, they are best used to study T2DM condition observed in

nonobese diabetic humans (88). However, the inadequate b cell

proliferation in early life limits this model to precisely represent the

type 2 diabetic mellitus condition seen in humans (124).

The OSHR rat was generated from a mutation that arose after

several breeding between spontaneously hypertensive Kyoto-Wistar

strain female rats and normotensive Sprague-Dawley male rats (85).

These rats are often used for investigating the connections between

metabolic and endocrine abnormalities in obesity and for

examining the links between arthrosclerosis with high blood

pressure and hyperlipidemia (89). A limitation of this model is

that overfeeding on a high-calorie diet is required for these rats to

display diabetic conditions (90).

The Zucker fatty rat was originally developed in the 1960s

following the discovery of a spontaneous missense mutation in the

recessive fa/fa genotype (125). This mutation occurred in the leptin

receptor gene and rendered it nonfunctional (85). This rat develops

the same pathophysiological characteristics of obese T2DM,

displayed by db/db mice, including insulin resistance and

hypoinsulinemia, hypertension, hyperlipidemia, and obesity (24,

94, 95, 126). It is largely utilized as a model of human obesity

accompanied with hyperlipidemia and hypertension (24, 26). The

Zucker fatty rat model offers specific advantages for type 2 diabetes

(T2D) research primarily due to its spontaneous nature, closely

mimicking common human T2DM characteristics such as

hyperglycemia, obesity, hyperphagia, polyuria, insulin disorders,

and dyslipidemia (127). Additionally, these rats are also noted for

being calm and easy to handle, which facilitates their use in various

experimental settings (127, 128). However, there are also limitations

to the Zucker fatty rat model. One significant limitation is that these

animals exhibit only mild glucose intolerance which makes their

utility as a T2D model questionable, given that human T2D

typically involves more severe glucose intolerance (128).

Furthermore, while the lipid profile is altered in these rats, they

show an increase in very low-density lipoproteins (VLDL) and

high-density lipoproteins (HDL), but not in low-density lipoprotein

(LDL) cholesterol (127, 128). Therefore, they are not suitable

models for atherogenesis studies. Additionally, despite having

high systolic blood pressure values after 28 weeks, they are not

considered a model for hypertension, which can be a significant
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comorbidity in human T2D (127, 128). It is worth noting that

selective inbreeding of fa/fa rat for hyperglycemia resulted in the

development of the ZDF rat model, which develops more severe

diabetes than the Zucker fatty rats but only in male mice, thus

reducing some of these limitations (24, 93). The ZDF rat also

displays functional and morphological renal lesions that closely

resemble the ones seen in humans with T2DM (95).

The Zucker Diabetic-Sprague Dawley rat developed by crossing

two different rat models and selectively bred for obesity and diabetes

traits (97). This model is an inbred polygenic model for obesity,

diabetes, and diabetic complications (97). The ZDSD presents with

hyperglycemia, hyperlipemia, hypertension, and insulin resistance

features that are also displayed in human diabetics; thus, making

this rat important for investigating diabetic ulcer conditions. This

obese-diabetic rat model expresses T2DM in the presence of an

intact leptin pathway (98). The ZDSD rats can display an impaired

renal function and progressive albuminuria (98).

This approach of using genetically altered models to study

diabetes has some major disadvantages. Some animal sets may

take a long time to develop diabetes and display symptoms (95). Not

knowing when an animal will develop diabetes can impact

experimental design and data collection (34). There are also

ethical considerations to note when trying to genetically

manipulate and selectively breed animals (95). Developing and

maintaining genetically induced animal sets can require

specialized breeding environments (27, 98).

The NONcNZO10 mouse is a recombinant congenic strain that

was developed at The Jackson Laboratory by combining six well-

known diabesity quantitative trait loci (QTL) from New Zealand

Obese (NZO/HlLt) strain with the Nonobese Nondiabetic (NON/

LtJ) mice. The male mice develop type 2 diabetes characterized by

maturity onset obesity, hyperglycemia, and insulin resistance (100).

This strain was specifically developed to serve as a model for the

etiology of T2D and for studying human obesity induced T2D and

metabolic syndrome (99–101). Type 2 diabetes in males of this

strain results from polygenic interactions producing a moderate

obesity rather than the massive obesity elicited by mutations in the

leptin or leptin receptor axis, such as ob/ob or db/db mice. Unlike

mice with monogenic obesity syndromes, NONcNZO10/LtJ, males

do not display hypercortisolism, hyperphagia, or obvious

thermoregulatory defects (129). When male mice from this strain

are weaned onto a chow diet containing 10-11% fat by weight, they

develop visceral obesity, maturity-onset hyperglycemia,

dyslipidemia, moderate liver steatosis, and pancreatic islet atrophy

(99–101). This mouse is quite useful as a model to study the etiology

of obesity induced T2D and metabolic syndrome (99–101). In

addition, NONcNZO10/LtJ appears to be a superior model for

wound healing impairment studies, as it closely resembles the

defects in wound healing that is characteristic of diabetic patients

(99). There are also limitations for the use of this animal model. In

addition to its high cost, only male mice develop hyperglycemia,

thereby restricting the applicability of this model in gender-related

studies concerning Type 2 diabetes (100).

The TALLYHO/Jng (TH) mouse is an inbred polygenic model

for type 2 diabetes with moderate obesity (102, 130). They exhibit

many similarities with NONcNZO10/LtJ with respect to T2DM
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phenotypes but there are also differences between these mice (102,

130). Both male and female TH mice are characterized by increased

body and fat pad weights, hyperleptinemia, hyperinsulinemia, and

hyperlipidemia, but glucose intolerance and hyperglycemia are

exhibited only in males, which is also a limitation of this model

(102, 103).

The KK mice are a polygenic model for non-insulin-dependent

diabetes mellitus (NIDDM). They develop hereditary diabetes with a

progression from a prediabetic stage to full diabetes, including renal,

retinal, and neurological complications (131). These mice exhibit

hyperglycemia, glucose intolerance, and microalbuminuria (71). Both

genetic predisposition and environmental factors influence these

phenotypes. In the prediabetic stage, KK mice develop mild to

moderate glomerulosclerosis which progresses to severe

glomerulosclerosis and proteinuria later in life (131). These

characteristics can be transmitted to normal control mice through

back-crossing, indicating that a specific genetic trait(s) is essential for

the development of diabetes. Consistent with this notion, a prior

investigation a quantitative trait locus (QTL) for fasting glucose levels

on chromosome 6 and three loci on chromosomes 3, 5, and 14

associated with glucose tolerance and plasma insulin levels in these

mice (104). The KK mice have been useful in discovering novel

treatments to improve insulin resistance (27). Some drawbacks for

using this mouse model to study diabetes include its high expense,

limited availability, and its possible genetic variations between

individual mice due to its non-homogenous genetic nature (71, 105).
3.3 Surgical T2D animal models

Surgical techniques have also been used to generate animal

models for T2DM. These techniques generally aim to reduce

pancreatic b cell mass (22, 71). The main T2DM surgical models

include partial pancreatectomy models, bariatric surgery models,

and the renal denervation models (22, 71, 106, 107). The surgical

T2DM animal models have been invaluable in shedding lights on

many aspects of T2DM in human. However, their invasive nature

and the potential to harm healthy tissue and the requirement for

highly skilled investigators, are major limitations, reducing their

utility in research (34). These animal models are discussed in more

details below and summarized in Table 7.

Partial pancreatectomy was a technique established several

decades ago by researchers who wished to induce diabetes in

animals while avoiding liver and kidney damages that can be

caused by administration of alloxan or streptozotocin (132, 133).

Over time, many modifications have been made to this procedure.

These include variations in the percentage of pancreas removal and

the integration of partial pancreatectomy with chemical induction

methods (54, 134, 135). This model has been useful for investigating

the implications of the loss of pancreatic b cells and for assessing the
regenerative capability of b cells or their progenitors which are

relevant to T2D conditions in human (34, 54, 134, 135).

Renal denervation surgery involves the disruption of the nerves

in the renal artery (136). This procedure is primarily used to treat

resistant hypertension, but it has also been used to study its

potential therapeutic effects on cardiovascular, metabolic, and
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renal functions in diabetic animals (137–139). The renal

denervation model assists researchers to explore the part that

sympathetic nervous system plays in T2DM development (138).

Bariatric surgery describes various surgical procedures that are

used to reduce obesity and manage obesity-related conditions (140).

This can be accomplished by reduction of stomach size, reduction of

nutrient absorption, or a combination of both (140, 141). Bariatric

surgeries do not cause diabetes, rather, they are used in diabetic

animals by investigators to study the effects of weight reduction on

improving insulin sensitivity and glucose metabolism (54, 142, 143).

These surgical models also have limitations that should be

considered prior to use. One major limitation is their invasive

nature and their potential to cause damage to healthy organs,

resulting in pain and stress to animals (34). The triggered

inflammatory and immune reactions associated with these

surgical interventions may also confound the results of the

research (107). Another limitation is the requirement for highly

skilled investigators to perform such surgeries, precisely to avoid

causing additional harm to animals. Also, there can be a variability

in outcomes as results may vary based on the years of experience a

researcher may have with performing surgical experiments (22,

107). Finally, ethical concerns related to animal suffering and

wellbeing should also be considered when deciding whether or

not to employ such techniques (34, 71).
3.4 Diet/nutrition induced T2D
animal models

Obesity greatly increases the likelihood of developing

prediabetes and T2DM, especially when linked with a higher

concentration of fat in the abdominal and intra-abdominal areas,

as well as elevated triglyceride levels in the liver and muscles,

because it can lead to both insulin resistance and b cell

dysfunction (144, 145). Naturally, investigators have employed

several diet and nutritional strategies to generate T2DM animal

models to study T2DM disease progression and for testing

potential treatments.

One common approach is using a high-fat diet (HFD) to induce

obesity and insulin resistance in rodents (146–150). This method

attempts to mimic the Western diet, which typically contains

significantly more saturated fat than recommended dietary

guidelines (151). Like the diabetes seen in humans, animals in

this category tend to develop diabetes linked to obesity because of

overnutrition (24, 56). The primary animal models used in this

group include the sand rat, spiny mouse, C57/BL 6J mouse, Rhesus

macaque monkey and the Gottingen minipig (24, 26, 56). The non-

rodent models, Rhesus macaque monkeys and Gottingen minipigs,

are unique because, when fed with an atherogenic diet, they can

develop characteristics of metabolic syndrome and coronary artery

disease (26).

The HFD is routinely combined with low dose Streptozotocin

(STZ) to generate HFD/STZ animal models of T2DM (152). This

involves feeding animals a HFD to induce hyperinsulinemia and

insulin resistance, followed by an injection of a low dose of STZ to

slowly reduce pancreatic b cell mass, leading to a decrease in insulin
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production and mimicking the pathophysiology associated with

T2DM in human (152). The HFD/STZ is particularly a good animal

model for the later stage of the disease, depending on the amount of

residual b cell mass (153).

Another nutritional method that is frequently used to induce

T2DM involves feeding mice energy-dense (ED) diets, such as

higher intake of processed red meat and sugary desserts and

drinks (154, 155). This strategy has been shown in various

animals to lead to glucose intolerance, hyperglycemia, increased

glycosylated hemoglobin (HbA1c), and glycosuria, typically within

a 30-week period (154–156).

There are also several drawbacks to this approach (24, 26). One

major limitation is the extended time required for the diet/nutrition

treatment to induce diabetes (24). Additionally, this method may

not induce hyperglycemia in genetically normal animals, rendering

it less effective for testing antidiabetic agents that target blood

glucose levels (24). The complexity of human diets can also be

challenging to replicate in diet/nutrition-induced models,

potentially requiring long-term studies to observe chronic effects

and gather reliable data (56). Another major drawback is

controlling all variables like individual metabolic behavior, which

can confound the results of the experiment (24, 56).
3.5 Concluding remarks and
future prospective

As the incidence of diabetes increases globally, the need for

continued research for more effective treatment options is critical.

Type 1 (T1DM) and Type 2 diabetes mellitus (T2DM) are the

predominant forms of diabetes, accounting for most cases

worldwide. These two types, while sharing some common

features, also exhibit distinct pathophysiological mechanisms,

thus necessitating targeted research approaches for each. Animal

models have provided important insights into the genetic,

environmental, and immunological factors that contribute to the

development and progression of diabetes. Given their fundamental

differences, investigating T1DM and T2DM requires tailored

experimental designs, using animal models that closely mimic the

specific diabetes type. Therefore, the selection of an appropriate

animal model is critical in understanding the disease process and in

testing potential therapeutic interventions.

Although animal models have played an essential role in

advancing diabetes research, it is important to note that currently,

there are no animal models capable of fully replicating human type
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1 and type 2 diabetic conditions, and they all come with inherent

limitations that necessitate careful consideration. This underscores

the critical need for ongoing research efforts to improve these

animal models. This understanding is crucial for developing more

effective and tailored treatments, ultimately aiming to improve the

quality of life for individuals living with diabetes. Moreover, ethical

considerations are paramount in animal research. Researchers must

adhere to strict guidelines to ensure ethical treatment of animals,

including minimizing discomfort and using alternative approaches

whenever possible to reduce animal use in research.
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38. Crisá L, Mordes JP, Rossini AA. Autoimmune diabetes mellitus in the BB rat.
Diabetes/metabolism Rev. (1992) 8:9–37. doi: 10.1002/dmr.5610080104.

39. Yoshioka M, Kayo T, Ikeda T, Koizuni A. A novel locus, Mody4, distal to
D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6
(Akita) mutant mice. Diabetes. (1997) 46:887–94. doi: 10.2337/diab.46.5.887.

40. Wang J, Takeuchi T, Tanaka S, Kubo S-K, Kayo T, Lu D, et al. A mutation in the
insulin 2 gene induces diabetes with severe pancreatic b-cell dysfunction in the Mody
mouse. J Clin Invest. (1999) 103:27–37. doi: 10.1172/JCI4431.

41. Gurley SB, Clare SE, Snow KP, Hu A, Meyer TW, Coffman TM. Impact of
genetic background on nephropathy in diabetic mice. Am J Physiology-Renal Physiol.
(2006) 290(1):214–22. doi: 10.1152/ajprenal.00204.2005.

42. Izumi T, Yokota-Hashimoto H, Zhao S, Wang J, Halban PA, Takeuchi T.
Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse.
Diabetes. (2003) 52:409–16. doi: 10.2337/diabetes.52.2.409.

43. Nir T, Melton DA, Dor Y. Recovery from diabetes in mice by b cell regeneration.
J Clin Invest. (2007) 117:2553–61. doi: 10.1172/JCI32959.

44. Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvennick N. Diabetes
induced by Coxsackie virus: initiation by bystander damage and not molecular
mimicry. Nat Med. (1998) 4:781–5. doi: 10.1038/nm0798-781.

45. Jaeckel E, Manns M, Von Herrath M. Viruses and diabetes. Ann New York Acad
Sci. (2002) 958:7–25. doi: 10.1111/j.1749-6632.2002.tb02943.x.

46. Filippi CM, von Herrath MG. Viral trigger for type 1 diabetes: pros and cons.
Diabetes. (2008) 57:2863. doi: 10.2337/db07-1023.

47. Yoon J-W, Austin M, Onodera T, Notkins AL. Virus-induced diabetes mellitus:
isolation of a virus from the pancreas of a child with diabetic ketoacidosis. New Engl J
Med. (1979) 300:1173–9. doi: 10.1056/NEJM197905243002102.

48. Thisted L, Østergaard MV, Pedersen AA, Pedersen PJ, Lindsay RT, Murray AJ,
et al. Rat pancreatectomy combined with isoprenaline or uninephrectomy as models of
diabetic cardiomyopathy or nephropathy. Sci Rep. (2020) 10:1–15. doi: 10.1038/s41598-
020-73046-8.

49. Etuk E. Animals models for studying diabetes mellitus. Agric Biol JN Am. (2010)
1:130–4.

50. Davidson J. Animal models for wound repair. Arch Dermatol Res. (1998) 290:S1–
S11. doi: 10.1007/PL00007448.
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