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Background: Diabetes that only appears or is diagnosed during pregnancy is

referred to as gestational diabetes mellitus (GDM). The maternal physiological

immune profile is essential for a positive pregnancy outcome. However, the

causal relationship between GDM and immunophenotypes is not fully defined.

Methods: Based on the high-density genetic variation data at the genome-wide

level, we evaluated the logical associations between 731 specific immune

mediators and GDM using bidirectional Mendelian randomization (MR). The

inverse variance weighted (IVW) was the main method employed for MR

analysis. We performed multiple methods to verify the robustness and

dependability of the MR results, and sensitivity measures were applied to rule

out potential heterogeneity and horizontal pleiotropy.

Results: A substantial causal association between several immune mediators and

GDMwas detected. After FDR testing,HLADR++monocyte %leukocyte andHLADR

on plasmacytoid DCwere shown to increase the risk of GDM; in contrast, CD127 on

CD28+CD45RA+CD8br andCD19 on PB/PCwere shown to attenuate the effect of

GDM. Moreover, the progression of GDM has been shown to decrease the maternal

levels of CD39+ activated Treg AC, CD39+ activated Treg %CD4 Treg, CD39+

resting Treg AC, CD39+ resting Treg %CD4 Treg, and CD39+ CD8BR %T cell.

Conclusions: Our findings support a possible causal association between GDM

and various immunophenotypes, thus facilitating the provision of multiple

options for preventive recognition as well as for the diagnostic and therapeutic

management of GDM in clinical practice.
KEYWORDS

gestational diabetes mellitus, immunity, causal inference, genetic variation,
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Introduction

Numerous physiological changes take place in a woman’s body

during pregnancy. Throughout the long gestation period, the main

energy pathway received by the fetus is glucose from the mother’s

placenta (1). While pregnancy progresses, the fetal need for glucose

grows, which leads to gestational diabetes mellitus (GDM) in

women with otherwise healthy glucose metabolism or potentially

impaired glucose tolerance prior to pregnancy (2, 3). As a common

complication of pregnancy worldwide, uncontrolled GDM poses a

serious threat to the mother, fetus, and newborn, increasing the

likelihood of adverse pregnancy reactions (e.g., gestational

hypertension, infection, and metabolic ketoacidosis) as well as

malignant pregnancy outcomes (e.g., preterm abortion, neonatal

hypoglycemia, and postpartum depression) (4). The focus of GDM

prevention efforts is on preconception or early pregnancy, with only

a minority of women with GDM requiring pharmacological

treatment, and the identification of reliable underlying risk

markers is valuable for the timely detection and prognosis of

GDM (5).

The growth of a fetus from conception to successful delivery is a

significant challenge for the physiological functions and regulatory

systems of the mother (6). Patients with GDM frequently

experience metabolic issues, such as increased insulin resistance,

and generally suffer from systemic mild inflammation and immune

dysregulation (7). In GDM, various types of immune cells,

particularly regulatory T cells (Tregs), adapt spontaneously to

prevent pregnancy interruption. Besides this, there is a

proportional increase in circulating monocyte activation and an

elevated level of cytokines, including IL-12 and IL-23, in mid to late

gestation compared to non-pregnant women (8). It is quite

predictable that changes in the quantity or function of immune

mediators are involved in the development of GDM. Regrettably,

the conclusions of the current studies on the correlation between

maternal immune profiles and GDM are not entirely consistent,

which may be due to factors such as differences in the samples and

flaws in the design.
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Nowadays, genome-wide association study (GWAS) and

Mendelian randomization (MR) make it feasible to estimate the

causal associations between immune traits and disease events on a

large scale. GWAS identifies genome-wide sequence variation in

specific human populations (9), whereas the existence of

randomness in the process of genetic variation allows MR to be

independent of common confounders and reverse causation (10). In

this current study, by identifying single-nucleotide polymorphisms

(SNPs) linked to complex traits, a comprehensive bivariate MR

analysis was undertaken to identify causal relationships between

immunocyte features and GDM. Figure 1 provides an illustration of

this research.
Materials and methods

Study design

In this present research, we assessed the causal associations

between 731 immunocyte features and GDM using MR analyses.

MR employs genetic variants with strong correlations to exposure

factors as instrumental variables (IVs), and IVs involved in causal

inference have to comply three major assumptions of relevance,

independence, and exclusivity (11).
Sources of data on exposure

The initial immune traits were performed with data from 3,757

Europeans, and the summary data for all traits are available from

the publicly available GWAS catalogue (from GCST90001391 to

GCST90002121) (12). In order to identify genetic variations

occurring in 731 immune cells, GWAS detected approximately 20

million SNPs and 1.6 million indels through high-density

genotyping and with reference to Sardinian sequences (13).

Specifically, the characterization of immunophenotypes includes

four immune trait types with median fluorescence intensities (MFI),
FIGURE 1

Hypothetical design of MR studies. Relevance: there is a significant relationship between exposure variables and genetic variations: genetic variants
and confounding factors are independent of each other; exclusivity: genetic variation affects outcomes only through exposure and not by other
means. X means no direct association.
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relative count (RC), absolute count (AC), and morphological

parameter (MP) as well as seven panels with B cell, Treg, myeloid

cell, maturation stages, myeloid cell, maturation stages of T cell,

monocyte, TBNK, and cDC.
Sources of data on outcome

The GWAS summary statistics for GDM were derived from

finn-bGEST_DIABETES (14). For the study, GWAS were

performed on 123,579 Europeans (Ncase = 5,687, Ncontrol =

117,892), and approximately 16 million variants were analyzed

after quality control and filtering. All of the original research

described above were publicly available, anonymous, and

de-identified.
Screening of relevant IVs

To assure the relevance of causal inferences between immune

characteristics and GDM, with reference to previous MR studies, we

set the significance threshold of IVs for each immune characteristic

at 1 × 10-5 (15). Considering the quantity of SNPs obtained, we

scaled the significance level for immune cells to 5 × 10-8 in reverse

extrapolation (16). Since genetic variants with similar genomic

locations are more inclined to be co-inherited, in order to assure

the independence among genetic tools and remove linkage

disequilibrium (LD), we restricted the r2 value to 0.001, with a

window range of 10,000 kb (r2 = 2 × MAF × [1 - MAF] × [b/SD]2;
MAF: minor allele frequency; b: effect value of SNP on exposure

factors) (17). In addition, a strong or weak bias in IVs also leads to

weaker correlations with exposure. We have consequently selected

the obtained IVs by means of F-statistic (F = (N - K - 1) × r2/[(1 - r2)

× K]; N: sample size of GWAS; K: number of IVs), when the F value

is above 10, it is generally thought that there are no significantly

weak IVs (18).
Statistical analysis

We conducted MR analysis with the two-sample MR package

(version 0.5.8) in R software (version 4.3.2) and adopted inverse-

variance weighted (IVW) as the primary analytical method to

estimate the causal effects of genes on traits (19, 20). Statistical

approaches such as MR Egger, weighted median, and simple and

weighted mode were also utilized to validate the MR results (21, 22).

As a widely applied method of MR analysis, IVW is characterized

by regressions that ignore the presence of the intercept term and are

fitted with the inverse of the outcome variance as weights. MR Egger

enables the estimation of bias among causal relationships when

there is significant horizontal pleiotropy between SNPs. Even

though half of the data were derived from genetic variation in

invalid SNPs, the weighted median still yielded a consistent

evaluation of causality. Furthermore, leave-one-out method was

carried out to remove each SNP one by one, determine the meta

impact of the SNPs that remained, and track the modifications in
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the results following the removal of every SNP (23). If the results

changed remarkably after removing a certain SNP, it means that it

has a significant effect on the results.
Results

Determining the causal role of
immunophenotypes in GDM

During our investigation, we performed two-sample MR

analyses utilizing the IVW method as the principal methodology.

After F-statistics as well as an initial significance test, a total of 34

immune cells were detected to exhibit a causal association on GDM,

including twelve B cell, seven Treg, four monocyte, four maturation

stages of T cell, three TBNK, three cDC, and one myeloid cell panel.

With further adjustment for FDR (PFDR< 0.04), we identified a total

of four GDM risk immunophenotypes, which were respectively

classified as Treg, B cell, TBNK, and cDC panel (Supplementary

Table S1). Since then, we have found that certain alterations in the

immune milieu influenced the progression of GDM. Concretely, the

odds ratio (OR) of CD127 on CD28+ CD45RA+ CD8br on GDM

risk was estimated to be approximately 0.919 (95% CI: 0.860–0.982,

P = 0.0125, PFDR = 0.040) by the IVW method, whereas the MR

Egger (95% CI: 0.830–1.071, OR = 0.943, P = 0.375) and weighted

median (95% CI: 0.827–0.998, OR = 0.909, P = 0.045) analyses were

consistent with the IVW. Simple mode (95% CI: 0.743–1.035, OR =

0.877, P = 0.138) and weighted mode (95% CI: 0.764–1.003, OR =

0.876, P = 0.071) also supported the genetic causal inference. The

OR of CD19 on PB/PC on GDM risk was estimated to be 0.902 (95%

CI: 0.839–0.970, P = 0.005, PFDR = 0.038) by the IVW method,

whereas the MR Egger (95% CI: 0.770–1.009, OR = 0.881, P = 0.083)

and weighted median (95% CI: 0.820–1.013, OR = 0.911, P = 0.085)

analyses were consistent with the IVW. The OR of HLA DR on

plasmacytoid DC on GDM risk was estimated to be approximately

1.078 (95% CI: 1.039–1.120, P = 8.76 × 10-5, PFDR = 0.003) by the

IVWmethod, whereas MR Egger (95% CI 1.044-1.164, OR = 1.103,

P = 0.002) and weighted median (95% CI 1.079-1.179, OR = 1.128,

P = 1.07×10-7) analyses were consistent with the IVW. The odds

ratio of HLA DR++ monocyte %leukocyte on GDM risk was

estimated to be approximately 1.153 (95% CI 1.059-1.256, P =

0.001, PFDR = 0.018) by the IVW method, whereas the MR Egger

(95% CI: 0.924–1.259, OR = 1.079, P = 0.371) and weighted median

(95% CI: 1.043–1.314, OR = 1.170, P = 0.008) analyses were

consistent with the IVW (Figure 2; Supplementary Table S2).

Scatter plots and leave-one-out plots also support the stability of

the results (Supplementary Figures S1, 2).
Inferring causality of GDM
on immunophenotypes

In order to ascertain the relationship between the onset and

development of GDM with the body’s immunity, we verified the

causality of GDM on 36 immune traits. Following GDM, the levels of

five immunological features were found to change significantly
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(Supplementary Table 3); all of these traits belonged to the Treg panel

and were adjusted for FDR (PFDR< 0.03). Interestingly,We found that

GDM caused the CD39+ activated Treg %CD4 Treg (b = -0.183, 95%

CI: 0.739–0.939, P = 0.003, PFDR = 0.024), CD39+ activated Treg AC

(b = -0.183, 95% CI: 0.738–0.939, P = 0.003, PFDR = 0.021), CD39+

resting Treg % CD4 Treg (b = -0.183, 95% CI: 0.741–0.935, P = 0.002,

PFDR = 0.024), CD39+ resting Treg AC (b = -0.164, 95% CI: 0.755–

0.955, P = 0.006, PFDR = 0.028), and CD39+ CD8BR %T cell (b =

-0.176, 95% CI: 0.744–0.946, P = 0.004, PFDR = 0.025) levels to show a

similar decrease (Figure 3; Supplementary Table S4). The results from

other MR methods and sensitivity analyses demonstrate the
Frontiers in Endocrinology 04
robustness of the observed causal associations (Supplementary

Figures S3, 4).
Discussion

GWAS studies have revealed associations between diseases and

genetic variation, etc. Benefitting from a large, publicly available

genomic data, our study attempted to offer genetic evidence for the

causal link between GDM and multiple immune phenotypes. In this

paper, we proved that four immune phenotypes have a significant
FIGURE 2

Forest plot illustrating the various ways in which the four immunological features and gestational diabetes mellitus are causally related.
FIGURE 3

Forest plot illustrating the various ways in which gestational diabetes mellitus and five immunological features are causally related.
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causal association for GDM (PFDR< 0.04), while GDM has the same

relationship for five other immune phenotypes (PFDR< 0.03).

As a globally prevalent obstetric disorder, GDM has been shown

to be associated with many adverse maternal and fetal pregnancy

outcomes. Abnormal maternal immune adaptation is key to the

low-grade inflammation associated with the diagnosis of GDM,

while immune cell infiltration of visceral adipose tissue causes the

pathological dysregulation of insulin signaling and contributes to

insulin resistance. Specifically, CD39 is located on the surface of

trophoblast cells in the normal human placenta and regulates ATP-

dependent trophoblast function, which is critical for immune

tolerance and the maintenance of a normal pregnancy (24).

Severa l s tud ies have shown that measur ing CD19+

subpopulations can help predict the pregnancy outcome in

women, with a trend towards lower peripheral CD19+ B cells in

women who miscarry compared to those who subsequently give

birth (25). The frequency of CD19(+) CD5(+) cells was also

significantly increased in the peripheral blood of patients with

pre-eclampsia compared to normal pregnant women (26). In

addition, the maternal humoral response to fetal anti-HLA-DR

immunoglobulin antibodies may influence the development of

pregnancy-induced hypertension (27).

Our results demonstrate that the elevated levels of HLA DR on

plasmacytoid DC andHLA DR++ monocyte %leukocyte increase the

risk of GDM. As a specialized antigen-presenting cell, dendritic cells

(DCs) regulate the immune response and bridge the gap between

innate and adaptive immunity (28). DCs play crucial roles in the

growth and development of embryos and fetuses in the mother’s

womb; dysregulation of the DC subpopulations appears to be linked

to adverse pregnancy outcomes (29). HLA-DR is the most common

MHC class II molecule on the surface of antigen-presenting cells.

Specially, the expression of HLA-DR on the surface of DCs

increases the abundance of protein complexes and is

accompanied by the production of co-stimulatory molecules and

cytokines (30). Moreover, recent studies have demonstrated that the

level of HLA-DR is an indicator of monocyte immunocompetence,

which not only assists in antigen presentation but also strengthens

TLR-2-mediated signaling, cell proliferation, and maturation (31).

On the contrary, the growing levels of CD127 on CD28+

CD45RA+ CD8br and CD19 on PB/PC decrease the risk of GDM.

The reduced activity of inhibitory Treg isoforms in GDM was

pointed out to be associated with the upregulation of pro-

inflammatory factor concentrations which include IL-6 and TNF-

alpha (32). Another study showed that the percentage of circulating

Treg subpopulation cells defined by CD3+CD4+CD25 bright/dim

CD127 expression was reduced in GDM pregnancies compared

with glucose-tolerant pregnancies (33). CD19 is a transmembrane

protein on the surface of B cells, which is tightly connected with B

cell activation, signaling, and growth regulation. For IgG4-related

diseases, the peripheral blood was significantly enriched in B cell

populations, including CD19+ CD24-CD38hi PB/PC. After

glucocorticoid administration, the levels of these cells declined,

accompanied by an improvement in clinical symptoms (34). In

summary, our research indicates that immune cells have a

significant role in GDM’s early diagnosis, therapeutic monitoring,

disease activity assessment, and adaptive therapies.
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On the other hand, we also revealed that the percentage of

various immunological phenotypes was altered as a result of GDM.

Strikingly, we found that GDM commonly lowered the abundance of

CD39+ activated Treg %CD4 Treg, CD39+ activated Treg AC, CD39+

resting Treg % CD4 Treg, CD39+ resting Treg AC, and CD39+ CD8BR

%T cell. Extracellular ATP is an effective proinflammatory factor in

vivo, and its hydrolysis is important for its immunosuppressive

function. As an extracellular ectonucleotidase, CD39 has been

implicated as a major marker of FOXP3+ Treg and cleaves ATP to

form AMP in the rate-limiting step. It is notable that the percentage

of D39+ Treg cells was significantly decreased in type 2 diabetes

patients as compared to the controls. In vivo experiments have shown

that CD39-deficient mice exhibit impaired glucose tolerance in an

oral glucose tolerance test (35). The supplementation of soluble CD39

to pre-diabetic NOD mice reduces the extent of extracellular ATP,

inhibits the multiplication of CD4+ T cells, and delays the further

progression of diabetes (36). It reminds us that individualized

treatment for CD39 is probably a promising option for

pregnant women.

Apparently, our study offers a foundation for delineating the

intricate causal association between immune cells and GDM.

However, there are still several limitations in our work. Firstly,

although we performed MR analyses with a large-scale GWAS

cohort and avoided potential confounders or reverse causation,

genetic heterogeneity among different human populations still

attenuates the credibility and validity of the GWAS results.

Secondly, when examining the association of immune cells with

GDM, a more relaxed threshold was chosen to ensure accurate data

on SNPs. Even with the FDR test applied, this may still lead to a

minor bias in the results. Finally, for GDM, our study was unable to

further probe specific traits (for example—age, weight, and

hormone levels) in the group of pregnant women.
Conclusions

In summary, we emphasized the causal relationship between a

number of immune phenotypes and GDM through a full

bidirectional MR analysis. To our knowledge, this is the first MR

analysis carried out between immune phenotypes and GDM,

providing novel insights into understanding the delicate balance

between maternal immune mediators and GDM. GDM is a

complicated and dynamic condition, and the pathophysiological

mechanisms are not fully clarified. This research enables researchers

to better explain the physiological mechanisms, with a view to

filtering and monitoring high-risk groups for GDM, contributing to

the early intervention and the development of new treatments

of GDM.
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