
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Guy A. Rutter,
Imperial College London, United Kingdom

REVIEWED BY

Yao Tan,
Central South University, China
Atefe Ghamar Talepoor,
Shiraz University of Medical Sciences, Iran

*CORRESPONDENCE

Xiao-Li Ge

gexiaoli@aliyun.com

Shuming Pan

panshuming1103@163.com

RECEIVED 18 December 2023

ACCEPTED 21 August 2024

PUBLISHED 13 September 2024

CITATION

Wang S-Y, Yu Y, Ge X-L and Pan S (2024)
Causal role of immune cells in diabetic
nephropathy: a bidirectional
Mendelian randomization study.
Front. Endocrinol. 15:1357642.
doi: 10.3389/fendo.2024.1357642

COPYRIGHT

© 2024 Wang, Yu, Ge and Pan. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 13 September 2024

DOI 10.3389/fendo.2024.1357642
Causal role of immune cells
in diabetic nephropathy: a
bidirectional Mendelian
randomization study
Shang-Yuan Wang, Yang Yu, Xiao-Li Ge* and Shuming Pan*

Department of Emergency Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong
University, Shanghai, China
Background: Diabetic nephropathy (DN) stands as a pervasive chronic renal

disease worldwide, emerging as the leading cause of renal failure in end-stage

renal disease. Our objective is to pinpoint potential immune biomarkers and

evaluate the causal effects of prospective therapeutic targets in the context of DN.

Methods: We employed Mendelian randomization (MR) analysis to examine the

causal associations between 731 immune cell signatures and the risk of DN.

Various analytical methods, including inverse-variance weighted (IVW), MR-

Egger, weighted median, simple mode, and weighted mode, were employed

for the analysis. The primary analytical approach utilized was the inverse-variance

weighted (IVW) method. To ensure the reliability of our findings, we conducted

comprehensive sensitivity analyses to assess the robustness, heterogeneity, and

presence of horizontal pleiotropy in the results. Statistical powers were also

calculated. Ultimately, a reverse Mendelian randomization (MR) analysis was

conducted to assess the potential for reverse causation.

Results: After Benjamini & Hochberg (BH) correction, four immunophenotypes

were identified to be significantly associated with DN risk: HLA DR on Dendritic

Cell (OR=1.4460, 95% CI = 1.2904~1.6205, P=2.18×10−10, P.adjusted= 1.6×10−7),

HLA DR on CD14+ CD16− monocyte (OR=1.2396, 95% CI=1.1315~1.3580,

P=3.93×10−6, P.adjusted = 0.00143). HLA DR on CD14+ monocyte (OR=1.2411,

95% CI=1.12957~1.3637, P=6.97×10−6, P.adjusted=0.0016), HLA DR on

plasmacytoid Dendritic Cell (OR=1.2733, 95% CI= 1.1273~1.4382, P= 0.0001,

P.adjusted = 0.0183). Significant heterogeneity of instrumental variables was

found in the four exposures, and significant horizontal pleiotropy was only found

in HLA DR on Dendritic Cell. The bidirectional effects between the immune cells

and DN were not supported.

Conclusion: Our research illustrated the intimate association between immune

cells and DN, which may contribute to a deeper understanding of the intricate

mechanisms underlying DN and aid in the identification of novel intervention

target pathways.
KEYWORDS
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Introduction

One of the most frequent complications in people with diabetes

mellitus (DM) is DN, which is a major global cause of end-stage

renal disease (ESRD) (1). Worldwide, DN affects between 25% and

40% of DM patients (2). An estimated glomerular filtration rate

(eGFR) of less than 60 ml/min/1.73 m2 and a urine albumin-to-

creatinine ratio more than 30 mg/g are two indicators of persistent

albuminuria, which is often necessary for the diagnosis of diabetic

kidney disease (DN) (3). The present treatment options for DN are

limited, despite its high prevalence and notable impact on

morbidity and mortality (4). Finding new biomarkers for the

early diagnosis of DN and promising pharmacological targets for

the treatment of DN is therefore imperative.

It was formerly believed that DN was caused by high blood

sugar levels producing non-immunological, metabolic, or

hemodynamic damage in the kidneys (1). However, current

research indicates that DN is an inflammatory illness, and

immune cells from both innate and adaptive immunity, including

macrophages and T cells, may contribute to the illness’s

exacerbation (5). In the diabetic environment, hyperglycemia (6),

advanced glycation end-products (AGEs) (7), angiotensin II (8),

and oxidative stress (9) trigger numerous signaling cascades that

initiate the recruitment and activation of immune cells. This, in

turn, facilitates the development of inflammation, ultimately

resulting in a range of pathological alterations in DN (10). A

study on the autopsy of DN found that the accumulation of

macrophages in the kidneys suggested a decline in kidney

function (11). Mechanistically speaking, hyperglycemia triggers an

elevation in the expression of chemokines and adhesion molecules,

effectively enhancing the recruitment of monocytes to the kidney

(12). Human monocytes can be categorized into three distinct

subpopulations: the classical type (CD14+CD16−), the non-

classical type (CD14dimCD16+), and the intermediate type

(CD14+CD16+) (13). Subsequently, these monocytes undergo

maturation into macrophages and secrete inflammatory cytokines,

further amplifying the inflammatory response. A study has revealed

that T cells also migrate to the kidney of individuals with diabetes

and significantly contribute to the advancement of DN (14). A

recent study (15) has revealed that the ratio of monocytes to

lymphocytes serves as a significant indicator for predicting the

occurrence of DN among individuals suffering from type 2 diabetes.

Dendritic cells are crucial antigen-presenting cells in the immune

system (16). They present antigens to different receptors on various

immune cells, thereby activating both innate and adaptive immune

responses (17). Although dendritic cells have been observed to

infiltrate and accumulate in diabetes nephropathy, the role of

dendritic cells in DN is still poorly studied (18). Increasing

evidence suggests that kidney dendritic cells are involved in renal

injury in DN, and their activation within the kidney may be a

pivotal factor in disease progression (19).The identification of

inflammatory markers holds immense potential in enhancing the

diagnosis and treatment of DN (20).

Mendelian randomization study is a statistical method that can

unveil causal relationships (21). Specifically, Mendelian

randomization is based on whole-genome sequencing data GWAS
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data, using single nucleotide polymorphisms (SNPs) as

instrumental variables (IVs) to reveal causal relationships. Its

principle mainly includes the following points. (i) The

instrumental variable is independent of the confounding factor.

(ii) The instrumental variable is associated with the exposure factor.

(iii) The instrumental variable is not associated with the outcome

variable, and it can only be associated with the outcome variable

through the exposure factor to exclude restrictive criteria (22). The

random assignment of these genetic variants in a population is

independent of confounding factors, so Mendelian randomization

can mimic clinical randomized controlled experiments (23).

Researching the causal association between immune cells and DN

could lead to novel discoveries for mechanistic studies, targeted

therapies, and tracking the development of DN.
Results

Exploration of the causal effect of
immunophenotypes on DN

We performed a Mendelian randomization analysis as shown in

Figure 1. The instrumental variables for Mendelian randomization

analysis are in Supplementary Table 1. After BH adjustment

(P.adjusted<0.05), we detected four immunophenotypes which have

promoted effects on DN: HLA DR on Dendritic Cell (dendritic cell

panel), HLA DR on CD14+ CD16− monocyte (monocyte panel),

HLA DR on CD14+ monocyte (monocyte panel), and HLA DR on

plasmacytoid Dendritic Cell (dendritic cell panel). The odds ratio

(OR) of HLA DR on Dendritic Cell on DN risk was estimated to be

1.4460 (95% CI= 1.2904~1.6205, P=2.18×10−10, P.adjusted=

1.6×10−7, Figure 2) by using the IVW method. The OR of HLA

DR on CD14+ CD16- monocyte on DN risk was estimated to be

1.2396 (95% CI=1.1315~1.3580, P=3.93×10−6, P.adjusted = 0.0014,

Figure 2) by using the IVW method. The OR of HLA DR on CD14+

monocyte on DN risk was estimated to be 1.2411 (95%

CI=1.1295~1.3637, P=6.97×10−6, P.adjusted=0.0016, Figure 2) by

using the IVW method. The OR of HLA DR on plasmacytoid

Dendritic Cell on DN risk was estimated to be 1.2733 (95% CI=

1.1273~1.4382, P= 0.0001, P.adjusted = 0.01835, Figure 2,

Supplementary Table 2) by using the IVW method. Similar results

were obtained using four additional methods (Supplementary

Table 3). Figure 3 shows the scatter plot for effect sizes of SNPs for

immunophenotypes and those for DN.
Sensitivity analyses

The MR-Egger intercept (P>0.05) indicated that only HLA DR

on Dendritic Cell demonstrated pleiotropy in our results (Table 1,

Supplementary Table 4). Furthermore, the results in Table 1 and

Supplementary Table 5 showed that all P values of the Q test

analysis were<0.05, indicating that heterogeneity existed.

Importantly, as shown in the leave-one-out analysis results, no

marked difference was found in causal estimations of immune cell

signatures on DN, suggesting that none of the identified causal
frontiersin.org

https://doi.org/10.3389/fendo.2024.1357642
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2024.1357642
associations were driven by any single IV (Supplementary Figure 1).

Our study provides 100% power to detect the causal effect of

immune cells on DN (Table 1).
Exploration of the causal effect of DN
onset on immunophenotypes

The reverse Mendelian randomization study did not find any

causal relationship between DN and the four immune cell types we
Frontiers in Endocrinology 03
identified (Table 2). Furthermore, we used DN as the exposure and

731 immune cell types as the outcome, and the results showed that

none of the p-values passed multiple testing corrections

(Supplementary Table 6).
Discussion

This study marks a pioneering use of Mendelian randomization

to scrutinize the causal connection between immune cell
FIGURE 2

Causal effects for immune traits on DN susceptibility. Summary of the Mendelian randomization (MR) estimates derived from the inverse-variance
weighted (IVW), weighted median (WM), MR-Egger, and weighted mode, simple mode methods.
FIGURE 1

Description of the study design in this bidirectional MR study. The whole workflow of MR analysis. LD, linkage disequilibrium; MR, Mendelian
randomization; SNPs, single‐nucleotide polymorphisms.
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characteristics and the susceptibility to DN. The findings indicate

that only four distinct immune cell types exhibit a causal association

with the risk of DN.

Monocytes play a pivotal role in the pathogenesis of DN (24).

Heightened infiltration of monocytes into renal tissue has been

documented in patients with DN, where these cells contribute to the
Frontiers in Endocrinology 04
release of pro-inflammatory cytokines, including tumor necrosis

factor-alpha (TNF-a) and interleukin-1 beta (IL-1b), thereby
initiating renal inflammation and subsequent tissue damage.

Moreover, monocytes have the ability to differentiate into

macrophages, further perpetuating the inflammatory response

and fostering fibrosis within the kidneys (25). The activation of
FIGURE 3

Scatter plots from genetically predicted immunophenotypes on DN. Scatter plots of the five MR tests in causal associations from four immune cell
features to DN. (A) HLA DR on Dendritic Cell. (B) HLA DR on plasmacytoid Dendritic Cell (C) HLA DR on CD14+ monocyte. (D) HLA DR on CD14+
CD16− monocyte.
TABLE 1 Sensitivity analysis of the causal association between immunophenotypes and the risk of DN.

Exposure Cochrane Q test MR-Egger Statistical
power

Q value p Egger_intercept p

HLA DR on dendritic cell 58.7751 3.77E−08 −0.0819 0.0261 1

HLA DR on CD14+ CD16− monocyte 40.2525 0.0019 0.0405 0.1493 1

HLA DR on CD14+ monocyte 41.4289 0.0013 0.0391 0.1757 1

HLA DR on plasmacytoid
Dendritic Cell

127.2844 7.22E−20 −0.0138 0.7541 1
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monocytes and their intricate interactions with other immune cells

are believed to propel the progression of DN. Results from single-

cell sequencing conducted by Parker C. Wilson et al. (26) have

revealed a notable increase in HLA-DR-marked monocytes in renal

tissue samples obtained from early-stage DN patients. This finding

aligns with our study’s observations that HLA-DR on CD14+

CD16− monocytes and HLA-DR on CD14+ monocytes actively

contribute to the development of DN. This suggests that HLA-DR

may serve as a potential monitoring indicator or therapeutic target

for DN. A study by Juan Jin et al. reported a negative correlation

between HLA-DR-marked monocytes and the severity of DN (27),

implying that additional research with a larger sample size may be

warranted for a comprehensive understanding.

Dendritic cells play an indispensable role in both the genesis

and advancement of DN. These cells instigate the immune response

by presenting antigens to T cells, thereby triggering the production

of pro-inflammatory cytokines and the recruitment of additional

immune cells to the kidney (19). This orchestrated process

contributes significantly to renal inflammation, extracellular

matrix deposition, and the ensuing fibrosis. The activation and

interplay of dendritic cells with other immune components in the

kidney are believed to intricately contribute to the perpetuation of

chronic inflammation and the progression of DN (28).

Furthermore, our study outcomes underscore the influential role

of HLA DR on Dendritic Cells and HLA DR on plasmacytoid

Dendritic Cells in fostering the development of DN.

HLA-DR, a crucial molecule within the human leukocyte antigen

system, belongs to the MHC-II class of molecules and comprises two

major subunits: the a-subunit and the b-subunit, with molecular

weights of 36 kD and 27 kD, respectively (29). It plays a pivotal role in

the immune system. HLA-DR molecules are widely expressed on

various immune cell surfaces, including B lymphocytes, monocytes,

macrophages, activated T lymphocytes, activated NK lymphocytes,

and human progenitor cells (30). This extensive expression pattern

enables HLA-DR to interact with other immune cells during immune

responses, thereby regulating and promoting the progression of these

responses (31). HLA-DR plays a critical role in the recognition of

foreign antigens during the activation of specific T cells in immune

responses (32). It is closely associated with the expression of antigens

on T cells during infection and the initiation of inflammatory cascade

reactions. Therefore, the expression level of HLA-DR can serve as an
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important indicator reflecting the state of the immune system and the

progression of diseases (33). Previous research has linked human

leukocyte antigens (HLA) to renal function, yet there is conflicting

evidence and limited agreement on the precise nature or significance

of this relationship. Marcus Lowe (34) et al. found an association

between certain haplotypes, including HLA-DRB103:01 and

DQB102:01, and declining kidney function. In a comprehensive

phenome-wide association study (PheWAS), the HLA-DRB104 and

HLA-DQB103:02 alleles within the HLA-DR4-HLA-DQ8(3) risk

haplotype showed associations with both T1DM and DKD (35).

Our present comprehension of HLA mechanisms and disease

advancement indicates that the impact of HLA on the individual

predisposing conditions for kidney disease serves as the conduit for

its role in advancing renal conditions. However, specific HLA

variants could potentially stimulate a broader pro-fibrogenic T-cell

phenotype, possibly exacerbating disease onset or progression (36).

While our study contributes valuable insights, it is essential to

acknowledge its limitations. Firstly, depending on the degree of the

disease, DN can be classified into different types; our study’s broad

approach to DN types might dilute specific causal pathways

pertinent to distinct DN categories. Secondly, when selecting

instrumental variables, we set a threshold of 1 × 10−5, which

increases the risk of pleiotropy of instrumental variables. Thirdly,

the scope of our research was confined to individuals of European

descent, and it is imperative to conduct additional investigations to

discern the applicability of the results across diverse ethnic

populations. At last, the sensitivity analysis revealed heterogeneity,

suggesting potential variations in the findings. As a result, further

clinical studies are imperative to corroborate and validate the

outcomes of our research.
Methods

Ethics

The summary-level data of GWAS used in this study are

publicly accessible, and the original study have acquired ethical

approval and informed consent.
Exposure of immunity-wide GWAS
data sources

GWAS summary statistics for each immune trait are publicly

available from the IEU GWAS (accession numbers from ebi-a-

GCST90001391 to ebi-a-GCST90002121) (37). The original GWAS

on immune traits was performed using data from in a cohort of

3,757 Sardinians after adjusting for covariates (i.e., sex, age). A total

of 731 immunophenotypes including 118 absolute cell counts, 389

MFIs of surface antigens, and 32 morphological parameters were

assessed by flow cytometry. We select the instrumental variables for

immune cells by the following criteria: (1) SNPs at the genome-wide

significance level (P<1×10–5); (2) SNP clumping using the PLINK

algorithm (r2< 0.001, with a clumping window of 10,000 kb.) (23).

We used F-statistic to verify the strength of IVs, which is calculated
TABLE 2 Causal effects for DN on immunophenotypes.

Exposure Outcome IVW

OR
(95% CI)

p

Diabetic
nephropathy

HLA DR on Dendritic Cell 1.1964
(0.9600,1.4911)

0.1102

Diabetic
nephropathy

HLA DR on CD14+

CD16− monocyte
1.1279
(0.8034,1.5834)

0.4865

Diabetic
nephropathy

HLA DR on CD14+ monocyte 1.1204
(0.8063,1.5568)

0.4981

Diabetic
nephropathy

HLA DR on plasmacytoid
Dendritic Cell

1.1849
(0.9524,1.4740)

0.1277
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by the following formula: R2×(N−2)/(1−R2). We calculate R2 by the

following formula: R2=[2× Beta2×(1−EAF)×EAF]/[2× Beta2× (1

−EAF) × EAF+2 × SE2×N× (1−EAF) × EAF]. Specifically, Beta

indicates the genetic effect of SNP on immune traits, EAF is the

effect allele frequency, SE is the standard error, and N is the sample

size. We only retained strong IVs (F-statistic>10) for each of the

exposures (38) (Supplementary Table 1).
Outcomes in GWAS: diabetic
nephropathy phenotypes

Diabetic nephropathy as outcome was defined when there were

glomerular disorders in the patients with diabetes mellitus with the

criterion of ICD-10 (code: N08.3*). Patients meeting one of the

following criteria are diagnosed with DN: (i) urinary albumin-to-

creatinine ratio (ACR) greater than or equal to 30 mg/g (3.4 mg/

mmol); (ii) urinary protein excretion rate greater than or equal to 30

mg/24 h; (iii) diabetes patients with a glomerular filtration rate (GFR)

<60 mL/min/1.73 m² (39). The GWAS data correlated with diabetic

nephropathy [IEU GWAS ID: finn-b-DM_NEPHROPATHY; N =

213746 (3,283 cases and 210,463 controls)] were obtained from the

Integrative Epidemiologic Unit (IEU) GWAS database at https://

gwas.mrcieu.ac.uk/. The total number of patients is 3,789, with 1,315

men and 2,474 women. The mean age at first event is 55.14 years

(https://gwas.mrcieu.ac.uk/).
Mendelian randomization analyses

We used five MR analytical methods which include standard

inverse variance weighted (IVW), MR-Egger regression, weighted

median, and simple mode to evaluate the causal effects of immune

cells signature on DN. The Mendelian randomization pleiotropy

residual sum was determined in this study. Moreover, the MR

design must satisfy three key assumptions: (i) the genetic

instruments reliably predict the exposure of interest (P < 1×10–5);

(ii) the genetic instruments are independent of potential

confounding factors; (iii) the genetic instruments influence the

outcome solely through the identified risk factors. We chose

standard inverse variance weighted (IVW) estimates as the main

analysis. This method is a widely used method in Mendelian

randomization (MR) analysis that combines estimates of causal

effects from genetic variants by weighting them based on their

inverse variances, providing a summary estimate of the overall

causal effect (40). MR-Egger could evaluate whether genetic variants

have pleiotropic effects on the outcome, as well as to estimate the

causal effect (41). Weighted median MR uses most SNPs (majority

of genetic variants) to determine the presence or absence of

causality. Weighted-mode MR firstly groups SNPs into clusters

and then calculates based on the cluster with the most SNPs (42).

The simple mode approach involves clustering genetic variants and

determining the causal effect based on the cluster with the greatest

number of variants (43). This method offers a direct means to

estimate the overall causal effect by making use of the majority of
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genetic variants. Furthermore, we performed reverse Mendelian

randomization to analyze the causal effect of DN on the immune

cell signatures.
Sensitivity analysis

We used Cochran’s Q statistic, funnel pot, leave-one-out (LOO)

analyses, and MR-Egger intercept tests to assess the pleiotropy. We

calculate the P value of the Cochran Q test to test for heterogeneity.

We also used the intercept term derived from MR-Egger regression

to assess horizontal pleiotropy. LOO analysis could estimate

whether the causal estimate was driven by any single SNP (44).
Statistical analysis

For binary outcome, the MR estimates were presented as odds

ratios (OR) with corresponding 95% confidence intervals (CI). All

analyses were performed by the packages TwoSampleMR (version

0.4.25) in R (version 3.6.1). The p-values were adjusted using the

Benjamini & Hochberg (BH) method, and those with adjusted p-

values less than 0.05 were considered to have significant differences.

Moreover, we used an online power calculation tool for MR (https://

shiny.cnsgenomics.com/mRnd/) to calculate the statistical power of

causal effect estimates (45). A power threshold of 0.8 was considered

appropriate, enabling the rejection of 4/5 false null hypotheses (46).

The STROBE-MR checklist of recommended items to address in

reports of Mendelian randomization studies is presented in

Supplementary Table 7.
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