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Explore the value of carotid
ultrasound radiomics nomogram
in predicting ischemic stroke risk
in patients with type 2
diabetes mellitus
Yusen Liu, Ying Kong, Yanhong Yan and Pinjing Hui*

Department of Stroke Center, The First Affiliated Hospital of Soochow University, Suzhou,
Jiangsu, China
Background and objective: Type 2 Diabetes Mellitus (T2DM) with insulin

resistance (IR) is prone to damage the vascular endothelial, leading to the

formation of vulnerable carotid plaques and increasing ischemic stroke (IS) risk.

The purpose of this study is to develop a nomogram model based on carotid

ultrasound radiomics for predicting IS risk in T2DM patients.

Methods: 198 T2DM patients were enrolled and separated into study and control

groups based on IS history. After manually delineating carotid plaque region of

interest (ROI) from images, radiomics features were identified and selected using

the least absolute shrinkage and selection operator (LASSO) regression to

calculate the radiomics score (RS). A combinatorial logistic machine learning

model and nomograms were created using RS and clinical features like the

triglyceride-glucose index. The three models were assessed using area under

curve (AUC) and decision curve analysis (DCA).

Results: Patients were divided into the training set and the testing set by the ratio

of 0.7. 4 radiomics features were selected. RS and clinical variables were all

statically significant in the training set and were used to create a combination

model and a prediction nomogram. The combination model (radiomics + clinical

nomogram) had the largest AUC in both the training set and the testing set (0.898

and 0.857), and DCA analysis showed that it had a higher overall net benefit

compared to the other models.

Conclusions: This study created a carotid ultrasound radiomics machine-

learning-based IS risk nomogram for T2DM patients with carotid plaques. Its

diagnostic performance and clinical prediction capabilities enable accurate,

convenient, and customized medical care.
KEYWORDS

type 2 diabetes mellitus, ischemic stroke, carotid atherosclerotic plaque, triglyceride-
glucose index, carotid ultrasound, radiomics, machine learning, nomogram
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1 Introduction

Ischemic stroke (IS) is a condition characterized by a disruption

in blood flow to brain tissue due to various circumstances. It is a

significant global cause of mortality and frequently results in

disabling events (1). Atherosclerosis in large arteries is the

primary cause of cerebral infarction, which is the common cause

of stroke (2). Type 2 diabetes mellitus (T2DM), characterized by

insulin resistance (IR) as the main underlying mechanism, is not

only leading to the damage of vascular endothelial and consequently

leading to the formation and rupture of plaques in the carotid artery

(3–5), but also contributes to the occurrence, recurrence, disability,

and mortality of IS (6).

Individuals with T2DM are at an elevated risk of developing

carotid plaques. Numerous factors have been linked to the

development of atherosclerosis in individuals with T2DM, including

IR, inflammation, age, obesity, tobacco use, dyslipidemia, and other

stressmarkers (7, 8). Furthermore, diabetic dyslipidemia in individuals

with T2DM is marked by elevated triglycerides (TG) and low-density

lipoprotein cholesterol (LDL-C) levels, alongside diminished high-

density lipoprotein cholesterol (HDL-C) levels. This condition has

been associatedwithheightened susceptibility toplaque formation and

hastened development of atherosclerosis in T2DM patients. Recent

studies pointed out that multiple molecular mechanisms are involved

in the formation of carotid vulnerable plaques. For example, the

nucleotide-binding oligomerization domain-like receptor protein 3

(NLRP3) inflammasome, a vital component of the innate immune

system, can be activated by different stimulation, including ATP, Toll-

like receptor ligands, mitochondrial dysfunction, the production of

reactive oxygen species, and ionic flux (9), eventually orchestrating

lipid-driven amplification of vascular inflammation, promoting the

disruption of the fibrous cap (10). At the same time, abnormal

indoleamine 2,3-dioxygenase 1 (IDO1)-regulated tryptophan

metabolism promotes osteogenic reprogramming and calcification

in vascular smooth muscle cells (11), whereas surface calcification is

a key hallmark of carotid susceptible plaque.

Previously, the measurement of carotid artery stenosis was used

to assess the risk of stroke (12). However, recent evidence suggests

that it is crucial to consider not only the degree of carotid artery

stenosis, but also the connection between vulnerable plaques and

the occurrence of IS (13). T2DM together with vulnerable carotid

plaque and carotid stenosis, lead to an increased risk of IS. It is

crucial to accurately quantify the risk of stroke occurrences in

T2DM patients in order to provide tailored diagnosis and therapy.

Carotid ultrasound (CDU) is a widely used tool for evaluating

vulnerable plaques in carotid vascular, due to its low cost, short time

consumption, non-invasiveness, and non-radiation damage to the

human body when compared to magnetic resonance imaging (MRI)

or computed tomography angiography (CTA) (14, 15). CDU is

suitable for the observation of the morphological changes of the

vascular wall and determine the nature of the carotid plaques. It can

also observe the hemodynamic changes in the lumen and determine

the vascular stenosis or occlusion. Vulnerable carotid plaques can

be identified by CDU by assessing the shape, size, ulceration,

rupture, and other characteristics of the plaque (14, 16–18).
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Images of carotid vascular plaques in T2DM patients can be

easily obtained to further investigate their impact on IS.

The triglyceride-glucose index (TyG index) is a reliable

indication for assessing insulin resistance (IR) (19). The TyG

index is calculated only by fasting blood sugar (FBS) and TG, two

blood indexes that are easily obtained (20). Consequently,

numerous studies suggested that it is a simpler and more effective

diagnostic tool for IR compared to prior techniques of detection

(21, 22). Prior research had established a correlation between a

higher TyG index and increased vulnerability of carotid artery

plaque in non-diabetic persons (23). TyG index was also related

to IS, IR plays a significant role in the development of IS through a

range of potential mechanisms (24). Meanwhile, the TyG index

serves as an indicator of IR, offering an indirect means to predict to

the occurrence of IS. A previous meta-analysis demonstrated that

an increased TyG index was an independent risk factor for IS (25).

Therefore, the TyG index can be used to assess the risk of IS in

patients with T2DM.

Radiomics is a newly emerging research method that converts

medical images into high-throughput data that can be used to extract

and analyze image information that cannot be recognized by the

human eye, and quantitative relationships between medical images

and diseases can be obtained by combining machine learning (ML)

methods tobuild a diagnosticmodel (26).Radiomics canbeperformed

on CT, MRI, and ultrasound images, and texture-based research has

become one of the hot spots of radiomics research. Previous research

by our team showed that the textural analysis of carotid plaques can be

used to determine plaque vulnerability (27).

Currently, there are only a limited number of radiomics models

that assess the risk of IS in individuals with T2DM. Thus, this study

utilized radiomics analysis methods of carotid plaques using CDU

images, along with clinical indicators such as the TyG index, to

develop a nomogram model for predicting the risk of IS in patients

with T2DM, which can aid in personalized and stratified diagnosis

and treatment of T2DM patients.
2 Materials and methods

2.1 Patients inclusion

The study group included T2DM patients who had strokes and

were hospitalized at the First Affiliated Hospital of Soochow

University Stroke Centre between January 1 and December 31,

2020. Inclusion criteria were: (1) Clinically confirmed IS by MRI;

(2) CDU inspection confirmed plaque formation or even stenosis in

the carotid artery on the responsible side. Exclusion criteria were:

(1) Patients with stroke due to posterior cerebral circulation

ischemia; (2) Patients with brain MRI confirmed intracranial

arterial stenosis and other etiologies, i.e. large artery arteritis,

moyamoya disease, etc.; (3) Patients with cardiogenic embolism,

atrial fibrillation, or a clear history of peripheral thrombosis; (4)

Patients without plaques in responsible arteries; (5) Patients with

incomplete clinical data or unclear images that cannot fulfill the

purpose. Control group includes T2DM patients admitted to

endocrinology for treatment throughout the same time period.
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The inclusion criteria were: (1) Clinically recognized as T2DM; (2)

CDU examination confirmed the existence of the carotid plaques or

even stenosis. Exclusion criteria were: (1) Patients with IS or TIA

history; (2) Patients with lacunar infarction; (3) Patients with a

history of coronary artery disease or a clear history of peripheral

thrombosis; (4) Patients with MRI confirmed intracranial large

vessel disease; (5) Patients with incomplete clinical data or unclear

imaging images that cannot be fulfilled for the purpose of imaging

histology extraction. A total of 198 patients were included in the

study. The study group had 98 and the control group 100. Following

randomization, 139 patients entered the training group and 59

entered the testing group. Clinical data included age, sex, smoking/

alcohol history, living place, LDL-C, HDL-C, TG, total cholesterol

(TC), FBS, and TyG index calculated from FBS and TG. The

detailed flow chart is shown in Figure 1. The procedures had

been reviewed and approved by the medical ethics committee of

the First Affiliated Hospital of Soochow University [Audit number:

(2023) No.132].
2.2 Clinical data collection and calculation

Among the basic clinical information of patients, smoking was

defined as at least one cigarette per day for more than 1 year in the
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last 10 years (after 2009). Drinking was defined as alcohol intake of

at least 90/45g per day for male/female in the past 10 years (after

2009). Living area was defined as city or countryside; and body mass

index (BMI) was calculated as weight (kg) divided by the square of

height (m2). Seated blood pressure was measured 3 times and

averaged using a mercury column sphygmomanometer, calculated

as systolic blood pressure (SBP) and diastolic blood pressure (DBP),

pulse pressure (PP) was defined as the differential of SBP and DBP.

Laboratory index were tested from 3 to 5mL of fasting plasma

obtained from the patient’s anterior elbow vein after an 8-12 hour

overnight fast, which included FBS, TC, TG, LDL-C and HDL-C

levels, all tests were performed in the central laboratory of the First

Affiliated Hospital of Soochow University using an automated

analyzer. TyG index was calculated as ln(TG (mg/dL)×FBG (mg/

dL)/2) (20)

The degree of carotid artery stenosis was assessed by CDU,

accord ing to North American Symptomat ic Carot id

Endarterectomy Trial (NASCET). Patients with no stenosis

(label=0) were defined as those with normal tube diameter

without stenosis, mild stenosis (label=1) was defined as artery

stenosis with a stenosis rate between 0% and 49%, moderate

stenosis (label=2) was defined as artery stenosis with a stenosis

rate between 50% and 69%, and severe stenosis (label=3) was

defined as artery stenosis with a stenosis rate between 70% to
FIGURE 1

Inclusion exclusion flowchart.
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99% (12). Vulnerable plaques were characterized as heterogeneous,

hypoechoic or moderately hypoechoic plaques on CDU, with an

irregular surface shape, incomplete fibrous cap or intra-plaque

blood flow signals on color Doppler ultrasound (ulcerative

plaques) (17), as well as surface calcification, multiple calcification

and ulceration of atherosclerotic plaques (18).
2.3 Plaque segmentation and
feature extraction

CDU images of the carotid arteries of all patients were acquired

in DICOM format from the picture archiving and communication

system (PACS) of the institution. Region of interest (ROI) was

manually determined using ITK-SNAP 4.0.1 software (28). In order

to avoid influence from insufficient picture contrast, images of 198

patients were normalized with MATLAB R2020 to distribute pixel

grey values between 0 and 1. 2 senior ultrasonography physicians

(observers) blinded to clinical results manually established ROIs

based on the longitudinal CDU’s maximal plaque area (Figure 2).

Gray-scale normalization was performed between m ± 3d (m = ROI

grey level mean; d = standard deviation) to mitigate the effects of

data acquisition environment, parameters, and other factors on grey

scale images (27). This technique improves experimental

comparability and reliability, as shown by prior study (29, 30).

7 feature groups (including 98 radiomics features), including

shape feature (2D) (5 features), first-order statistics (18 features),

gray level dependence matrix (GLDM, 14 features), gray level co-

occurrence matrix (GLCM, 24 features), gray level run length

matrix (GLRLM, 16features), gray level size zone matrix (GLSZM,

16 features), neighboring gray tone difference matrix (NGTDM,5

features), were extracted by using PyRadiomics package based on

Python 3.10 (31), the definitions and the details of these features are

shown in https://pyradiomics.readthedocs.io/en/latest/index.html.

Radiomics feature extraction returned 98 features (Shown in

Supplementary Table ICC). Z-score normalization was used to
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lessen the impact of significant outliers or variables with

substantial magnitude differences on the results. A total of 40

images (20 from each of the two groups) were utilized to evaluate

radiomics characteristics’ intra- and inter-observer agreement to

ensure data interpretation consistency. Two independent

ultrasound specialists (observer 1 and observer 2) identified the

ROI on each group of 20 images for inter-observer analysis. Clinical

results were unknown to them. For intra-observer reliability,

observer 1 performed ROI delineation and radiomics feature

extraction on 40 images after 2 weeks. The ROI definition was

then completed for all images. The intraclass correlation coefficient

(ICC) assessed variable reliability. Features having an ICC value

above 0.75 were retained for model analysis due to their high

dependability, while those having ICC value lower than 0.75

were excluded.
2.4 Radiomics feature selection, ML model
selection and Rad-score calculation

T-test analysis was performed to find statistically significant (p-

value < 0.05) radiomics features in the training set. These features were

utilized to construct and evaluate three ML models: Support Vector

Classification (SVC), Random-Forest Classifier (RF), and Logistic

Regression (LR). The effectiveness was evaluated and judged using

receiver operating characteristic curves (ROC) and the detailed

procedures are provided in the Supplementary materials

(Supplementary Figure 1). In the end, LR ML model was then

selected for constructing the subsequent model.

The radiomics features that passed the T-test were then

included in the Least Absolute Shrinkage and Selection Operator

(LASSO) regression (32), which selected features with non-zero

coefficients to distinguish the study group from the control group

(33, 34). Tune the regularization parameter l to govern the

magnitude of regularization. The optimal l value was determined

using 10-fold cross-validation and the 1-standard error of the
FIGURE 2

Plaque segmentation schematic of a T2DM patient, male, 55 years old, with no stroke history; (A) CDU showed a mixed-echo inhomogeneous plaque
extending from the right the bulb of the right carotid artery to the internal carotid artery (white arrows) suggestive of a vulnerable plaque; (B) ROI delineation
of the plaque by the observer (red area shown with white arrows).
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minimal criteria (the 1-SE criteria). The features with non-zero

coefficients were ultimately incorporated and assigned weights

based on their coefficients in LASSO regression. This process

could result in the generation of a radiomics score (RS) for

each patient.
2.5 Clinical feature selection and ML
models construction and evaluation

The clinical data were partitioned into training and testing sets

based on the corresponding sets of radiomics. T-test or ANOVA

analysis was conducted based on the normality of the clinical data in

the training set. Only those with a p-value less than 0.05 were

considered. Multivariate LR analysis was conducted on these

variables to identify clinical features with statistical significance.

The LR ML model was used to build three ML models. The

clinical features described above were used to build clinical LR ML

models. The radiomics training set data were then utilized to

develop a radiomics LR ML model employing the radiomics

features with a non-zero coefficient in LASSO regression. Finally,

the clinical + radiomics model was created, which incorporated

both the clinical and radiomics features.

The three models’ ROC curves were calculated to evaluate their

performance. The three ML models’ prediction performance in the

training and testing sets was assessed by the area under curve

(AUC) size. The training set calculated the net benefit rate using

decision curve analysis (DCA) at various threshold probabilities.

SHapley Additive exPlanations (SHAP) visualization of selected

clinical features and RS was applied to visually measure the

predictive power of each feature by its horizontal range.
2.6 Radiomics nomogram construction

A radiomics nomogram score (Nomo-score) was calculated for

each patient using the constructed clinical + radiomics LR ML

model. A predictive nomogram model was then constructed.

Additionally, calibration curves were created and evaluated

separately for the training set and the test set to evaluate the

performance of the Nomogram, the brier score was also

calculated and evaluated.
2.7 Data analysis

SPSS v.26.0 (SPSS Inc., Chicago, IL, USA), R statistical software

(v.4.3.0; https://www.r-project.org) and python 3.10.0 were used for

statistical analysis. For the quantitative data, K-S test was used to

analyze whether they were conformed to normality. Independent

samples t-test was used for quantitative data that conformed to

normal distribution, while chi-square test and fisher’s exact test

were used for qualitative data and those that did not conform to

normal distribution, and bilateral p<0.05 was considered to be

statistically significant. The R packages used were: (1) “pROC”

package for the ROC curves, (2) “rms” package for the column plots
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and calibration curves, (3) “glmnet” package for LASSO regression,

(4) the “rmda” package for performing DCA, (5) the “shapviz” and

“DALEX” packages for SHAP visualization and (6) the “psych”

package for feature distribution of the model. All packages can be

downloaded at https://cran.r-project.org/web/packages/. The

Python packages used were (1) sklearn, which could be used for

ML model construction and ROC curve plotting, and (2)

PyRadiomics , which was used for the extract ion of

radiomics features.
3 Results

3.1 Patient distribution and clinical
features selection

Based on a 0.7 ratio, 139 patients were randomly assigned to

training and 59 to testing groups. Table 1 gives baseline data for

each set. The univariate analysis of the training set showed statistical

significance for age, gender, SBP, PP, vulnerable plaque, degree of

carotid stenosis, and TyG index. Clinical characteristics were then

analyzed using multivariate LR with statistical significance for age,

vulnerable plaque, carotid stenosis, and TyG score (Table 2).
3.2 ML model selection and radiomics
features selection and RS calculation

Labels with ICC<0.75 were excluded (Supplementary Table

ICC), and 93 radiomics characteristics were chosen for T-test

analysis. Features with p>0.05 were excluded. Eventually, 10

radiomics features were kept that were statistically significant

between the study and control groups.

The radiomics features retained by the T-test was selected by

LASSO regression (Figure 3), and a total of 4 features were selected

when taking 1-standard error criterion (l=0.0632), and Figure 3C

demonstrates the variables and their corresponding coefficients in the

LASSO regression. RS were constructed based on the four coefficients

(b), which was calculated as RS= -0.06447082+(-2.4947486* A) +

(0.45156449* B) + (0.19770845* C) + (-0.82650493* D).

Using these radiomics features, three ML models (SVC, RF, and

LR) were created to find the best ML classifier. The three models’

ROC curves and the evaluation table were showed in

Supplementary Figure 1, Supplementary Table 2, respectively. that

LR model had the most stable performance in training and testing

set and the biggest AUC in testing set, so the LRMLmodel would be

used for modelling.
3.3 The construction and evaluation of
the nomogram

RS calculated above was statistically significant between the

study and control groups in the training and testing sets

(Supplementary Table 3), and thus could continue to construct

the radiomics +clinical combined LR model.
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The radiomics nomogram (Figure 4A) combined the RS score of

radiomics with the age, vulnerable carotid arteries plaques, carotid

artery stenosis grade and TyG index, and the Nomo-score was

calculated by the radiomics +clinical combined LR model as follow:

Nomo-score= -11.87900300+ (1.24506418*RS)+ (0.03984024 *Age)

+ (1.03635580 * carotid stenosis) + (0.53637442 * vulnerable carotid

arteries plaques) + (0.91575587 * TyG index), which was also

statistically significant in both the training and testing sets

(Supplementary Table 3). The calibration curves and the brier scores

of the Nomogram model in the training set and the testing set were

showed in Figures 4B, C. The feature distribution of the nomogram

model was calculated and shown in Supplementary Figure 2.
3.4 Evaluation of the ML models

The effectiveness of the three models (clinical model, radiomics

model, and radiomics nomogram) was assessed individually and
Frontiers in Endocrinology 06
presented in Supplementary Table 4 along with the ROC curve

(Figure 5). To ensure each variable exhibits lower multicollinearity,

the Variance Inflation Factors (VIF) were calculated between the

variables in the radiomics nomogram, and the results were shown in

Supplementary Table 5. The ROC analysis indicated that the

radiomics nomogram (combined model) had the largest AUC

among the three models in both the training and testing sets.

The DCA analysis of the three models (Figure 5C) revealed that

the combined clinical + radiomics model (radiomics nomogram)

had a higher overall net benefit compared to the other models in

predicting the occurrence of IS in patients with T2DM, across most

feasible threshold probability ranges.

SHAP visualization of the radiomics nomogram model was

shown in Figure 6. The waterfall diagram and the force plot

(Figures 6A, B) display explanations for individual predictions of

the radiomics nomogram model, in which RS plays an important

role and TyG index comes next. All features display a positive

contribution to the results.
TABLE 1 Baseline table.

Clinical variables Training set (n = 139) Testing set (n = 59)

No stroke (n = 73) Stroke (n = 66) p1 No stroke (n = 31) Stroke (n = 28) p2

Age, years 60.71 ± 9.96 66.41 ± 10.27 0.001* 59.93 ± 10.86 67.97 ± 8.75 0.003

Sex, male/female 33/40 43/23 0.018* 19/9 19/12 0.606

Current smoker, Y/N 17/56 16/50 0.896 6/22 8/23 0.699

Current drinker, Y/N 9/64 9/57 0.820 2/26 4/27 0.473

Living place, city/countryside 39/34 30/36 0.353 15/13 14/17 0.527

BMI 24.71 ± 3.47 24.37 ± 2.72 0.507 24.43 ± 2.54 24.68 ± 3.04 0.729

T2DM history †, years 10.0 (0.5-13.0) 7.5 (2.0-13.0) 0.965 10.0 (0.4-16.5) 9.0 (4.0-13.0) 0.876

Hypertension, Y/N 58/15 57/9 0.285 14/14 29/2 0.001

SBP (mmHg) 138.85 ± 21.41 146.27 ± 20.59 0.039 136.46 ± 20.24 151.00 ± 18.19 0.005

DBP (mmHg) 85.32 ± 15.37 83.11 ± 9.56 0.317 82.64 ± 10.85 83.87 ± 11.11 0.67

PP (mmHg) 53.53 ± 16.73 63.17 ± 18.97 0.002 53.82 ± 18.08 67.13 ± 13.98 0.002

Vulnerable carotid arteries plaques,
Y/N

13/60 38/28 <0.0001* 5/23 17/14 0.003

Carotid Stenosis, Y/N 30/43 57/9 <0.0001* 12/16 25/6 0.002

Absent, n 43 9 – 16 6 –

Low, n 27 29 – 9 14 –

Moderate, n 3 20 – 2 5 –

Severe, n 0 8 – 1 6 –

LDL-C (mmol/L) 2.75 ± 1.11 2.59 ± 0.85 0.338 2.73 ± 0.92 2.67 ± 1.00 0.829

HDL-C (mmol/L) 1.09 ± 0.38 1.03 ± 0.37 0.351 1.06 ± 0.32 1.00 ± 0.35 0.516

FBS (mmol/L) 7.44 ± 2.67 7.44 ± 2.74 0.999 7.17 ± 2.86 7.03 ± 2.46 0.835

TC (mmol/L) 4.80 ± 1.53 4.42 ± 1.08 0.100 4.40 ± 1.09 4.73 ± 1.23 0.290

TG (mmol/L) 1.76 ± 2.22 1.76 ± 0.74 0.997 1.34 ± 0.52 2.18 ± 1.52 0.008

TyG index 8.89 ± 0.63 9.12 ± 0.52 0.010* 8.81 ± 0.65 9.18 ± 0.72 0.042
frontier
†medium (Q2-Q3); *p<0.05 in both univariate analysis and multivariate logistic regression.
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4 Discussion

Assessing the risk of IS following the development of carotid

plaque is crucial for the treatment plan for T2DM patients. This

work aimed to build a radiomics nomogram based on CDU images

using ML algorithm. The results of our study demonstrated that the

nomogram shown a high level of diagnostic efficiency in predicting

outcomes in both the training and testing sets (with an AUC of

0.898 in the training set and an AUC of 0.857 in the validation set).

The brier scores of the calibration curves in the train set and test set

was 0.173 and 0.203, respectively. This indicated that the radiomics

nomogram we constructed had a high accuracy. Additionally, the

DCA analysis confirmed that the radiomics nomogram created in
Frontiers in Endocrinology 07
our study could serve as a dependable clinical diagnostic tool for

distinguishing the occurrence of IS in patients with T2DM.

Radiomics converts clinical images such as CT, MRI, and

ultrasound images into radiomics features that can be combined

with ML models to establish quantitative relationships between

different types of data sources to identify and predict the risk of

certain diseases (26). Researchers had developed a ML model to

determine the presence or absence of symptoms based on carotid

CTA (35, 36), and MRI radiomics can also be utilized to detect

high-risk carotid artery plaque (37). However, there is currently a

scarcity of predictive models using CDU imaging, which is a cost-

effective and noninvasive diagnostic method for testing carotid

plaques, to anticipate the occurrence of stroke symptoms.
TABLE 2 Multivariate Logistic regression of clinical features.

Variables B OR value 95%CI p

Lower limit Upper limit

Age 0.042 1.043 1.004 1.083 0.031*

Vulnerable carotid arteries plaques 0.834 2.301 1.000 5.301 0.049*

Carotid Stenosis 1.111 3.036 1.811 5.091 <0.0001*

SBP 0.007 1.007 0.977 1.039 0.638

PP 0.008 1.009 0.973 1.046 0.648

TyG index 0.843 2.324 1.256 4.300 0.007*

Sex -0.434 0.648 0.303 1.385 0.262
*p < 0.05.
A B

C

FIGURE 3

The radiomics features are chosen using LASSO regression. (A) The l value in the LASSO regression is selected by 10-fold cross-validation, with the
optimal value determined based on the 1-SE criterion. The figure displayed a vertical dashed line (right line) indicating the optimal value of l, which
was determined to be 0.0632. (B) The LASSO coefficient profiles of the 10 radiomics features that past the T-test show how the coefficients of the
features changed in LASSO regressions as the value of l was varied. At the optimal l values, a total of four features with non-zero coefficients were
selected. (C) Radiomics features selected by LASSO regression and their coefficients.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1357580
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2024.1357580
A B

C

FIGURE 5

(A) ROC of the three models in the training set; (B) ROC of the three models in the testing set; (C) DCA curve of the three models.
A

B C

FIGURE 4

Clinical+radiomics nomogram and effectiveness test; (A) Clinical+radiomics nomogram, (B, C) are the calibration curves of the nomogram model in
the training and testing set, respectively. The calibration curves indicate the goodness-of-fit of the nomogram. The diagonal line indicates the
perfect match between the actual (Y-axis) and the predicted (X-axis) probabilities of the nomogram in the most ideal state. It showed that the Bias-
corrected curves of the model were very close to the diagonal line in both the training and validation sets with the brier scores of 0.173 and 0.203,
respectively, indicating that the model was highly accurate.
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Previous studies have also confirmed the reliability of CDU in

detecting vulnerable carotid plaques and the practicality of

radiomics by comparing it with pathologic tissues (14, 15). In this

study, our objective was to develop a more efficient and expedient

prediction method. Through our analysis, we determined that LR

exhibited superior performance out of another two ML models

(including SVC and RF). Additionally, we utilized the radiomics of

CDU images to construct a nomogram for predicting the risk of IS

in T2DM patients. Our study specifically concentrated on patients

with T2DM and introduced the TyG index to evaluate the impact of

IR on the occurrence of IS. Our findings indicate that IR plays a

significant role in predicting IS in individuals with T2DM.

Previous studies have confirmed that the severity of carotid

stenosis and the composition of carotid plaque can predict the

occurrence of IS. Our study supports these findings, as we found

that both the degree of carotid stenosis (OR: 3.036, 95% CI: 1.811-

5.091) and the presence of vulnerable plaque detected by CDU (OR:

2.301, 95% CI: 1.000-5.301) were associated with the occurrence of

IS. Furthermore, the emerging TyG index has been noted to be

associated with the presence of IS or coronary adverse

cardiovascular events in previous studies (38–41). In addition, the

association between elevated TyG index and vulnerable carotid

plaque had also been noted (3, 23, 42). We found a correlation

between the TyG index and the incidence of stroke events in T2DM

patients (OR: 2.324, 95% CI: 1.256-4.300). Our study provides

additional confirmation of the significance of the TyG index and

IR in cardiovascular pathophysiology.

Interestingly, despite statistical significance in univariate

analysis, SBP and PP were not statistically significant in

multifactorial LR in our study, which differed from a previous

clinical study conducted in China (43), and there is a consensus that

hypertension is a risk factor for IS (5), despite our data performing

in accordance with previous studies in univariate analysis. This
Frontiers in Endocrinology 09
nonsignificance in multifactorial LR could be attributed to the fact

that timely management of T2DM patients following hypertension

detection delayed disease development. Furthermore, lipid indices

such as TG, LDL-C, and HDL-C were not significant in the

univariate analysis of IS, which, while consistent with the findings

of Kaze et al (44), was not consistent with the findings of Sun et al

(45), who concluded in their study in a Chinese population that

lowering LDL-C was likely to have a net benefit for the prevention

of overall stroke and cardiovascular disease. We speculated that this

was due to our patients’ routine use of cholesterol-lowering

medicines, and because this was a cross-sectional retrospective

study, prospective studies are still needed to investigate the

association between lipid indices and IS.

Our study developed a nomogram based on CDU radiomics

that can be used to predict IS risk in T2DM patients by identifying

carotid plaque and corresponding clinical indicators (plaque nature,

degree of carotid artery stenosis, TyG index size, and age), and

validated the model’s reliability. Simultaneously, CDU was

confirmed as a good method of cervical vascular plaque

examination, and a nomogram prediction model was built in

conjunction with the TyG index, another easily obtained index, to

provide more personalized, convenient, and accurate stroke

prevention and control measures for T2DM patients. By only

need to obtain the TyG index and the CDU radiomics features,

primary care physicians can predict a T2DM patient’s IS risk, and

thus canpersonalize themedical support for them.One example of the

application of the nomogram was shown in Supplementary Figure 3.

Despite the advantages of our study, there are also some

limitations in our investigation. Firstly, this study was a

retrospective analysis conducted on patients with T2DM. Due to

ethical limitations, we were unable to request T2DM patients to

discontinue their medication, and the method of obtaining image

pictures posed challenges in conducting a prospective study to fully
A

B

FIGURE 6

SHAP visualization for radiomics model; (A) Waterfall plot; (B) Force plot.
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investigate the impact of carotid plaques on stroke development in

the context of T2DM. Secondly, this study was conducted at a single

center, and due to time constraints, we did not collect data from

other institutions for a two-center validation. We will conduct

additional external validation on external datasets in the

future work.
5 Conclusion

In this study, based on CDU radiomics, a nomogram was

constructed to identify IS risk in T2DM patients with a high

diagnostic performance, which could be used in clinical diagnosis

and provide accurate, convenient and personalized medical support

for T2DM patients.
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