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Passive exercise is an effective
alternative to HRT for restoring
OVX induced mitochondrial
dysfunction in skeletal muscle
Yi Hu †, Biqing Fang †, Xu Tian, Haiwei Wang, Xiangyang Tian,
Fangfang Yu, Tao Li, Zhijie Yang* and Rengfei Shi*

School of Exercise and Health, Shanghai University of Sport, Shanghai, China
Background: Postmenopausal women are more prone to develop muscle

weakness, which is strongly associated with impairment of mitochondrial function

in skeletal muscle. This study aimed to examine the impact of a passive exercise

modality, whole-body vibration training (WBVT), on muscle mitochondrial function

in ovariectomized (OVX) mice, in comparison with 17b-estradiol (E2) replacement.

Methods: Female C57BL/6J mice were assigned to four groups: sham operation

control group (Sham), ovariectomized group (OVX), OVX with E2 supplement group

(OVX+E), and OVX with WBVT group (OVX+W). The estrous cycle, body weight,

body composition, and muscle strength of the mice were monitored after the

operation. Serum E2 level was assessed by enzyme-linked immunosorbent assay

(ELISA). The ATP levels were determined using a luciferase-catalyzed

bioluminescence assay. The activity of mitochondrial respiration chain complexes

was evaluated using high-resolution respirometry (O2K). Expression levels of

oxidative phosphorylation (OXPHOS), peroxisome proliferator-activated receptor

gamma coactivator 1 alpha (PGC-1a), and mitochondrial transcription factor A

(TFAM) were detected using western blotting.

Results: We observed decreased muscle strength and impaired mitochondrial

function in the skeletal muscle of OVX mice. The vibration training alleviated

these impairments as much as the E2 supplement. In addition, the vibration

training was superior to the ovariectomy and the estradiol replacement regarding

the protein expression of PGC-1a and TFAM.

Conclusion: WBVT improves the OVX-induced decline in muscle strength and

impairment of mitochondrial function in the skeletal muscle. This passive

exercise strategy may be useful as an alternative to E2 replacement for

preventing menopausal muscular weakness. Further studies are needed to

understand the effects of WBVT on various physiological systems, and

precautions should be taken when implementing it in patient treatment.
KEYWORDS

passive exercise, whole-body vibration training, hormone replacement therapy, 17b-
estradiol replacement, muscle weakness, mitochondrial function, ovariectomized mice
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1 Introduction

Progressive muscle weakness occurs inevitably with aging.

Compared with age-matched males, postmenopausal women are

more prone to develop muscle weakness due to the loss of estrogen

with ovarian failure (1, 2). Estrogen is a crucial regulatory hormone,

which, aside from its role in reproduction, affects physiological

functions in multiple organs and tissues, including bone, white-

adipose tissues, brain, and skeletal muscle (3). Studies with

ovariectomized (OVX) and estrogen receptor a (ERa) knockout

mice have shown that loss of estrogen signaling resulted in decreased

grip strength and endurance (4, 5). Estrogen actions on preserving

muscle strength are associated with phosphorylation of the regulatory

light chain(RCL), inhibition of myocyte apoptosis, and maintenance of

satellite cell function, although its exact mechanisms remain to be

elucidated (6–8).

Mitochondria, as the cellular power station, are critical for

maintaining skeletal muscle homeostasis and function by supplying

energy through OXPHOS. Additionally, they play vital roles in

modulating reactive oxygen species (ROS), Ca2+ homeostasis, and

cell death (9). A recent clinical study suggested that mitochondrial

impairment is a hallmark of pre-frailty development and the onset of

decline in muscle function among the elderly (10). Indeed,

mitochondria are an important target of estrogen. Estrogen receptors

(ERa and ERb) have been reported to be localized in the mitochondria

of the mouse C2C12 myoblast cells, suggesting a possible direct effect of

estrogen on mitochondrial function in the skeletal muscle (11, 12).

Previous studies in rodents have shown that OVX-induced dysfunction

of skeletal muscle mitochondria, manifested by reduced ATP levels,

impaired mitochondrial respiratory function, and altered membrane

biophysical properties (13, 14). These studies also demonstrate that E2
therapy restored mitochondrial alterations induced by ovariectomy.

Hormone replacement therapy (HRT) — estrogen alone or a

combination of estrogen and progesterone— is an effective therapy

for relieving menopausal symptoms. Accumulating research

supports the positive effects of estrogen-based hormone therapy

on maintaining muscle mass and strength, as well as overall health

(15). However, the benefits and risks of HRT remain controversial

due to the possible risks of chronic diseases, such as cardiovascular

disease, breast cancer, venous thromboembolism, stroke, and

dementia (16–18). Individualized evaluation is crucial to

meticulously balance potential benefits and risks. Hence, the quest

for a relatively secure alternative becomes imperative, specifically

targeting the maintenance of muscle health and the attenuation of

muscle functional decline in postmenopausal women.

Physical exercise constitute effective preventive and therapeutic

strategies capable of attenuating muscle health decline (19, 20).
Abbreviations: OVX, ovariectomized; E2, 17b-estradiol; ELISA, enzyme-linked

immunosorbent assay; O2K, high-resolution respirometry; OXPHOS, oxidative

phosphorylation; PGC-1a, peroxisome proliferator-activated receptor gamma

coactivator 1 alpha; TFAM, mitochondrial transcription factor A; ER, estrogen

receptor a; RCL, regulatory light chain; ROS, reactive oxygen species; WBVT,

Whole Body Vibration Training; HRT, Hormone replacement therapy; QUA,

quadriceps; GAS, gastrocnemius; TA, tibialis anterior; SOL, soleus; EDL, extensor

digitorum longus; RCR, respiratory control ratio.
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However, the likelihood of women participating in active physical

activity decreases with advancing age (21, 22). Consequently, passive

exercise is garnering growing attention as an alternative. This modality

offers significant advantages, especially for individuals incapable or

unwilling of undertaking active training. The benefits span both

physical and cognitive domains, with advantages including a lower

exercise threshold, reduced physical burden, and positive implications

in rehabilitation (23–25). Notably, among diverse passive exercise

methods, whole-body vibration training (WBVT) emerges as a

standout approach, gaining recognition as an alternative exercise

method (24). In our study, we chose WBVT as a passive

intervention to investigate its impact on skeletal muscle function in

OVX mice by assessing mitochondrial status.

Therefore, the primary purpose of this study was to examine the

possible effects of WBVT on mitochondrial dysfunction in the skeletal

muscle of OVX mice and compare it with the treatment of placing E2
extended-release tablets. We hypothesized that passive exercise would

be an alternative mechanism to E2 replacement to improve OVX-

induced mitochondrial dysfunction in skeletal muscle.
2 Methods

2.1 Animals models

The Experimental Animal Care and Use Committee of the

Shanghai University of Sport approved animal experimentation. Six-

week-old C57/BL6 female mice were purchased from the

GemPharmatec Company (Nanjing, China). All mice were housed

under the controlled temperature and lighting conditions of 22-25°C

and a 12h light-dark cycle. As shown in Figure 1A, animals were

randomly divided into four groups: sham operation control group

(Sham); ovariectomized group (OVX); ovariectomized + E2

supplement group (OVX+E), and ovariectomized + WBVT group

(OVX+W). Each cage accommodated six mice.
2.2 Surgical procedures: ovariectomy and
sham operations

After two weeks of acclimation, female mice were randomly

divided into two groups to receive a sham operation or bilateral

ovariectomy, as described by our previous study (26). In brief, the

mice were placed on the fixed table and were anesthetized with

isoflurane. Ovariectomies were performed by cutting a 1cm incision

on the back of the mouse and removing both ovaries. In sham surgery,

only fat tissue of the same volume around the ovary was removed, and

the wound was sutured. A successful ovariectomy was confirmed by

microscopic examination of a vaginal smear for ten consecutive days.
2.3 Estradiol replacement

After a 4-week recovery period from ovariectomy, mice in

group OVX+E received an E2-releasing pellet (SE-121, 0.36 mg,

60 days, IRA) implanted subcutaneously. Briefly, the mice were
frontiersin.org
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anesthetized with isoflurane, and the skin on the back was gently

pulled up, a table-sized opening was cut, and inserted about 2 cm

with tweezers to complete the implantation of sustained-release

tablets. As previously reported, the dose of 17b-estradiol was
chosen to obtain serum concentrations within the physiological

range (27).
2.4 Whole body vibration training protocol

As shown in Figure 1B, mice in the OVX+W group were

exposed daily to 30 min of vertical WBVT treatments (sine wave,

30 Hz, 0.1 g peak to peak) on a vibrating platform (LD-20BL,

Longdate, Guangzhou, China). Vibration intervention took place

from Monday to Friday, with Saturday and Sunday as the rest days.

The training session started at 10:00 AM and lasted 10 weeks. The

protocol used in this study was described in a previous study with a

slight modification (28).
2.5 Grip test

Skeletal muscular strength in mice was quantified by the grip

strength test (29). The limb grip strength of mice was measured

by a Grip Strength Meter (YLS-13A, Jinan Yiyan Technology

Co., Ltd. Jinan, China). After the mice grasped the sensor rod,

the grip force peak in grams was automatically recorded. The

average value of six measurements for each mouse was used for

data analysis.
2.6 Determination of ATP content

The ATP content in skeletal muscle tissue was measured using

an Enhanced ATP Assay Kit (Beyotime, China) according to the

manufacturer’s instructions, and the results are shown in

arbitrary units.
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2.7 Mitochondrial respiration

Mitochondrial respiratory function in permeabilized myofiber

bundles was performed as described previously (13). Briefly, a small

portion of freshly dissected red gastrocnemius muscle tissue was

placed in buffer X (2.77 mM CaK2EGTA, 7.23 mM K2EGTA, 5.77

mM Na2ATP, 6.56 mM MgCl2·6H2O, 20 mM Taurine, 15 mM

Na2Phosphocreatine, 20 mM Imidazole, 0.5 mM Dithiothreitol, 50

mM K-MES, pH=7.1) containing 52.5 mg/mL saponin for

separation and incubated at 4°C for 30 minutes. Permeabilized

fiber bundles were transferred to buffer Z (0.5 mM EGTA, 3 mM

MgCl2·6H2O, 60 mM K-lactobionate, 20 mM Taurine, 10 mM

K2HPO4, 20 mM HEPES, 110 mM Sucrose, 1 g/L BSA, pH=7.1) at

4°C for 15 min. At the end of the incubation, quickly blot the fiber

with filter paper, measure the wet weight, and put it back in buffer Z.

Mitochondrial respiration was measured by high-resolution

respirometry (O2K, OROBOROS Innsbruck, Austria). The

chamber was hyperoxygenated to ~450 mM and started with the

addition of L-Malic acid (1 mM) and L-Glutamic acid (Glu; 10

mM), followed by sequential additions of Adenosine 5′-
diphosphate (5 mM), Cytochrome C (10 mM), Succinate (10

mM), Rotenone (0.5 mM), Antimycin A (2.5 mM), Ascorbate

sodium salt (2 mM), and TMPD (0.5 mM). The respiration rate

was normalized to the wet weight of permeabilized fibers.
2.8 Western blot analysis

Total protein from gastrocnemius tissue was extracted with the

RIPA lysate buffer containing protease inhibitor. The protein

concentration was measured by BCA assay following the

manufacturer’s instructions. Sample proteins were separated by

SDS-page using electrophoresis and then electro-transferred to

polyvinylidene fluoride membranes. After blocking, the

membranes were immunoblotted with total OXPHOS antibody

(1:250; Abcam), PGC-1a (1:1000; CST), and TFAM (1:1000;

CST). GAPDH (1:1000; CST) was used as the control of total
A B

FIGURE 1

Schematic representation of the experimental design. (A) The schedule of E2 or WBVT treatment in OVX mice. (B) Schematic description of WBVT
in mice.
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protein expression. The appropriate HRP-conjugated secondary

antibodies (1:1000; Beyotime) were used to combinate with

primary antibodies and the proteins were visualized with

enhanced chemiluminescence. Specific band intensities were

quantified with the Image J program.
2.9 Statistical analysis

Statistical analysis was conducted using SPSS v.20 (IBM,

Armonk, NY, USA), and all values are expressed as the mean ±

standard deviation of the mean (SD). The Student’s t-test was used

to compare two groups, while multiple groups were compared by
Frontiers in Endocrinology 04
one-way ANOVA with the LSD procedure for comparison of

means. P<0.05 was considered statistically significant.
3 Results

3.1 Muscle weakness was improved by E2
or WBVT in OVX mice

To induce estrogen insufficiency, young C57BL/6 female mice

were ovariectomized at eight weeks of age. We found that the OVX

mice displayed a predominance of leukocytes, with minimal

presence of keratinocytes, in vaginal secretions (Figure 2A).
A
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FIGURE 2

E2 or WBVT rescued muscle weakness in OVX mice. (A) Representative photomicrographs of vaginal cytology stained with crystal violet staining
solution. Sham, estrus stage; OVX, diestrus stage. Scale bars, 50 mm. (B) Representative images of the uterus. (C) Serum estradiol level in each group
at 20 weeks of age. (D) Changes in absolute body weight after surgery. (E) Fat mass. (F) Grip test. (G) Lean mass. (H) Wet tissue weight of hindlimb
skeletal muscles. Values are means ± SD, *p < 0.05, **p < 0.01 versus Sham group and #p < 0.05, ##p < 0.01 versus OVX group(O), n = 6
mice/group.
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Moreover, uterine atrophy (Figure 2B) was observed, indicating

changes in both the vaginal microenvironment and uterine

morphology post-ovariectomy. We observed an apparent decrease

in serum E2 level of OVX mice compared with Sham mice

(Figure 2C), as the previous OVX mice model indicated (30, 31).

Following ovariectomy, mice exhibited persistent weight gain

(Figure 2D), and pre-euthanasia body composition measurements

showed a significantly higher fat mass (Figure 2E) in

ovariectomized mice than the sham-operated group. Collectively,

these data confirmed that our ovariectomy-induced estrogen-

deficient model was established successfully.

We investigated the impact of estrogen depletion on muscle

function using a grip strength meter in mice. As show in Figure 2F,

despite an increase in body weight, the limb strength of OVX mice

showed an 11.5% reduction compared to the sham-operated

animals. Previous studies have demonstrated that estrogen

deficiency mediates decrements in muscle strength from both

inadequate preservation of skeletal muscle mass and decrements

in the quality of the remaining skeletal muscle (32). To assess if

muscle weakness resulted from a loss of muscle mass, we measured

the lean mass (Figure 2G) and wet weight of hind limb skeletal

muscles (Figure 2H). Compared with the Sham group, no

significant change was observed in lean mass. With regard to the

wet weight of hind limb skeletal muscles, we found that the muscle

mass of quadriceps (QUA), gastrocnemius (GAS), soleus (SOL),

and tibialis anterior (TA) from the OVX group was similar to

Sham group.

Two weeks after ovariectomy surgery, mice in the OVX+W

group underwent a 10-week WBVT intervention. WBVT restored

diminished grip strength in OVX mice (Figure 2F), despite no

significant increase in serum estradiol concentration (Figure 2C).

Eight weeks of E2 supplementation markedly elevated OVX mice’s
Frontiers in Endocrinology 05
serum estradiol concentration (Figure 2C), coupled with an

enhancement in grip strength (Figure 2F). These results suggest

that in reversing muscle weakness induced by estrogen deficiency,

both WBVT and E2 supplementation exhibit similar effects, even

though the former does not significantly elevate serum estradiol

levels in OVX mice. With regard to lean mass, similar to OVX+E

group, the OVX+W group had remained non-significantly altered

when compared with the OVX mice (Figure 2G). Despite E2
supplementation, the mass of the four muscles remained

unchanged compared to the OVX group. However, QUA and

GAS muscle mass increased after WBVT (Figure 2H).
3.2 E2 or WBVT reverses the OVX-evoked
mitochondrial dysfunction in the
skeletal muscle

Given that mitochondrial respiratory function in skeletal

muscle is affected by ovariectomy (33), permeabilized fiber

bundles from the red portion of the GAS were prepared for high-

resolution respirometry. As shown in Figure 3A, when compared

with the Sham group, the rate of state 3 C I -linked respiration

(+ADP) was significantly decreased in the OVX mice; whereas

those were obviously increased in the OVX+E group or OVX+W

group when compared with the OVX group. Moreover, we also

found a decrease in the rate of state 3 C I+II-linked respiration

(+succinate), state 3 C II-linked respiration (+rotenone), and state

3 C IV maximal respiration of the OVX mice compared to Sham

group. Changes in these indices were significantly reversed after E2
supplementation. The rate of state 4 Complex (C) I-linked

(glutamate/malate, no ADP) respiration was not changed among

the groups. Dividing state 3 CI-linked respiration (+ADP) and state
A B

D E

C

FIGURE 3

Effect of E2 or WBVT treated on mitochondrial respiratory function in OVX mice. (A) Respiration measured in permeabilized fiber bundles from red
gastrocnemius. G/M, glutamate/malate; Succ, succinate; Rot, rotenone; AmA, antimycin A; T/A, TMPD (N,N,N’,N’-tetramethyl-p-phenylenediamine
dihydrochloride)/ascorbic. (B) Mitochondrial respiratory control ratio (RCR). (C) Mitochondrial ATP content in skeletal muscle of each group.
(D) Representative images of OXPHOS complexes subunits. (E) Differences in the OXPHOS complexes expression. Values are means ± SD, *p < 0.05,
**p < 0.01 versus Sham group and #p < 0.05, ##p < 0.01 versus OVX group(O), n = 3~6 mice/group.
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4 CI-linked respiration (glutamate/malate, no ADP), we obtained

the respiratory control ratio (RCR). As shown in Figure 3B, the RCR

values significantly decreased post-ovariectomy. When compared to

the OVX group, both the OVX+E and OVX+W groups exhibited a

significant increase in RCR values.

In addition, we investigated the ATP production in the GAS

muscle of the mice. The results showed that ATP production in the

GAS muscle of OVX mice was significantly lower than that of the

Sham group, OVX+E group, and OVX+W group (Figure 3C),

indicating that estrogen supplementation or WBVT treated

improved ATP production of skeletal muscle.

We next evaluated the OXPHOS protein expression in GAS

muscle among the four groups. Similar to the decline in respiratory

function, mitochondrial complexes I (NDUFB8), IV (MTCO1), and

V (ATP5A) showed reduced expression in the OVXmice compared

to the Sham group. However, no differences were observed for other

oxidative phosphorylation (OXPHOS) subunits (Figures 3D, E). E2
supplement or WBVT treatment increased C I(NDUFB8), II

(SDHB), IV(MTCO1) and V(ATP5A) in OVX mice (Figures 3D,

E). Intervention with WBVT significantly increased C III

(UQCRC2) expression, whereas the E2 supplement did not

promote it as much as the WBVT. These results suggest that

estrogen deficiency induces mitochondrial dysfunction in the

skeletal muscle of mice, which can be alleviated by E2

supplementation or WBVT.
3.3 E2 or vibration training restores OVX-
induced impairment of mitochondrial
biogenesis in the skeletal muscle

To investigate the effects of E2 supplementation or WBVT on

mitochondrial biogenesis, protein expression levels of PGC-1a and

TFAM in gastrocnemius muscle were measured (Figure 4).

Although the expression of PGC-1a in gastrocnemius muscle of

ovariectomized mice tended to decrease compared to sham group,

the difference was not statistically significant. When compared with

the OVX group, an increasing trend was observed for the OVX+E
Frontiers in Endocrinology 06
group. In contrast, WBVT significantly increased the expression of

PGC-1a in the skeletal muscle. Regarding the expression of TFAM,

ovariectomy did not alter it, whereas E2 or WBVT treatment

increased it. The results suggested that WBVT can enhance the

expression of PGC-1a and TFAM, both of which are related to

mitochondrial biogenesis.
4 Discussion

In postmenopausal women, the decline in estrogen levels is

implicated in the development of skeletal muscle strength loss,

potentially predisposing individuals to compromised muscle health

(34). Previous investigation identifies E2 deficiency as a potential

catalyst for mitochondrial dysfunction (13), a factor that may play a

role in the initiation of muscle weakness. Our research findings

indicate that estrogen therapy has the capacity to counteract the

detrimental effects associated with estrogen decline, offering a

means to mitigate muscle weakness. Additionally, WBVT, a form

of passive exercise, emerges as a viable alternative to estrogen

therapy. It exhibits the ability to not only restore muscle

weakness and mitochondrial dysfunction resulting from reduced

estrogen levels but also to augment mitochondrial biogenesis.

Skeletal muscle weakness is considered a significant component

of the loss of health-related fitness in postmenopausal females (34,

35). The induction of estrogen deficiency in rodents by ovariectomy

is a common model of human menopause and is useful towards

understanding estrogenic effects on muscle strength (36). Kitajima

et al. (37) has demonstrated in their study that 24 weeks after

ovariectomy, mice exhibited a reduction in muscle force generation

and a significant decrease in the cross-sectional area (CSA) of the

TA muscle compared to the control mice. In the current research,

we noted an important reduction in muscle strength 12 weeks post-

ovariectomy surgery, with no significant decrease in muscle mass.

The duration of low estrogen levels may have varying effects on

muscle mass, and indeed, the decline in strength with aging occurs

at a greater rate than the decrease in muscle mass (36). Moreover,

the present study found that an 8-weeks E2 replacement rescued
A B

FIGURE 4

Effects of E2 or WBVT treated on mitochondrial biogenesis signaling in OVX mice. (A) PGC-1a. (B) TFAM. Values are means ± SD, #p < 0.05, ##p <
0.01 versus OVX group(O), n = 6 mice/group.
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ovariectomy-induced skeletal muscle weakness. Notably, as a form

of passive exercise, WBVT intervention in OVX mice was also

observed to alleviate muscle weakness caused by reduced estrogen

levels, and the reversal effect was found to be superior to

estrogen supplementation.

Reduced muscle function is linked to mitochondrial dysfunction

(38, 39). Mitochondria are critical organelles in skeletal muscle

responsible for regulating its metabolic status, including chemical

energy (ATP) production, regulation of intracellular Ca2+

homeostasis, modulation of cell proliferation, and integration of

apoptotic signaling (40, 41). In the present study, the loss of Ovarian

E2 resulted in diminished ATP production, and WBVT treatment

rescued this decline, similar to E2 therapy. The activity of

mitochondrial complexes is directly associated with ATP generation.

Multiple beneficial effects of E2 are reported to be mediated through

improved CI activity (42). Our high-resolution respirometry results

demonstrated that the rate of state 3 CI -linked respiration (+ADP) was

reduced after OVX and restored by E2 supplementary. The WBVT

group also observed alterations in mitochondrial respiratory state 3

(ADP coupling). What ’s more, following WBVT or E2

supplementation, the reduced RCR values in OVX mice were

increased, suggesting that both interventions can mitigate the

decreased OXPHOS coupling efficiency caused by ovariectomy.

Cavalcanti-de-Albuquerque et al. showed that ovariectomy resulted

in reduced mitochondrial respiration capacity and a lower ATP

synthase respiration rate, possibly due to a decrease in mitochondrial

number (14). In our study, after 12 weeks of the ovariectomy, we

observed a downregulation in the expression of the mitochondrial

respiratory complexes, indicating that alterations in mitochondrial

function may be attributed to the content of mitochondrial

complexes. Previous studies have demonstrated that estrogen’s effects

on mitochondrial function over a 2-week duration were not linked to

changes in mitochondrial content (13), whereas prolonged estrogen

deficiency for 15 weeks led to alterations in OXPHOS enzyme levels in

OVX mice (4). E2 supplementation or WBVT can both increase the

protein expression of mitochondrial complexes, reversing the decline of

mitochondrial complexes content induced by estrogen deficiency.

Mitochondrial biogenesis stands as a pivotal component of

mitochondrial quality control, exerting a significant influence on

mitochondrial function (43, 44). Ren et al. (45) reported vibration

intervention can enhances muscle strength and muscle

mitochondrial biogenesis-related gene relative mRNA expression.

PGC-1a, a master regulator of mitochondrial biogenesis,

coordinates transcription to enhance mitochondrial mass and

support tissue adaptation to increased energetic demands,

concurrently upregulating TFAM essential for mitochondrial

DNA functions (46, 47). Previous studies have shown that

estrogen deficiency can reduce the expression levels of PGC-1a,
influencing mitochondrial biogenesis (14, 36). Additionally, a

whole-body vibration exercise program, incorporating resistance

exercise and sustained vascular occlusion, increased the abundances

of PGC-1a mRNA in skeletal muscle, indicating potential benefits

of vibration exercise in mitochondrial biogenesis (48). Our research

findings indicate that after 10 weeks of WBVT, the expression of
Frontiers in Endocrinology 07
PGC-1a and TFAM was upgraded in the skeletal muscle of the

OVX mice, suggesting that vibration training has beneficial effects

on mitochondrial biogenesis in the context of low estrogen level.

The dynamic balance of cellular mitochondrial content is

maintained through the opposing processes of mitochondrial

biogenesis and mitophagy (41). The main mitophagy pathway

that has been investigated in the context of exercise involves

PINK1 and Parkin (49). Currently, the impact of low estrogen

levels or vibration training on mitophagy remains insufficiently

examined. In our investigation, we specifically concentrated on

proteins associated with mitochondrial biogenesis. Further studies

are needed to elucidate the specific pathways by which WBVT

affects mitochondrial function in the setting of estrogen deficiency,

including changes in mitophagy-related proteins.

In our study, there was no statistical difference in serum

estradiol levels between the OVX+W group and the OVX group.

There is still controversy about whether exercise can change serum

estradiol levels. Some studies have found that exercise intervention

does improve the level of circulating estrogen in postmenopausal

women (50), whereas others report divergent outcomes (51). In

postmenopausal women, estrogen derives primarily from non-

gonadal tissues, including adipose tissue, kidneys, brain, and

skeletal muscle (52–54). Exercise have complex effects on these

tissues, which may affect the synthesis and secretion of estrogen

(55–57). In our experiment, the vibration group exhibited an

upward trend in serum estradiol levels. This observation suggests

a potential link between vibration training and its impact on

adipose tissue, skeletal muscle, and other tissues. Further

investigations are imperative to elucidate the intricate correlation

between serum estrogen levels and various forms of exercise.
5 Conclusions

In summary, the present study demonstrates that WBVT, as a

form of passive exercise, can ameliorate muscle weakness

attributed to estrogen deficiency by mitigating mitochondrial

dysfunction. Our proposed passive exercise strategy to alleviate

the repercussions of mitochondrial impairment relies on the

modulation of mitochondrial biogenesis protein expression.

These discoveries substantiate the potential of passive exercise

as a promising alternative therapeutic option to conventional

estrogen supplementation. However, until how WBVT affects

various physiological systems is fully understood, caution

should be exercised when utilizing WBVT as a therapy for

postmenopausal women and as a potential method for

enhancing muscle strength.
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