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Thyroid-associated ophthalmopathy (TAO), also referred to as Graves’

ophthalmopathy, is a medical condition wherein ocular complications arise

due to autoimmune thyroid illness. The diagnosis of TAO, reliant on imaging,

typical ocular symptoms, and abnormalities in thyroid function or thyroid-

associated antibodies, is generally graded and staged. In recent years, Artificial

intelligence(AI), particularly deep learning(DL) technology, has gained

widespread use in the diagnosis and treatment of ophthalmic diseases. This

paper presents a discussion on specific studies involving AI, specifically DL, in the

context of TAO, highlighting their applications in TAO diagnosis, staging, grading,

and treatment decisions. Additionally, it addresses certain limitations in AI

research on TAO and potential future directions for the field.
KEYWORDS
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1 Introduction

1.1 A brief history of artificial intelligence and its evolution

The genesis of Artificial Intelligence (AI) can be traced back to the mid-20th century,

specifically to the 1950s (1), heralding a seminal epoch in the domain of computer science.

Initial forays into AI were primarily concerned with the replication of elementary human

cognitive abilities, encompassing problem-solving and algebraic computations. These

endeavors laid the groundwork for what would burgeon into a diverse and expansive

field. Subsequent developments saw AI research extend its ambit to encompass pattern

recognition, natural language processing, and knowledge representation, thereby

illustrating the field’s adaptability and its capacity to address a wide spectrum

of applications.
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The 1970s witnessed a paradigmatic shift with the advent of

Machine Learning (ML), a distinct subset within AI characterized

by data-driven algorithms (2). This period was marked by seminal

contributions, such as those by Clark et al., who leveraged pattern

recognition methodologies for the classification of crude oil gas

chromatograms, achieving unprecedented accuracy. Such

advancements underscored the potential of ML to revolutionize

practical applications. Concurrently, the investigations by Cui et al.

into the deployment of ML for the enhancement of biosensors

delineated a pivotal shift in AI research, highlighting ML’s

transformative potential within the broader AI landscape (3).

The advent of Deep Learning (DL), a sophisticated offshoot of

ML, has in recent years catalyzed a significant revolution within the

field (4). Characterized by its utilization of intricate neural

networks, DL has facilitated major breakthroughs, particularly in

the realms of image and speech recognition. Notably, Alani’s work,

which achieved a 98.59% accuracy rate in recognizing Arabic

handwritten digits through DL, serves as a testament to the

efficacy of this approach. Within the DL paradigm, Convolutional

Neural Networks (CNNs) are distinguished by their specialized

layer architecture, tailored for image-centric tasks. The efficacy of

CNNs has been demonstrably proven across a spectrum of

computer vision applications, ranging from image classification to

facial recognition (5–7), thereby epitomizing the depth and

sophistication of contemporary AI methodologies.

This succinct historical exposition not only chronicles the

evolutionary trajectory of AI from its nascent stages, aimed at

mimicking rudimentary cognitive functions, to its present stature

as a cornerstone of technological innovation but also delineates the

hierarchical relationship amongst AI, ML and DL. This hierarchical

structure, wherein AI encompasses ML as a strategy for achieving

artificial intelligence, with DL further refining ML through advanced

neural network architectures, reflects the incremental complexity and

the expanding problem-solving capabilities of the field.
1.2 Thyroid-associated ophthalmopathy

Thyroid-associated ophthalmopathy (TAO), also known as

Graves’ ophthalmopathy, is an ocular complication linked to

autoimmune thyroid disease. It is closely linked to Graves’

disease, with clinical relevance in about 50% of patients, but it

may also arise from other disorders of abnormal thyroid function.

Thyroid-associated ophthalmopathy (TAO) has a high prevalence

among individuals aged 50-60 and 70-80 years, and is more

common in women with a 1:4 ratio of women to men in the

more severe forms of ophthalmic disease (1). The main symptoms

of TAO include exophthalmos, eyelid swelling, double vision, eye

pain, and visual impairment. The disease’s pathogenesis is not fully

understood, but studies have shown that an autoimmune response

is an essential factor in its development (2). The diagnosis of TAO

relies on objective criteria, including typical ocular symptoms,

abnormalities in thyroid function or thyroid-related antibodies,

and imaging findings. Following diagnosis, clinicians typically

stage and grade the disease according to its level of activity.

During the active phase, patients experience symptoms of ocular
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redness and swelling, pain, and increased lacrimation due to

inflammation. In the inactive phase, inflammatory symptoms

decrease or disappear, but structural changes like exophthalmos

and ocular muscle dysfunction may still be present. Disease severity

is evaluated based on the grading system. Mild thyroid-associated

ophthalmopathy (TAO) is characterized by mild eyelid erythema

and swelling. Moderate TAO may be accompanied by

exophthalmos and double vis ion in addi t ion to the

aforementioned symptoms. Severe TAO may result in optic nerve

compression, severe proptosis, and visual impairment (3).
1.3 AI in ophthalmology and its
potential applications

Since the beginning of the 21st century, there has been a gradual

increase in the use of ML and DL in healthcare. This rise can be

attributed to the increased computing power and the prevalence of Big

Data. These algorithms are commonly utilized for various tasks such as

disease prediction (4), diagnostic assistance (5) and medical image

analysis (6) and many other tasks. Especially in medical image analysis,

DL techniques like CNN demonstrate reliable and accurate processing

of complex image data including MRI, CT and X-rays (7–9).

Ophthalmology relies heavily on image-based diagnostics. In

recent years, AI, particularly DL techniques, has found widespread

application in ophthalmic diseases, encompassing retinal disease

diagnosis, corneal morphology analysis and glaucoma detection

(10–12). Yang et al. (13) synthesized numerous clinical evaluations

of AI research and established a clinical research evaluation guide

for ophthalmic AI. For TAO, AI presents significant potential for

both research and application. TAO is a complex immune system-

related disease with an unclear etiology and mechanism. Yet, AI

technology enables the extraction of meaningful patient data for

more accurate diagnoses and progress assessments by physicians.

Furthermore, DL models can aid in analyzing medical images, such

as eye MRI, CT scans, photographs of the external eye, and other

visuals, to offer TAO patients personalized and more accurate

treatment recommendations.

In this summary, we explore the historical progression of AI,

tracing its development from rudimentary cognitive simulations to

recent advances in DL. Additionally, we provide an overview of

Thyroid-associated ophthalmopathy (TAO), detailing its clinical

characteristics, pathogenesis, and staging and grading. We highlight

the significant role of AI in ophthalmology, particularly in its

potential to diagnose and treat TAO, emphasizing its vital impact

in the field. In this article, we will examine four components of AI in

clinically diagnosing, staging, grading, and treating TAO to provide

a comprehensive insight into AI’s potential in the TAO field.
2 Role of AI in TAO diagnosis

2.1 TAO diagnosis

The diagnosis of TAO relies on three major factors (1): ocular

symptoms that are typical, for example Enlarged Extraocular
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Muscles, Strabismus, and Diplopia (2); abnormalities related to

thyroid function or thyroid antibodies; and (3) imaging indications,

such as Enlarged Extraocular Muscles (3). Huang et al. (14)

Explored the importance of ophthalmic characteristics in

detecting thyroid-associated ophthalmopathy and proposed that

TAO subtypes, stages, and severity can be identified by utilizing

auxiliary references, such as demographic factors, complaint

symptoms, and image features. These non-intrusive markers can

be administered promptly for clinical evaluation of TAO status.

Traditional diagnosis of TAO may rely on subjective clinical

assessment and interpretation, leading to inconsistent diagnostic

results among physicians and inaccuracies. Detecting TAO at an

early stage is also challenging, resulting in delayed appropriate

treatment and management. Traditional methods are also time-

consuming as a single diagnosis often necessitates complex

radiological examination and multiple evaluations, resulting in

inefficient diagnoses.

With the advancement of AI technology, the use of DL in the

medical field is becoming increasingly prevalent. As a current

prominent area of AI research, DL can process vast amounts of

diverse data, such as images, videos, and text, allowing for large

quantities of clinical and imaging data to be utilized to enhance the

precision and consistency of TAO diagnoses. Through automated

image analysis and data processing, DL can provide timely or rapid

diagnostic feedback, expediting the diagnostic process and enabling

early intervention possibilities.
2.2 AI in TAO diagnosis

Eyelid abnormalities, mainly characterized by the retraction of

the upper and lower eyelids, are a prevalent manifestation of

Thyroid-associated Ophthalmopathy (TAO). Precise eyelid

measurement is vital for TAO diagnosis, severity grading, surgical

planning, and treatment outcome evaluation. Clinicians

traditionally assess eyelid position in TAO by manual

measurement with a ruler. The study concentrates on one-

dimensional characteristics, specifically Palpebral Fissure Length

and Margin Reflex Distance (15). Manual measurement of precise

eyelid parameters necessitates extensive expertise on the clinician’s

part and the patient’s cooperation. Follow-up measurements are

additionally difficult to perform continuously and consistently due

to inter-observer variations. Obtaining standardized and precise

measurements of eyelid characteristics is crucial to enhance the

diagnosis and treatment of TAO.

Shao et al. (16), a DL network can be employed to detect and

segment the eye, comprising two stages: first identifying the eye and

subsequently segmenting the Eyelid and Corneal Limbus. By

converting eyelid parameters into actual distances, this method

demonstrated strong agreement (correlation coefficients of 0.932 to

0.980) when compared with measurements obtained by

professional ophthalmologists. Additionally, this method provided

comprehensive measurements in just 3 seconds.

After exploring the effective use of DL in accurately measuring

eyelid abnormalities, we shift our focus to measuring exophthalmos.

AI techniques have also demonstrated their potential in addressing
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another critical symptom of TAO. exophthalmos, also known as

proptosis, is a medical condition where the eyeball bulges out from

the orbit. This condition could be caused by structural changes

within the eye socket or by a factor behind it. exophthalmos can

manifest as either bilateral or unilateral, and its severity spans from

mild to significant protrusion (3). The degree of severity can

fluctuate from mild to substantial. exophthalmos protrusion is

clinically diagnosed by observing and measuring its degree,

typically with the Hertel exophthalmoscope (17). Although the

Hertel Proptosis Meter is the most widely employed method, it

has the drawback that the operator or measurement environment

may affect the findings, resulting in inadequate reproducibility,

reduced reliability, and high subjectivity. In radiological

examination, computed tomography (CT) provides precise

imaging of the orbit and eyeball, enabling accurate assessment of

the extent of exophthalmos. Additionally, two-dimensional and

three-dimensional images make it possible to obtain measurements

in different planes with reduced human error and subjective

judgment compared to traditional proptometers. CT scans have

thus become the primary means of examining exophthalmos.

However, it is still impossible to eliminate completely the effects

of human error and subjective judgment. By utilizing DL

technology, exophthalmos can be automatically measured,

enhancing the accuracy and reliability of the measurement. This

approach offers the clinicians a more precise and unbiased

diagnostic basis.

Zhang et al. (18) conducted an analysis of orbital CT images

utilizing DL to measure the degree of exophthalmos. Results

demonstrated that the ir model produced cons is tent

measurements with clinician’s results, with a correlation

coefficient of 0.9902, and took less than one second to analyze

each image. Technical language was used when necessary, and all

technical abbreviations were explained in the text. Additionally, the

writing maintained a formal, objective tone. Demonstrating its

efficiency and accuracy. Fu et al. (19) used a CNN to

automatically identify the exophthalmos and the posterior crypt

region of the eye in CT images and proposed two metrics: linear

displacement and volumetric displacement to quantify the degree of

exophthalmos prominence. This study is pioneering in the use of

computer software to quantify volumetric exophthalmos

protrusion, improving surgical prediction accuracy. Additionally,

it showcases the potential of DL technology in calculating the

volume of Inferior Orbital Abscesses.

After investigating the effectiveness of DL in measuring

exophthalmos, we are now expanding our research to explore a

wider range of AI applications. In their studies, Song et al. (20)

collected 1,435 CT images, then trained and validated the 3D-

ResNet model. In external validation, the model demonstrated high

accuracy with an AUC of 0.919 and performed comparably to the

resident group in a noninferiority experiment. The application of

this model has undergone testing and conforms to the regulations of

a clinical trial, indicating a technological foundation for the

automated diagnosis of TAO on orbital CTs. This screening

model enables the identification of patients displaying relevant

characteristics on CT scans to achieve a comprehensive and

precise diagnosis.
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Huang et al. (21) presented an extensive framework

demonstrating the potential application of AI in diagnosing

ocular symptoms in TAO. Their novel AI-based system utilizes

facial images to detect ocular symptoms and is divided into three

modules, with the aim of identifying eye position, ocular motility

disorders, and related signs. A sample of 21,840 images was

obtained from 1,560 patients (3,120 eyes). The system attained a

mean AUC of 0.91 for the seven symptoms in the test dataset,

demonstrating superior performance.

In conclusion, the advanced AI and DL technologies have

increased efficiency, accuracy, and reliability in TAO screening

and diagnosis when compared to conventional methods. This

chapter emphasizes the potential value of AI technologies in TAO

diagnosis by demonstrating how DL technologies can assist

physicians in making more precise diagnostic and treatment

decisions. Researches on AI in TAO diagnosis are shown in Table 1.
3 Role of AI in TAO staging

3.1 TAO staging

TAO is an autoimmune inflammatory reaction specific to the

organs, divided into active and inactive phases. Patients may

experience the active phase of the disease for 18-24 months,

followed by a gradual transition to the inactive phase (27). It is

important to note that this information has been cited as a reliable

source. Staging TAO enables treatment planning, surgical timing

selection, and prognosis assessment. Clinicians commonly stage the

disease activity of patients with a first-time TAO diagnosis using the

clinical activity score (CAS) as the initial measure. Clinicians

commonly stage the disease activity of patients with a first-time

TAO diagnosis using the clinical activity score (CAS) as the initial

measure (22). The CAS score comprises seven elements, namely

retrobulbar pain that occurs spontaneously, pain experienced

during eye movement, eyelid congestion, eyelid edema,

Conjunctival Prominence, Eyelid Swelling, and Lacrimal

Prominence Swelling. The score is rated at 1. An active stage is

classified when the CAS is ≥3, whereas the inactive stage when CAS

<3. These include an increase in exophthalmos of 2 mm or more, a

decrease in eye movement by 8° or more (as determined by
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Goldmann visual field meter or synoptic examination result), and

a decrease in visual acuity by 1 line or more. A follow-up CAS score

of ≥4 out of a total score of 10 was indicative of a state of activity.

When utilizing the Clinical Activity Score (CAS) to monitor and

evaluate the effectiveness of TAO treatment, it is necessary to

incorporate an additional 3 criteria beyond the standard 7. The

combination of orbital MRI findings, as well as the CAS, was

subsequently utilized to determine staging.

An orbital MRI that shows a high signal on the T2-weighted image

(T2WI) of the extraocular muscles suggests an active stage of TAO

(28), a complex autoimmune disorder characterized by cosmetic

damage and vision loss. On the other hand, the absence of signal

intensity change implies an inactive stage. An enlarged lacrimal gland

with increased signal intensity also indicates an active phase. The

application of quantitative MRI (23–25), a pivotal diagnostic approach

in TAO, provides precise demonstrations of orbital lesions and a

deeper understanding of disease conditions through detailed

morphological and functional analyses. Although the fast evolution

of MRI techniques and TAO’s complexity pose challenges, the

integration of quantitative MRI enhances clinical decision-making in

TAO management. Multimodal MRI’s quantitative parameters are

clinically valuable in TAO staging (3). Thus, the diverse quantitative

parameters of multimodal MRI, including CAS which is quick to score,

become invaluable in accurately staging TAO and facilitating its

treatment. This streamlined approach to utilizing quantitative MRI

underscores the need for bridging clinical and radiological insights,

promising improved outcomes in the multidisciplinary management

of TAO.

However, computer-assisted diagnosis systems may be affected

by subjective factors from both examiners and examinees, leading to

biased results (26). In addition, conventional staging methods often

depend on clinicians’ experience and subjective judgment, creating

potential subjectivity and inconsistency. Because traditional

methods entail multiple examinations and evaluations, they result

in increased diagnostic and staging delays, thereby delaying

patients’ access to timely treatment. Possibly due to limitations in

technology and knowledge, conventional staging methods may not

provide an accurate assessment of the severity of the condition and

the extent of the lesions.

AI can yield more consistent and unbiased diagnostic results via

algorithmic and big data analyses, minimizing human error. This
TABLE 1 AI in TAO diagnosis.

Authors
(Year)

Task Input
Data Type

Samples
Dataset

Model Metrics

Shao et al. (22) Detecting and segmenting the eye for
eyelid measurement

Eye images 148 Attention
R2U-Net

Correlation coefficients of 0.932
to 0.980

Zhang et al. (23) Measuring the degree of exophthalmos in
orbital CT images

Orbital CT images 178 U-Net Correlation coefficient of 0.9902

Fu et al. (24) Identifying exophthalmos and quantifying
its degree

CT images 56 CNN Linear and
volumetric displacement

Song et al. (25) Automated diagnosis of TAO on orbital CTs CT images 1435 3D-ResNet AUC of 0.919

Huang
et al. (26)

Diagnosing ocular symptoms in TAO Facial images 21840 AI-
based system

Mean AUC of 0.91
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technology can also rapidly process large datasets to facilitate swift and

efficient disease diagnosis and staging, leading to cost savings in

healthcare. DL and ML algorithms can enhance the precision of

diagnosing and staging Thyroid-associated ophthalmopathy. This

can be accomplished by utilizing extensive training data to attain

early diagnosis and staging. Early detection enables timely treatment

measures, thereby improving patient prognosis. Large-scale automated

screening can also be implemented, especially in large populations, to

promptly detect diseases and increase the detection rate.
3.2 Application of AI in TAO staging

In recent years, multiple studies have corroborated the

effectiveness of AI-based TAO staging techniques.

It should be noted that CAS outcomes may vary based on the

evaluator, and an experienced ophthalmologist is necessary to

ensure precise assessments. Moon et al. (29) have created a ML-

supported system that assists in evaluating five CAS symptoms in

patient facial images and forecasts CAS by taking into account two

subjective symptoms. The algorithm was trained using 1020 patient

facial images with TAO. Ultimately, the system’s ability to detect the

early stages of TAO based on CAS was demonstrated through tests

using a consistent dataset provided by three ophthalmologists. The

sensitivity and specificity for diagnosing active TAO were 0.881 and

0.869, respectively. Additionally, the diagnostic accuracy AUC for

each inflammatory sign of CAS ranged from 0.884 to 0.977.

These results indicate the potential utility of the system for early

detection before any visible changes in appearance occur.

Since orbital MRI offers deep features for TAO clinical staging, it

can serve as a valuable tool for TAO staging during Radiological

Examination. Lin et al. (28) conducted a study, collecting and analyzing

160 MRI images, and developed a DL system based on CNN that

effectively distinguishes between active and inactive patients. The

system achieved an accuracy of 0.86, a sensitivity of 0.82, a specificity

of 0.89, and an F1 score of 0. 71. The study shows that the network

developed by Li et al. (30) performed well in evaluating the

inflammatory activity stage of extraocular muscles in TAO. The ML

models were built using contrast-enhanced MRI images from 1479

TAO patients, and the best-performing model achieved an AUC of

0.9260, precision of 0.9118, recall of 0.9609, and F1 score of 0.9357 in

the test set. The activity assessment model (TAO) developed in this

study boasts excellent classification efficiency and affordability, thus

making it ideal for seamless adoption in community hospitals.

CT scans provide detailed images of the orbit and surrounding

structures, aiding physicians in understanding TAO stages. Lee et al.

(31) introduced a neural network technique that utilizes orbital CT

images of 144 active TAO patients and 288 inactive TAO patients as

data, achieving a final AUC of 0.871 on an internal test set. Their

findings demonstrate that DL, coupled with CT images, can

differentiate between patients with active and inactive stages of TAO.

Compared to using MRI and CT images, utilizing TAO facial

RGB images for ocular lesion characterization and TAO staging is a

significant and cost-effective method for healthcare providers. Zhu

et al. (32) developed an EDWM model by training it on 2,228 facial

images of TAO patients, resulting in accurate recognition of TAO.
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On a test set of 600 facial images, the EDWMmodel achieved a Dice

coefficient of 0.898, sensitivity of 0.895, and precision of 0.931. These

results establish a more dependable and straightforward diagnostic

foundation for detecting TAO early and acquiring CAS scores.

Single-Photon Emission Computed Tomography(SPECT)/CT

merges SPECT’s functional imaging with CT’s anatomical imaging,

providing additional details about TAO staging and precise lesion

localization in the orbital region. Yao et al. (33) introduced the

automated GO-Net method for detecting inflammatory activity in

TAO patients. The study is partitioned into two sections, the SV-

Net segmentation network, and the CNN based on SPECT/CT

images. Following their evaluation on a test set, the outcomes of the

segmentation task produced 0.82 ± 0.05%, 91.01 ± 5.32%, and 99.96

± 0.03% for IOU, SN, and SP, correspondingly. This indicates the

segmentation model’s promising performance. For predicting active

GO, the classification model exhibited optimal results with an AUC

of 0.90 and a diagnostic precision of 86.10%. This indicates that the

method has good accuracy and consistency in the determination of

TAO staging.
3.3 New AI methods that can be used for
TAO staging

In the general clinical practice, there is sufficient ophthalmological

data and demographic information available to efficiently acquire

multiple non-invasive ophthalmic images in a timely manner. These

images may assist in the supplementary diagnosis of various subtype

features of TAO. For changes in thyroid function, stage, and severity, it

is valuable to investigate the clinical significance of demographic and

ophthalmogram features for the diagnosis and assessment of TAO

prior to undergoing biochemical index testing, despite the existence of

various TAO-recognizing biomarkers. A retrospective study by Huang

et al (14). encompassing over 1,000 medical records (with a total of 953

patients) and ML models resulted in several feasible regression models

that could aid in TAO staging. Ultimately, demographic factors,

complaint symptoms, and image features (including lid congestion,

Conjunctival Hyperemia, and Corneal Ulcer) can predict TAO

subtype, stage, and severity.

Due to changes induced by disease in the appearance of the eyes

and face, as well as disruptions to mental well-being, patients with

TAO exhibit distinctive facial expressions that deviate from those of

healthy individuals. Facial expressions can reflect both the objective

facial deformities and subjective psychological disturbances of

patients, and clinical activities, disease severity, and quality of life

(34). Lei et al. (35) utilized the VGG-19 network to automatically

classify facial expressions using two datasets: 827 cases of data in

dataset 1 and 126 cases of data in dataset 2. The model achieved an

AUC of 0.847, an accuracy of 0.851, a sensitivity of 0.899, a

precision of 0.899, a specificity of 0.720, and an F1 score of 0.899

on the internal test set. The researchers investigated the relationship

between facial expression and clinical activity, disease severity, and

quality of life. Their findings demonstrated a significant association

between facial expression and all three factors. This adds a new

dimension to the staging of TAO. Researches on AI in TAO staging

are detailed in Table 2.
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4 Role of AI in TAO grading

4.1 TAO grading

The clinical presentations of Thyroid Eye Disease (TAO) are

multifaceted. Mild cases may exhibit no subjective symptoms, while

severe cases can significantly impact visual function, daily life, and

even result in Corneal Ulcer, perforation, and blindness. Therefore,

selecting an appropriate and efficacious treatment plan based on the

degree of TAO is imperative. Currently, clinical grading methods

for TAO consist of the European Group on Graves’ Orbitopathy

(EUGOGO) classification and the NOSPECS classification by the

American Thyroid Association, both suitable as a reference for

clinical treatment planning. These classifications are also useful for

clinical management. Multiple methods of assessment and grading

are available, and their accurate application may require the

clinician to possess some degree of experience and knowledge.

Early diagnosis, identification of cases with potentially serious

complications, and development of an appropriate management

plan are essential (36). Diagnosing TAO in the presence of normal

thyroid function can be challenging due to the wide range of clinical

presentations, which can vary from unilateral dry eye disease with

mild symptoms to bilateral complications that pose a threat to

vision (37). Additionally, the treatment and management methods

for TAO are continually progressing, and new diagnostic and

therapeutic approaches are continuously emerging. Therefore,

healthcare providers must keep up-to-date with the latest research

and treatment options to provide optimal care for their

patients (38).
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AI can analyze vast amounts of data to identify and evaluate the

features of Thyroid-Associated Ophthalmopathy from clinical

images, CT scans, and other medical records (40). The data

analysis and assessment outcomes generated by AI can provide

medical professionals with valuable information to aid them in

making more precise diagnostic and therapeutic decisions (39).
4.2 Application of AI in TAO grading

Uncertain ophthalmic features in patients with normal thyroid

function or thyroiditis may impact the accuracy of grading for TAO

(41). CT scans have been widely employed for TAO diagnosis. Lee

et al. (42) developed a neural network model to evaluate TAO

severity using 288 orbital CT images from patients with mild TAO

for training and testing purposes. The model accurately

differentiated patients with moderate to severe thyroid-associated

ophthalmopathy (TAO) from controls, exhibiting comparable or

superior performance to oculoplastic specialists. However, it

demonstrated lower efficacy in distinguishing patients with

mild TAO.

Moderate to severe TAO generally has a significant impact on

the quality of life. Specifically, diplopia associated with enlarged

extraocular muscles is challenging to treat and results in functional

impairment. The activity and severity of TAO can be assessed using

various methods, including the CAS and modified NOSPECS

classifications. However, no comprehensive tool is currently

available to assess all conditions objectively. Lee et al. (43)

conducted a study involving 400 patients diagnosed with TAO
TABLE 2 AI in TAO staging.

Authors
(Year)

Task Input
Data Type

Samples
Dataset

Model Metrics

Moon
et al. (33)

Evaluating CAS symptoms
in TAO

Patient
facial images

1020 ML-
supported
system

Sensitivity: 0.881, Specificity: 0.869, accuracy
AUC: 0.884

Lin
et al. (34)

Distinguishing between active and
inactive TAO patients

MRI images 160 CNN Accuracy: 0.86, Sensitivity: 0.82, Specificity: 0.89,
F1 score: 0.71

Li et al. (35) Evaluating inflammatory activity
of extraocular muscles in TAO

Contrast-
enhanced
MRI images

1479 ML models AUC: 0.926, Precision: 0.911,
Recall: 0.961,
F1 score: 0.936

Lee
et al. (36)

Differentiating between active and
inactive stages of TAO

Orbital
CT images

144 active and 288
inactive TAO patients

CNN AUC: 0.871

Zhu
et al. (37)

Characterizing ocular lesions and
staging TAO

TAO patient
facial
RGB images

2,228 facial images of
TAO patients

EDWM
model

Dice coefficient: 0.898, Sensitivity: 0.895,
Precision: 0.931

Yao
et al. (38)

Detecting inflammatory activity
in TAO

SPECT/
CT images

Not specified GO-
Net
method

IOU: 0.82 ± 0.05%, SN: 91.01 ± 5.32%, SP: 99.96 ±
0.03%, AUC: 0.90, Diagnostic precision: 86.10%

Huang
et al. (21)

Predicting TAO subtype, stage,
and severity

Medical
records, images

Over 1,000 medical
records (953 patients)

ML models AUROC:0.92

Lei
et al. (39)

Classifying facial expressions
in TAO

Facial
expressions
images

827 cases in dataset 1
126 cases in dataset 2

VGG-
19 network

AUC: 0.847, Accuracy: 0.851, Sensitivity: 0.899,
Precision: 0.899, Specificity: 0.720,
F1 score: 0.899
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and developed an automated clinical scoring algorithm using ML.

This algorithm quantified the risk of developing moderate-to-severe

TAO or muscle-dominant TAO and achieved better model

performance than PREDIGO which was proposed by Wiersinga

et al. in 2018 on all metrics except specificity (44).This indicates that

it may serve as a superior instrument for TAO classification and

forecasting of moderate-to-severe TAO.
5 Role of AI in TAO treatment and
surgical decision-making

5.1 Treatment and surgical decision
making in TAO

Treatment of TAO includes drug therapy, Orbital Radiotherapy,

and surgery. Drug therapy mainly consists of treatments such as

Corticosteroids, Biologics, and Traditional Immunosuppressants. As

kind of drug therapy, Anti-inflammatory treatment is the primary

and vital therapeutic approach for active, moderate-to-severe TAO

(45). Throughout the process, risk factors need to be controlled,

thyroid function needs to be maintained stable, and ocular

symptomatic supportive therapy should be provided. The selection

of a treatment plan for TAOmust consider the staging and grading of

the ailment, the therapy’s usefulness, its safety and cost, drug

accessibility, and the patient’s preferences. Opting for the most

effective remedy for this intricate and fluctuating condition involves

significant challenges and cannot precisely anticipate the results of

treatment. Hu et al. (46) combined T2WI-derived EOM radiomics

with disease duration to provide a promising noninvasive method for

determining treatment response in TAO patients before taking GC.

With the continued advancement of AI technology, its use in

the medical field is increasingly prevalent, particularly in the realm

of treatment decision-making. AI-based systems are capable of

extracting and analyzing large amounts of patient data,

encompassing disease progression, treatment response, and

potential complications, to generate personalized treatment

recommendations for medical professionals. For TAO, AI can

analyze imaging data, the patient’s clinical symptoms, and results

from past treatments to forecast the probable outcomes of various

treatments. This assists doctors in designing the optimal

treatment plan.
5.2 Application of AI in TAO
preoperative planning

GC pulse therapy, also called Corticosteroids Intravenous pulse

therapy, is the initial treatment for moderately to severely active

TAO. Nonetheless, a significant percentage of patients exhibit

unfavorable results post-treatment and are subjected to the

negative consequences of corticosteroids.

Wang et al. (47) introduced a novel scheme to identify Graves’

ophthalmopathy patients unlikely to benefit from intravenous

corticosteroid pulse therapy before dosing by developing a

predictive model. This approach aims to improve precision
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medicine for Graves’ ophthalmopathy. They analyzed the data

using clustering methods and AI algorithms to provide earlier

treatment options for these patients. This study presents a novel

approach to integrating AI modeling into clinical research, enabling

non-AI-trained medical researchers to use the model directly. By

utilizing the Artificial Intelligence Kit (AK) software, Wang et al.

(48) extracted quantitative texture parameters of extraocular

muscles (EOM) and orbital fat (OF), which facilitated the

investigation of EOM and OF in texture analysis of MRI for

monitoring and predicting the GC treatment response of TAO

patients. Ultimately, the texture parameters of the extraocular

muscles (EOM) and orbital fat (OF) were significantly correlated

with the response of TAO patients to glucocorticoid (GC)

treatment. This finding suggests that these parameters may serve

as a useful tool in monitoring and predicting the response of TAO

patients to GC treatment. The utilization of open-source AI

software has played a crucial role in this study, enabling the

researchers to obtain the data necessary for the experiment

quickly and easily. Zhang et al. (49) found that the WOR model

achieved satisfactory results in TED IVGC response prediction.

The inclusion of more orbital structures and the use of ML

algorithms would be beneficial when constructing radiomics

models. The option of segmenting orbital soft tissues individually

or as a whole has not yet achieved the ultimate optimal result.

Immunosuppressive therapy using intravenous steroids is a

primary treatment for active TAO. Nevertheless, up to 25% of

patients with moderate to severe TAO may not respond to steroids

or may relapse after treatment is discontinued, and they may even

experience side effects (50). Thus, forecasting patients’ steroid

response is crucial. In their study, Park et al. (51) utilized

XGBoost to predict steroid response in TAOTAO patients.

Finally, the study determined that the presence of EOM

restriction and Thyroid-Stimulating immunoglobulins level

significantly impacted the ability to predict treatment response.

This validating the suitability of gradient-enhanced modeling for

various ophthalmic diseases.
5.3 Application of AI in TAO
postoperative prediction

TAO orbital decompression is a surgical technique in

oculoplasty that aims to prevent optic neuropathy and reduce

exophthalmos. However, deciding whether or not to perform

decompression surgery can be challenging due to the potential for

significant changes in postoperative appearance. Yoo et al. (52)

utilized a Generative Adversarial Network (GAN) to produce

postoperative facial images by inputting preoperative facial

images to accurately simulate the true appearance of

postoperative orbital decompression surgery. The study randomly

collected 1000 pre- and post-operative transformed images as

inputs and tested three of the most popular GANs at the time.

The results revealed that the conditional GAN model outperformed

the lightweight CycleGAN, which employs a small-sized GPU.

Nevertheless, standard CycleGAN can produce high-resolution

and realistic images in Google’s CoLaboratory environment, albeit
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requiring a higher computational load to train the model. This

indicates that GANs may serve as a valuable decision support tool

for Orbital Decompression Surgery. However, this study is

constrained by limited data, and future DL networks will require

expansive datasets for training. A summary of studies related to AI

in TAO treatment and surgical decision making is shown in Table 3.
6 Discussion

AI has undergone significant evolution since its conception in

the 1950s and progressed from simulating basic cognitive functions

to employing advanced DL techniques. In ophthalmology, DL has

been utilized to analyze fundus photographs, Optical Coherence

Tomography (OCT) scans, and visual fields. This has led to

improved detection of various conditions, such as Diabetic

Retinopathy, Retinopathy of Prematurity, Glaucomatous Edema,

Macular Edema, and Age-Related Macular Degeneration(AMD)

(53). The application of AI in TAO diagnosis has gradually

diversified to include applications such as analysis of medical

images, analysis of ocular parameters, and analysis of patient

auscultation, Song et al. (20) The 3D-ResNet model was used to

analyze CT images for early and accurate TAO screening. This

methodology showcases the model’s accuracy, which is comparable

to that of physicians under complex clinical conditions. Zhang et al.

(18) utilized a DL network model to segment the ocular region in

orbital CT to automatically calculate exophthalmos prominence.

Researchers have proposed various AI-based techniques for staging

TAO through the analysis of diverse medical images. Yao et al. (33)

introduced an automated approach that uses SPECT/CT images

and DL networks for identifying inflammatory activity in patients

with TAO. This method underscores the value of multimodal

imaging in boosting TAO staging precision, particularly when

SPECT/CT imaging is leveraged, which facilitates a better grasp

of the disease and improves staging accuracy. Moon et al. (29)

demonstrate the innovative use of ML techniques in predicting CAS

to diagnose patients in the early stages of TAO, prior to severe

appearance changes. Additionally, the use of AI in TAO staging is

notably innovative. Lee et al. (42) developed a neural network

model optimized for diagnosing TAO and assessing its severity,

which reliably distinguishes between patients with moderate-to-
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severe TAO and controls. Additionally, Lee et al. (43) created an

automated clinical scoring algorithm using ML to predict TAO

severity and type comprehensively. AI-based methods for TAO

treatment decision-making are transforming clinical practice by

furnishing personalized and precise options (47). A novel scheme

proposed a predictive model to identify patients unlikely to benefit

from Corticosteroids. Such models enable physicians to avoid

ineffective treatment and associated complications and reconsider

treatment options. Yoo et al. (52) utilized a GAN to create

postoperative facial images through preoperative facial image

inputs. This provides patients and physicians with a foundation

for decision-making, ultimately lowering the chances of

postoperative discontent.

Notably, Huang et al. (21) utilized a DL network to

automatically segment the Eyelid Margin and Corneal Limbus,

accurately measuring eyelid characteristics, while also employing

DL to quantitatively assess exophthalmos. Additionally, they

combined multiple AI techniques to create an integrated system

capable of detecting various symptoms of TAO based on facial

images. Similarly, Zhu et al. (32) analyzed 2,228 facial images of

TAO patients. Using advanced DL network models, we have

successfully trained an EDWM model that can precisely identify

TAO. This model offers a reliable and direct diagnostic approach for

the early detection of TAO and advancing CAS scores. An

increasing number of studies utilize facial images for analysis due

to their non-invasiveness, convenience, and affordability in contrast

to other data collection methods such as CT and MRI that require

expensive equipment. TAO methods based on facial images present

potential as a primary research direction in the future.

Despite AI’s transformative potential in TAO management

(55), challenges remain. The complexity of TAO as an ocular

disease, the high cost and scarcity of data for model training, and

the difficulty in generalizing DL models across diverse patient

populations present significant barriers. These challenges are

compounded by the ethical implications of implementing AI in

clinical settings, such as ensuring patient privacy, maintaining

model transparency, and managing the potential for errors.

Addressing these issues requires the establishment of

collaborative networks among various centers and subjects (56, 57)

to pool a wide array of datasets, ensuring a richer diversity of data.

This approach would necessitate a strong emphasis on data
TABLE 3 AI in TAO treatment and surgical decision-making.

Authors
(Year)

Task Input Data Type Samples
Dataset

AI Model Metrics

Wang
et al. (50)

Eyelid surgery protocol decision Disease progression data 278 Predictive model AUC:0.833

Wang
et al. (51)

Investigating EOM and OF in MRI texture analysis for GC
treatment response in TAO

MRI images 37 Artificial
Intelligence Kit

AUC:0.82
Sensitivity:0.826

Park
et al. (53)

Predicting steroid response in TAO patients Clinical data 89 XGBoost Accuracy:0.862

Yoo et al. (54) Simulating postoperative appearance for orbital
decompression surgery

Pre- and post-operative
facial images

1000 GAN AUC:0.957
Accuracy:0.909
Sensitivity:0.878
Specificity:0.939
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standardization and quality control to enhance the reliability and

applicability of AI models. To tackle the challenge of model

generalization, adopting advanced algorithms such as transfer

learning and incorporating multiple clinical variables into complex

modeling techniques is crucial. Enhancing the effectiveness of AI

applications also involves positioning AI as an assistive tool that

supports rather than supplants the physician’s decision-making

process, emphasizing AI’s role in augmenting human judgment.

In addition to technical improvements, specialized research is

essential for developing more sensitive algorithms capable of

identifying mild TAO cases (21), thereby overcoming one of the

current diagnostic challenges. Promoting the use of AI technology in

ophthalmology not only requires interdisciplinary collaboration but

also a concerted effort towards public education and continuous

monitoring. Such measures aim to improve the social acceptance and

responsible utilization of AI, ensuring that the technology’s

application in TAO diagnosis and treatment is both effective and

ethically sound. Through these comprehensive strategies, AI’s role in

TAO management can be significantly enhanced, leading to more

accurate, personalized, and ethically responsible healthcare solutions.
7 Conclusion

The advancement of AI, particularly through DL has

significantly impacted ophthalmology, offering refined diagnostic,

staging, grading, and treatment strategies for TAO. Among various

imaging analyses—fundus photographs, CT, and MRI. MRI stands

out in TAO clinical management due to its direct visualization of

lesions, the disease’s origin point. This precision makes MRI a focal

point in AI research for TAO, enhancing diagnosis and treatment

plans tailored to individual patient profiles and disease progression.

AI’s predictive capabilities extend to forecasting treatment

responses and disease progression, utilizing patient data to

preemptively adjust management strategies and prevent severe

complications. Furthermore, AI’s role in patient self-management,

through smart device integration, signifies a shift towards patient-

centered care, enabling real-time health monitoring and feedback.

While acknowledging the value of multimodal data, the

emphasis remains on MRI’s critical role in TAO management,

underlining its unmatched value in accurately reflecting disease

pathology. Future developments should prioritize enhancing AI

algorithms for MRI analysis, bolstering their sensitivity to subtle

clinical changes. This focus will not only improve the distinction
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between mild TAO cases and normal conditions but also reinforce

AI as an augmentative tool in clinical decision-making, rather than

a replacement.

The convergence of AI with disciplines like ophthalmology,

endocrinology, and radiology offers a comprehensive approach to

TAO management, suggesting a future where AI’s integration into

clinical practice is seamlessly accepted and highly effective.

Continuous monitoring, evaluation, and public education are

essential to foster this integration, promising a future of accurate,

personalized TAO treatment facilitated by AI advancements.
Author contributions

CY: Writing – original draft, Writing – review & editing. GN:

Writing – original draft, Writing – review & editing. YZ: Writing –

original draft. JR: Writing – original draft. GL: Writing – review &

editing. WY: Writing – review & editing. XF: Writing – review

& editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by Shenzhen Fund for Guangdong Provincial High-

level Clinical Key Specialties (SZGSP014), Sanming Project of

Medicine in Shenzhen (SZSM202311012).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Wiersinga WM, Bartalena L. Epidemiology and prevention of graves’
Ophthalmopathy. Thyroid. (2002) 12:855–60. doi: 10.1089/105072502761016476

2. Ugradar S, Kang J, Kossler AL, Zimmerman E, Braun J, Harrison AR, et al.
Teprotumumab for the treatment of chronic thyroid eye disease. Eye. (2022) 36:1553–9.
doi: 10.1038/s41433-021-01593-z

3. Oculoplastic and Orbital Disease Group of Chinese Ophthalmological Society of
Chinese Medical Association, and Thyroid Group of Chinese Society of Endocrinology
of Chinese Medical Association. Chinese guideline on the diagnosis and treatment of
thyroid‑associated ophthalmopathy (2022). Chin J Ophthalmol (2022) 58:646–68.
doi: 10.3760/cma.j.cn112142-20220421-00201

4. Moujahid H, Cherradi B, Al-Sarem M, Bahatti L, Bakr A, Mohammed A, et al.
Combining CNN and grad-cam for COVID-19 disease prediction and visual explanation.
Intell Autom Soft Comput. (2022) 32:723–45. doi: 10.32604/iasc.2022.022179

5. Rehouma R, Buchert M, Chen YP. Machine learning for medical imaging-based
COVID-19 detection and diagnosis. Int J Intell Syst. (2021) 36:5085–115. doi: 10.1002/
int.22504
frontiersin.org

https://doi.org/10.1089/105072502761016476
https://doi.org/10.1038/s41433-021-01593-z
https://doi.org/10.3760/cma.j.cn112142-20220421-00201
https://doi.org/10.32604/iasc.2022.022179
https://doi.org/10.1002/int.22504
https://doi.org/10.1002/int.22504
https://doi.org/10.3389/fendo.2024.1356055
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yi et al. 10.3389/fendo.2024.1356055
6. Khan S, Sajjad M, Hussain T, Ullah A, Imran AS. A review on traditional machine
learning and deep learning models forWBCs classification in blood smear images. IEEE
Access. (2021) 9:10657–73. doi: 10.1109/ACCESS.2020.3048172

7. Jia G, Lam H-K, Xu Y. Classification of COVID-19 chest X-Ray and CT images
using a type of dynamic CNN modification method. Comput Biol Med. (2021)
134:104425. doi: 10.1016/j.compbiomed.2021.104425

8. Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng P-A, et al. Deep
learning techniques for automatic MRI cardiac multi-structures segmentation and
diagnosis: is the problem solved? IEEE Trans Med Imaging. (2018) 37:2514–25.
doi: 10.1109/TMI.2018.2837502

9. Paluru N, Dayal A, Jenssen HB, Sakinis T, Cenkeramaddi LR, Prakash J, et al.
Anam-net: anamorphic depth embedding-based lightweight CNN for segmentation of
anomalies in COVID-19 chest CT images. IEEE Trans Neural Netw Learn Syst. (2021)
32:932–46. doi: 10.1109/TNNLS.2021.3054746

10. Nawaz M, Nazir T, Javed A, Tariq U, Yong H-S, Khan MA, et al. An efficient
deep learning approach to automatic glaucoma detection using optic disc and optic cup
localization. Sensors. (2022) 22:434. doi: 10.3390/s22020434

11. Williams BM, Borroni D, Liu R, Zhao Y, Zhang J, Lim J, et al. An artificial
intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy
using corneal confocal microscopy: a development and validation study. Diabetologia.
(2020) 63:419–30. doi: 10.1007/s00125-019-05023-4

12. Shen P, Xie Q, Ma Z, Abdelrehem A, Zhang S, Yang C. Yang’s classification of
juvenile TMJ anterior disc displacement contributing to treatment protocols. Sci Rep.
(2019) 9:5644. doi: 10.1038/s41598-019-42081-5

13. Shenzhen Eye Institute, Shenzhen Eye Hospital, Shenzhen 518040, Guangdong
Province, China, Yang W-H, Xu Y-W and School of Future Technology, et al.
Guidelines on clinical research evaluation of artificial intelligence in ophthalmology
(2023). Int J Ophthalmol. (2023) 16:1361–72. doi: 10.18240/ijo.2023.09.02

14. Huang X, Tang W, Shen Y, He L, Tong F, Liu S, et al. The significance of
ophthalmological features in diagnosis of thyroid-associated ophthalmopathy. BioMed
Eng Online. (2023) 22:7. doi: 10.1186/s12938-023-01073-3

15. Putterman AM. Margin reflex distance (MRD) 1, 2, and 3. Ophthal Plast
Reconstr Surg. (2012) 28:308–11. doi: 10.1097/IOP.0b013e3182523b7f

16. Shao J, Huang X, Gao T, Cao J, Wang Y, Zhang Q, et al. Deep learning-based
image analysis of eyelid morphology in thyroid-associated ophthalmopathy. Quant
Imaging Med Surg. (2023) 13:1592–604. doi: 10.21037/qims-22-551

17. Simonsz HJ. Historical perspective: the description of Emil Hertel’s
exophthalmometer. Strabismus. (2008) 16:45–5. doi: 10.1080/09273970802077300

18. Zhang Y, Rao J, Wu X, Zhou Y, Liu G, Zhang H. Automatic measurement of
exophthalmos based orbital CT images using deep learning. Front Cell Dev Biol. (2023)
11:1135959. doi: 10.3389/fcell.2023.1135959

19. Fu R, Bandos A, Leader JK, Melachuri S, Pradeep T, Bhatia A, et al. Artificial
intelligence automation of proptosis measurement: an indicator for pediatric orbital
abscess surgery. Ophthalmol Ther. (2023) 12:2479–91. doi: 10.1007/s40123-023-00754-5

20. Song X, Liu Z, Li L, Gao Z, Fan X, Zhai G, et al. Artificial intelligence CT screening
model for thyroid-associated ophthalmopathy and tests under clinical conditions. Int J
Comput Assist Radiol Surg. (2021) 16:323–30. doi: 10.1007/s11548-020-02281-1

21. Huang X, Ju L, Li J, He L, Tong F, Liu S, et al. An intelligent diagnostic system for
thyroid-associated ophthalmopathy based on facial images. Front Med. (2022)
9:920716. doi: 10.3389/fmed.2022.920716

22. Mourits MP, Koornneef L, Wiersinga WM, Prummel MF, Berghout A, van der Gaag
R. Clinical criteria for the assessment of disease activity in Graves’ ophthalmopathy: a novel
approach. Br J Ophthalmol. (1989) 73:639–44. doi: 10.1136/bjo.73.8.639

23. Ge Q, Zhang X, Wang L, Fan Y, Huang Q, Yao N, et al. Quantitative evaluation
of activity of thyroid-associated Ophthalmopathy using short-tau inversion recovery
(STIR) sequence. BMC Endocr Disord. (2021) 21:226. doi: 10.1186/s12902-021-00895-3

24. Zhang H, Lu T, Liu Y, Jiang M, Wang Y, Song X, et al. Application of
quantitative MRI in thyroid eye disease: imaging techniques and clinical practices. J
Magn Reson Imaging. (2023), jmri.29114. doi: 10.1002/jmri.29114

25. Müller-Forell W, Kahaly GJ. Neuroimaging of graves’ orbitopathy. Best Pract Res
Clin Endocrinol Metab. (2012) 26:259–71. doi: 10.1016/j.beem.2011.11.009

26. Wang Y, Zhang S, Zhang Y, Liu X, Gu H, Zhong S, et al. A single-center
retrospective study of factors related to the effects of intravenous glucocorticoid therapy
in moderate-to-severe and active thyroid-associated ophthalmopathy. BMC Endocr
Disord. (2018) 18:13. doi: 10.1186/s12902-018-0240-8

27. Bartalena L, Piantanida E, Gallo D, Lai A, Tanda ML. Epidemiology, natural
history, risk factors, and prevention of graves’ Orbitopathy. Front Endocrinol. (2020)
11:615993. doi: 10.3389/fendo.2020.615993

28. Lin C, Song X, Li L, Li Y, Jiang M, Sun R, et al. Detection of active and inactive
phases of thyroid-associated ophthalmopathy using deep convolutional neural
network. BMC Ophthalmol. (2021) 21:39. doi: 10.1186/s12886-020-01783-5

29. Moon JH, Shin K, Lee GM, Park J, LeeMJ, ChoungH, et al.Machine learning-assisted
system using digital facial images to predict the clinical activity score in thyroid-associated
orbitopathy. Sci Rep. (2022) 12:22085. doi: 10.1038/s41598-022-25887-8

30. Li Y, Ma J, Xiao J, Wang Y, He W. Use of extreme gradient boosting, light
gradient boosting machine, and deep neural networks to evaluate the activity stage of
extraocular muscles in thyroid-associated ophthalmopathy. Graefes Arch Clin Exp
Ophthalmol. (2023) 262:203–210. doi: 10.1007/s00417-023-06256-1
Frontiers in Endocrinology 10
31. Lee J, Lee S, Lee WJ, Moon NJ, Lee JK. Neural network application for assessing
thyroid-associated orbitopathy activity using orbital computed tomography. Sci Rep.
(2023) 13:13018. doi: 10.1038/s41598-023-40331-1

32. Zhu H, Zhou H, He H, Chen J, Song X, Li K, et al. A novel encoder–decoder
wavelet model for multifocal region segmentation of TAO facial images. Neural
Comput Appl. (2023) 35:19145–67. doi: 10.1007/s00521-023-08727-2

33. Yao N, Li L, Gao Z, Zhao C, Li Y, Han C, et al. Deep learning-based diagnosis of
disease activity in patients with Graves’ orbitopathy using orbital SPECT/CT. Eur J
Nucl Med Mol Imaging. (2023) 50:3666–74. doi: 10.1007/s00259-023-06312-2

34. Bartalena L, Kahaly GJ, Baldeschi L, Dayan CM, Eckstein A, Marcocci C, et al.
The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice
guidelines for the medical management of Graves’ orbitopathy. Eur J Endo. (2021)
185(4):G43–G67. doi: 10.1530/EJE-21-0479

35. Lei C, Qu M, Sun H, Huang J, Huang J, Song X, et al. Facial expression of patients
with Graves’ orbitopathy. J Endocrinol Invest. (2023) 46:2055–66. doi: 10.1007/s40618-023-
02054-y

36. Dolman PJ. Grading severity and activity in thyroid eye disease. Ophthal Plast
Reconstr Surg. (2018) 34:S34–40. doi: 10.1097/IOP.0000000000001150

37. Shah SS, Patel BC. Thyroid eye disease, in: StatPearls (2023). Treasure Island (FL:
StatPearls Publishing. Available at: http://www.ncbi.nlm.nih.gov/books/NBK582134/
(Accessed October 17, 2023).

38. Burch HB, Perros P, Bednarczuk T, Cooper DS, Dolman PJ, Leung AM, et al.
Management of thyroid eye disease: A consensus statement by the American thyroid
association and the European thyroid association. Thyroid. (2022) 32:1439–70.
doi: 10.1089/thy.2022.0251

39. Karlin J, Gai L, LaPierre N, Danesh K, Farajzadeh J, Palileo B, et al. Ensemble
neural network model for detecting thyroid eye disease using external photographs. Br J
Ophthalmol. (2022) 107:1722–1729. doi: 10.1136/bjo-2022-321833

40. Bao X-L, Sun Y-J, Zhan X, Li G-Y. Orbital and eyelid diseases: The next
breakthrough in artificial intelligence? Front Cell Dev Biol. (2022) 10:1069248.
doi: 10.3389/fcell.2022.1069248

41. Feldon SE. Graves’ Ophthalmopathy: is it really thyroid disease? Arch Intern
Med. (1990) 150:948. doi: 10.1001/archinte.1990.00390170010003

42. Lee J, Seo W, Park J, Lim W-S, Oh JY, Moon NJ, et al. Neural network-based
method for diagnosis and severity assessment of Graves’ orbitopathy using orbital
computed tomography. Sci Rep. (2022) 12:12071. doi: 10.1038/s41598-022-16217-z

43. Lee S, Yu J, Kim Y, Kim M, Lew H. Application of an interpretable machine
learning for estimating severity of graves’ Orbitopathy based on initial finding. J Clin
Med. (2023) 12:2640. doi: 10.3390/jcm12072640

44. Wiersinga W, Žarković M, Bartalena L, Donati S, Perros P, Okosieme O, et al.
Predictive score for the development or progression of Graves’ orbitopathy in patients
with newly diagnosed Graves’ hyperthyroidism. Eur J Endo. (2018) 178(6):635–43.
doi: 10.1530/EJE-18-0039

45. Zhang H, Fan J, Qu J, Han Q, Zhou H, Song X. Predictive markers for anti-
inflammatory treatment response in thyroid eye disease. Front Endocrinol. (2023)
14:1292519. doi: 10.3389/fendo.2023.1292519

46. Hu H, Chen L, Zhang J, Chen W, Chen H, Liu H, et al. T2 -weighted MR
imaging-derived radiomics for pretreatment determination of therapeutic response to
glucocorticoid in patients with thyroid-associated ophthalmopathy: comparison with
semiquantitative evaluation. J Magn Reson Imaging. (2022) 56:862–72. doi: 10.1002/
jmri.28088

47. Wang Y, Wang H, Li L, Li Y, Sun J, Song X, et al. Novel observational study
protocol to develop a prediction model that identifies patients with Graves’
ophthalmopathy insensitive to intravenous glucocorticoids pulse therapy. BMJ Open.
(2021) 11:e053173. doi: 10.1136/bmjopen-2021-053173

48. Wang Y-Y, Wu Q, Chen L, Chen W, Yang T, Xu X-Q, et al. Texture analysis of
orbital magnetic resonance imaging for monitoring and predicting treatment response
to glucocorticoids in patients with thyroid-associated ophthalmopathy. Endocr
Connect. (2021) 10:676–84. doi: 10.1530/EC-21-0162

49. Zhang H, Jiang M, Chan HC, Zhang H, Xu J, Liu Y, et al. Whole-orbit radiomics:
machine learning-based multi- and fused- region radiomics signatures for intravenous
glucocorticoid response prediction in thyroid eye disease. J Transl Med. (2024) 22:56.
doi: 10.1186/s12967-023-04792-2

50. Bartalena L, Baldeschi L, Boboridis K, Eckstein A, Kahaly GJ, Marcocci C, et al. The
2016 European Thyroid Association/European Group on Graves’ Orbitopathy guidelines for
themanagement of graves’Orbitopathy. Eur Thyroid J. (2016) 5:9–26. doi: 10.1159/000443828

51. Park J, Kim J, Ryu D, Choi H. Factors related to steroid treatment responsiveness
in thyroid eye disease patients and application of SHAP for feature analysis with
XGBoost. Front Endocrinol. (2023) 14:1079628. doi: 10.3389/fendo.2023.1079628

52. Yoo TK, Choi JY, Kim HK. A generative adversarial network approach to predicting
postoperative appearance after orbital decompression surgery for thyroid eye disease.
Comput Biol Med. (2020) 118:103628. doi: 10.1016/j.compbiomed.2020.103628

53. Ji Y, Chen N, Liu S, Yan Z, Qian H, Zhu S, et al. Research progress of artificial
intelligence image analysis in systemic disease-related ophthalmopathy. Dis Markers.
(2022) 2022:1–10. doi: 10.1155/2022/3406890

54. Madadi Y, Delsoz M, Lao PA, Fong JW, Hollingsworth T, Kahook MY, et al.
ChatGPT assisting diagnosis of neuro-ophthalmology diseases based on case reports.
Ophthalmology. (2023). doi: 10.1101/2023.09.13.23295508
frontiersin.org

https://doi.org/10.1109/ACCESS.2020.3048172
https://doi.org/10.1016/j.compbiomed.2021.104425
https://doi.org/10.1109/TMI.2018.2837502
https://doi.org/10.1109/TNNLS.2021.3054746
https://doi.org/10.3390/s22020434
https://doi.org/10.1007/s00125-019-05023-4
https://doi.org/10.1038/s41598-019-42081-5
https://doi.org/10.18240/ijo.2023.09.02
https://doi.org/10.1186/s12938-023-01073-3
https://doi.org/10.1097/IOP.0b013e3182523b7f
https://doi.org/10.21037/qims-22-551
https://doi.org/10.1080/09273970802077300
https://doi.org/10.3389/fcell.2023.1135959
https://doi.org/10.1007/s40123-023-00754-5
https://doi.org/10.1007/s11548-020-02281-1
https://doi.org/10.3389/fmed.2022.920716
https://doi.org/10.1136/bjo.73.8.639
https://doi.org/10.1186/s12902-021-00895-3
https://doi.org/10.1002/jmri.29114
https://doi.org/10.1016/j.beem.2011.11.009
https://doi.org/10.1186/s12902-018-0240-8
https://doi.org/10.3389/fendo.2020.615993
https://doi.org/10.1186/s12886-020-01783-5
https://doi.org/10.1038/s41598-022-25887-8
https://doi.org/10.1007/s00417-023-06256-1
https://doi.org/10.1038/s41598-023-40331-1
https://doi.org/10.1007/s00521-023-08727-2
https://doi.org/10.1007/s00259-023-06312-2
https://doi.org/10.1530/EJE-21-0479
https://doi.org/10.1007/s40618-023-02054-y
https://doi.org/10.1007/s40618-023-02054-y
https://doi.org/10.1097/IOP.0000000000001150
http://www.ncbi.nlm.nih.gov/books/NBK582134/
https://doi.org/10.1089/thy.2022.0251
https://doi.org/10.1136/bjo-2022-321833
https://doi.org/10.3389/fcell.2022.1069248
https://doi.org/10.1001/archinte.1990.00390170010003
https://doi.org/10.1038/s41598-022-16217-z
https://doi.org/10.3390/jcm12072640
https://doi.org/10.1530/EJE-18-0039
https://doi.org/10.3389/fendo.2023.1292519
https://doi.org/10.1002/jmri.28088
https://doi.org/10.1002/jmri.28088
https://doi.org/10.1136/bmjopen-2021-053173
https://doi.org/10.1530/EC-21-0162
https://doi.org/10.1186/s12967-023-04792-2
https://doi.org/10.1159/000443828
https://doi.org/10.3389/fendo.2023.1079628
https://doi.org/10.1016/j.compbiomed.2020.103628
https://doi.org/10.1155/2022/3406890
https://doi.org/10.1101/2023.09.13.23295508
https://doi.org/10.3389/fendo.2024.1356055
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yi et al. 10.3389/fendo.2024.1356055
55. Diao J, Chen X, Shen Y, Li J, Chen Y, He L, et al. Research progress and
application of artificial intelligence in thyroid associated ophthalmopathy. Front Cell
Dev Biol. (2023) 11:1124775. doi: 10.3389/fcell.2023.1124775

56. Department of Management Science and Engineering, School of Management,
Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province, China, Kennedy Kalu
Frontiers in Endocrinology 11
C. Analytical optimization of X-ray mammography for increased benefits and safety;
using: data analytics, electronics engineering and artificial intelligence. J Health Stat
Rep. (2023) 2:1–17. doi: 10.47363/JHSR/2023(2)109

57. Tako AA, Anagnostou A, Fakhimi M. Editorial: 10th Anniversary post-simulation
workshop 2021 special issue. J Simul. (2023) 17:521–3. doi: 10.1080/17477778.2023.2236975
frontiersin.org

https://doi.org/10.3389/fcell.2023.1124775
https://doi.org/10.47363/JHSR/2023(2)109
https://doi.org/10.1080/17477778.2023.2236975
https://doi.org/10.3389/fendo.2024.1356055
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Advances in artificial intelligence in thyroid-associated ophthalmopathy
	1 Introduction
	1.1 A brief history of artificial intelligence and its evolution
	1.2 Thyroid-associated ophthalmopathy
	1.3 AI in ophthalmology and its potential applications

	2 Role of AI in TAO diagnosis
	2.1 TAO diagnosis
	2.2 AI in TAO diagnosis

	3 Role of AI in TAO staging
	3.1 TAO staging
	3.2 Application of AI in TAO staging
	3.3 New AI methods that can be used for TAO staging

	4 Role of AI in TAO grading
	4.1 TAO grading
	4.2 Application of AI in TAO grading

	5 Role of AI in TAO treatment and surgical decision-making
	5.1 Treatment and surgical decision making in TAO
	5.2 Application of AI in TAO preoperative planning
	5.3 Application of AI in TAO postoperative prediction

	6 Discussion
	7 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


