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Introduction: Type 2 diabetes (T2D) onset, progression and outcomes differ

substantially between individuals. Multi-omics analyses may allow a deeper

understanding of these differences and ultimately facilitate personalised

treatments. Here, in an unsupervised “bottom-up” approach, we attempt to

group T2D patients based solely on -omics data generated from plasma.

Methods: Circulating plasma lipidomic and proteomic data from two

independent clinical cohorts, Hoorn Diabetes Care System (DCS) and Genetics

of Diabetes Audit and Research in Tayside Scotland (GoDARTS), were analysed

using Similarity Network Fusion. The resulting patient network was analysed with

Logistic and Cox regression modelling to explore relationships between plasma

-omic profiles and clinical characteristics.

Results: From a total of 1,134 subjects in the two cohorts, levels of 180 circulating

plasma lipids and 1195 proteins were used to separate patients into two

subgroups. These differed in terms of glycaemic deterioration (Hazard

Ratio=0.56;0.73), insulin sensitivity and secretion (C-peptide, p=3.7e-11;2.5e-

06, DCS and GoDARTS, respectively; Homeostatic model assessment 2

(HOMA2)-B; -IR; -S, p=0.0008;4.2e-11;1.1e-09, only in DCS). The main

molecular signatures separating the two groups included triacylglycerols,

sphingomyelin, testican-1 and interleukin 18 receptor.
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Conclusions: Using an unsupervised network-based fusion method on plasma

lipidomics and proteomics data from two independent cohorts, we were able to

identify two subgroups of T2D patients differing in terms of disease severity. The

molecular signatures identified within these subgroups provide insights into

disease mechanisms and possibly new prognostic markers for T2D.
KEYWORDS

multi-omics, type 2 diabetes, glycaemic deterioration, metabolic syndrome,
lipidomics, proteomics
1 Introduction

It is increasingly recognised that type 2 diabetes (T2D)

presentation differs markedly between patients (1). Nevertheless,

approaches using current clinical measurements and classical

laboratory markers are likely to be underpowered to capture the

underlying heterogeneity within the disease (2). Better

characterization of T2D at the molecular level is likely to be

essential to move from a “one size fits all” approach to more

precise health management of this disease (3).

Compared to traditional approaches, unbiased “multi-omics”

analysis could potentially identify reliable patient-specific

biomarkers for disease progression. Previously, using three T2D

cohorts, the Hoorn Diabetes Care System (DCS), Genetics of

Diabetes Audit and Research in Tayside Scotland (GoDARTS) and

All New Diabetics in Scania (ANDiS), encompassing 2,973 individuals

across three molecular classes, metabolites, lipids, and proteins, we

were able to identify several novel biomarkers for T2D progression

and prevalence (4). Based on both Cox and Logistic regressionmodels,

this study scanned each biomarker’s potential association with T2D

glycaemic deterioration then established causal relationships for some

of these identified proteins, such as the Reticulon-4 receptor (NogoR/

RTN4R) and the Interleukin-18 receptor 1 (IL18R1).

A limitation of this early study was that no account was taken

for potential heterogeneity in disease status (5) which may

confound the identification of biomarkers (whose association with

disease may vary between sub-clusters). On the other hand, sub-

clusters based on a limited number of clinical variables alone may be

somewhat “artificial” or subjective in terms of molecular aetiology.

Indeed, others (6, 7) have proposed that positioning individuals

within a multi-dimensional continuum of biomarkers that globally

reflect underlying disease progression or pathology may provide a

useful prognostic strategy and better health management.

In the present study, we address these limitations by deploying

an unsupervised, bottom-up approach for T2D individual

allocation without any pre-assumptions based on clinical

characteristics. Thus, we assess the relationships with disease

progression and the circulating levels of a large number of

molecules belonging to two classes, lipids and proteins.
02
We have interrogated data from two independent European

T2D cohorts, DCS and GoDARTS, within the RHAPSODY

consortium (8). T2D Patients with complete lipidomics (180

circulating lipids) and proteomics (1195 circulating proteins) data

were queried and analysed through a non-disclosive federated

infrastructure (9) using Similarity Network Fusion (SNF) (10).

SNF combines different data modalities from the same patients

into a similarity network, enabling patient clustering and

subsequent feature extraction. This approach reveals the existence

of two sub-clusters of individuals in each cohort, with distinct

biomarker profiles and clinical characteristics.
2 Methods

2.1 Study populations

We used data from two type 2 diabetes cohorts: Hoorn Diabetes

Care System (DCS) and Genetics of Diabetes Audit and Research in

Tayside Scotland (GoDARTS) within the RHAPSODY consortium.

RHAPSODY (Risk Assessment and Progression of Diabetes,

https://imi-rhapsody.eu) is an Innovative Medicine Initiative

project with the goal of enhancing the categorization of

individuals with type 2 diabetes and aiding the adoption of

innovative approaches for diabetes prevention and treatment.

The DCS cohort recruits almost all T2D patients from 103 GPs

in the West-Friesland region of the Netherlands. This prospective,

regional cohort study started in 1998 and by 2017, held 12,673 T2D

patients with a median of 0.7 years (IQR 0.2-3.7) after diagnosis

(11). The study was approved by the Ethical Review Committee of

the Vrije Universiteit University Medical Center, Amsterdam.

Measurements were labelled anonymously. All laboratory

measurements were done on samples taken in a fasted state.

Between 1996 and 2015, GoDARTS recruited 10149 type 2

diabetes patients from the Tayside region of Scotland. Patients in

the GoDARTS cohort were not necessarily recruited at the time of

diagnosis (12). The GoDARTS study was approved by the Tayside

Medical Ethics Committee. All laboratory measurements were

measured in a non-fasted state.
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Lipidomics and peptidomics are available for a subset of T2D

patients in both DCS and GoDARTS cohorts. These were selected

with a blood sample close to diagnosis and median diabetes

duration of 2.6 and 1.4 years respectively. These data were

collected at baseline and generated as part of the RHAPSODY

project (4). Of note, individuals were selected without taking into

consideration pre-cluster assignments.

Further information on the cohort characteristics can be found

in Slieker et al., 2021 (13).
2.2 Measurements

Informed consent was obtained from all participants. In DCS,

Haemoglobin A1c was measured based on the turbidimetric

inhibition immunoassay for haemolysed whole EDTA blood

(Cobas c501, Roche Diagnostics, Mannheim, Germany). The

levels of triglycerides, total cholesterol and HDL cholesterol were

measured enzymatically (Cobas c501, Roche Diagnostics) (11, 12).

In DCS and GoDARTS, C-peptide was measured on a DiaSorin

Liaison (DiaSorin, Saluggia, Italy). Plasma lipids were determined

using a QExactive mass spectrometer (Thermo Scientific), without

assessment of the liproprotein particles from which lipids were

derived. Plasma protein levels were measured on the SomaLogic

SOMAscan platform (Boulder, Colorado, USA). More details on

plasma lipidomics and proteomics measurements can be found in

Slieker et al., 2023 (4).
2.3 Network-based clustering of
-omics data

A federated database of T2D cohorts including DCS and

GoDARTS has previously been set up as part of the RHAPSODY

project. This system enables statistical and machine learning

analysis to be performed on cohort data remotely without any

disclosure of sensitive data (14–17). The federated database system

was interrogated using the R statistical programming language

(version 4.0.4). In both DCS and GoDARTS cohorts, patients

with complete lipidomics and peptidomics were used for

clustering and subsequent statistical analysis. Lipidomics and

peptidomics values were centred to a mean value of 0 and a

standard deviation of 1 in each cohort using the dssScale function

in R (dsSwissKnifeClient package) (18). Euclidean distances between

each pair of patients were then calculated based on the normalized

lipidomics or peptidomics data by using dist2 function from dssSNF

(dsSwissKnifeClient package) (18). dssSNF is a wrapper function for

SNFtool enabling the analysis to be performed on a remote server

without sensitive data disclosure. Patient similarity matrices were

generated from the Euclidean distance matrices using the

affinityMatrix function with parameters of K (the number of

nearest neighbours) equal to 20 and hyperparameter alpha equal

to 5 using dssSNF. The patient similarity matrices were then fused

using the SNF function of the SNFtool package (10) with T (number

of iterations) equal to 20 using dssSNF and clustering was

performed using the spectralclustering function of the SNFtool of
Frontiers in Endocrinology 03
dsSwissKnifeClient packages (10, 18) Silhouette widths of fused

cluster patients were calculated from the similarity matrices using

the Silhouette_SimilarityMatrix function (CancerSubtypes package)

(19) to determine the optimal cluster number.

SNF models were validated by bootstrapping tests (n=1000

iterations) that compared to models using randomized Euclidean

distance matrices by randomizeMatrix (picante package) (20). For

each simulated model, the same parameters were used, and the

number of clusters is set to correspond to the number of clusters in

the study model. The significance of each cluster (P-value <=0.05)

was calculated by assessing the frequency of achieving a model with

an equal or greater mean local cluster coefficient for randomized

data. Local cluster coefficient calculation was performed with

unweighted, undirected adjacency matrices using the transitivity

function in the igraph package (21). The adjacency matrices were

generated from the similarity matrices with the top 2.5% similarity

values set as 1 and the rest as 0.

Multi-block Common Dimensions analysis (ComDim) was

performed using federateComDim from the dsMO package in R

(v0.1.12; https://github.com/vanduttran/dsMO) using default

parameters. ComDim reduces the lipidomics and proteomics data

into a smaller number of dimensions with global and block

components for each patient.
2.4 Statistical analysis

Logistic regression model was performed using the ds.glm

function of the dsBaseClient (16) package to test differences

between clusters for each molecule and clinical measurements.

The cluster classification was treated as a dependent categorical

variable with age, sex and BMI acting as covariates. Subsequently,

for lipids, peptides and clinical measurements, each cluster was

subset for the strongly associated (P-value <=0.05) features and the

mean values of each group of features in each cluster were

calculated. Mean values were used since, to protect the patient’s

identity, individual-level data cannot be downloaded from the

federated database system. Several mean values for each feature

from 5 or more patients were calculated based on the default

patients’ order in the remote server for each cluster. The feature

values were normalized. Hierarchical clustering was then

performed, and the results were visualized as heatmaps using the

R package gplots (22).

Cox regression was performed using the dssCoxph function in

the dssSwissKnifeClient package. Time to insulin requirement was

defined as the length of time from diagnosis until an individual

started insulin treatment for a period of more than six months, or

alternatively as more than two independent HbA1c measurements

greater than 69 mmol/mol (8.5%) at least three months apart and

when ≥2 non-insulin glucose-lowering drugs were taken. From the

diagnosis until the primary endpoint, no known glucose lowering

agents were taken during the monitoring period. Hazard ratios for

time to insulin treatment requirement within the clusters were

calculated using Cox regression with age, sex and BMI as covariates.

Analyses were performed using the R statistical programming

language (version 4.0.4) and Python (Pycharm 2022.2.1). The
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Benjamini-Hochberg procedure was used to determine the false

discovery rate correcting for multiple tests. Figures were produced

using gplots (version 3.1.1), ggplot2 (version 3.3.4), igraph (version

1.2.6), circlize (version 0.4.15), seaborn (version 0.12.1), and

matplotlib (version 3.6.0). The graphical abstract was generated

using Biorender.
2.5 Data availability statement

Started in 2016, within the RHAPSODY project, we federated

12 patient cohorts totalling over 68000 diabetes patients. We

have collected and generated “multi-omics” and genetic data

alongside clinical data. All the data have been harmonized and

stored in a federated infrastructure to enable remote query and

analysis. Data analysis through the federated database has been

made possible through the R programming environment with

federated analysis packages. Information about accessing the

Rhapsody federated database can be found at: https://imi-

rhapsody.eu/.
3 Results

3.1 Multi-omics analysis separates T2D
patients into two subgroups

The initial question we wanted to ask was whether T2D patients

could be robustly separated based on their combined plasma

lipidomics/proteomics signatures and whether molecular

differences could highlight novel circulating biomarkers associated

with disease severity or progression. To do this, we used a data-

driven network-based clustering strategy (SNF) on plasma

lipidomics and peptidomics data from a total of 1,134 patients

with T2D in two independent cohorts, for which baseline

characteristics are given in Table 1. A total of 589 (DCS) and 545

(GoDARTS) patients with T2D, for whom complete plasma

lipidomics and peptidomics datasets were available, were used for
Frontiers in Endocrinology 04
the analysis. The characteristics of the two cohorts were comparable

in terms of average age and BMI, with a majority of males present in

each case (13). Individual assignments were performed based on

SNF for subgrouping similar multi-omics T2D patients.

SNF analysis revealed that patients from both GoDARTS and

DCS cohorts could be separated into two clusters based on their

circulating plasma lipidomics and proteomics data (Figure 1A). The

significance of the clusters (from now on referred to as subgroups)

was validated by bootstrapping (n=1000 iterations) against simulated

data (Supplementary Figure 2). We also performed the same

clustering analysis using single -omics datasets for comparison and

showed that the clustering results from the combined (proteomics

+lipidomics) dataset are improved compared to single -omics results

(Supplementary Figure 1). Subgroup 1 comprised 46.5% and 40.7%,

respectively, of the cohort patients while subgroup 2 comprised 53.5%

and 59.3%, respectively. The similarity between patient subgroups in

DCS and GODARTS cohorts is represented as a network where the

nodes represent patients and the connections between them (edges)

represent the similarity between them (Figure 1B). Node connectivity

wasmeasured by betweenness centrality, and is reflected by the size of

the nodes in the figure. Patients are coloured according to their

subgroup labels showing that patient subgroups appear separated

from each other in the network. The nodes with high betweenness are

mostly positioned in the centre of the network, indicating similarity

of these nodes to both subgroups.

To investigate whether similar data-driven separation of

patients could be observed using an independent method, we

used an unsupervised data fusion approach, ComDim (CCSWA or

Common Dimensions), to project patient similarity based on

combined lipidomics and proteomics data into two dimensional

space (23, 24). For both DCS and GoDARTS cohorts, this analysis

showed clear separation of the two patient subgroups identified by

SNF along dimension 2. Thus, using an independent method

without any a priori, we were able to confirm that the subgroups

reflect individuals with different underlying plasma lipidomics and

proteomics profiles. Details of the features most associated with

each common dimension are shown in Supplementary Table 1.
3.2 Clinical differences between subgroups

We next sought to determine whether the observed subgroups

may differ in terms of their clinical characteristics. Homeostatic

model assessment 2 (HOMA2) is a non-invasive, commonly used

mathematical model for estimating beta-cell function (-B), insulin

sensitivity (-S), and insulin resistance (-IR) (25). In DCS, subgroup

1 and subgroup 2 show significant differences in HOMA2

(p=0.0008;4.2e-11;1.1e-09, -B, -IR and -S) and C-peptide (p=3.7e-

11) level. Patients in subgroup 1 showed higher HOMA2-B,

HOMA2-IR and C-peptide levels compared to subgroup 2

(Figure 2A). Similar results were observed in GoDARTS (C-

peptide p=2.5e-06) (Figure 2A). Since measurements in subjects

from the GoDARTS cohort were performed in a non-fasting state,

HOMA2 was not possible for this cohort. Furthermore, glycaemic

deterioration, measured as the length of time to start insulin

treatment (26), was higher for patients in subgroup 1 than
TABLE 1 Characteristics of the individuals included from the
two cohorts.

DCS GoDARTS

n 589 545

Male,% 56.7 59.3

Age, years 62 (55.3-69) 61 (53-69)

BMI, kg/m2 29.7 (26.9-33.1) 30.5 (27.2-35.0)

HbA1c, mmol/mol 47.5 (43.5-52.0) 53.0 (46.0-61.0)

C-peptide, nmol/l 1.1 (0.8-1.4) 2.0 (1.4-2.7)

HDL-cholesterol, mmol/l 1.2 (1.0-1.4) 1.3 (1.1-1.5)

LDL-cholesterol, mmol/l 2.5 (2.0-3.0) 2.1 (1.6-2.7)

Triacylglycerol, mmol/l 1.6 (1.2-2.2) 2.0 (1.4-2.7)
Data are displayed as median (IQR), except where otherwise indicated.
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subgroup 2 (Hazard Ratio=0.56; 0.73, DCS; GoDARTS, Figure 2B)

in each cohort. In order to see how the subgroups compared to

previously reported clinically derived T2D clusters in DCS and

GoDARTS (5, 13), we assigned each patient to the relevant cluster

label and calculated the significance of patient overlap with each

molecular subgroup (Supplementary Table 2; Supplementary

Figure 4). In DCS, a small but significant overlap was observed

between subgroup 1 and severe insulin-resistant diabetes (SIRD) in

DCS (intersect = 91; p-value = 1.13E-6) and mild obesity-related

diabetes (MOD) (intersect = 67, p-value = 1.6E-03); and between

subgroup 2 and mild diabetes with high HDL-cholesterol (MDH)

(intersect = 100; p-value = 7.1E-09). Although less pronounced, a

similar trend could also be observed in GoDARTS between

subgroup 1 and SIRD (intersect = 51; p-value = 0.085), MOD

(intersect = 61; p-value = 0.007) and between subgroup2 and MDH

(intersect = 85; p-value = 0.003).
3.3 Patient subgroups display distinct
molecular features

We next investigated the subgroups’ molecular profiles using

logistic regression models adjusting for sex, BMI and age. In DCS,

123 proteins and 137 lipids showed significant differences between

subgroups. In GoDARTS, 130 proteins and 149 lipids showed

significant differences between subgroups (Figure 3). 50

significant common peptides and 109 significant common lipids

are shared between the DCS and GoDARTS cohorts.

A hierarchical clustering of the multi-dimensional subgroup-

associated features is shown as a heatmap and box plot in DCS and
Frontiers in Endocrinology 05
GoDARTS (Figure 3; Supplementary Figure 5). In DCS and

GoDARTS, several discriminative features can be observed. For

lipids, triacylglycerol (TAG), Diacylglycerol (DAG) and

Phosphatidylcholine (PC) show marked differences between

clusters in both cohorts.

Patients in subgroup 1 also showed high levels of pro-

inflammatory proteins such as interleukin 18 receptor 1 (IL18-R1),

interleukin 1 receptor 1 (IL1-R1) and interleukin 19. Moreover,

patients in subgroup 1 also had higher levels of proteins related to

cellular growth such as growth factor receptor binding protein 2,

growth hormone receptor, as well as glucose and fatty acid

metabolism-related proteins such as glucose 6 phosphate isomerase

(GPI) and 3 hydroxyacyl CoA dehydrogenase (HADH). In contrast,

patients in subgroup 2 showed higher levels of immune regulatory

proteins such as coactosin-like protein, COD29 antigen and

lymphocyte antigen. Furthermore, tyrosine protein kinases family,

-Lyn, Fyn and -BTK are also more abundant in subgroup 2 than

subgroup 1. Interestingly, several blood coagulation and platelet

proteins such as complement component C9, E-selectin and

platelet factor 4 showed significant differences between subgroups

in both cohorts (Figure 3; Supplementary Figure 5).
4 Discussion

Building on our recent study, which primarily centred on

testing individual biomarkers for association with glycaemic

deterioration (4), in the present report, we employed an

alternative multimodal, multivariate strategy to capture the

complexity of molecular interactions associated with T2D. Using
BA

FIGURE 1

Similarity Network Fusion (SNF) identifies two multiomics clusters in independent cohorts. (A) Average silhouette width was calculated for SNF
clusters identified in both cohorts with the number of clusters (k) ranging from 2 to 10. A high mean silhouette width for a cluster indicates that it is
well separated from other clusters and is a measure of clustering quality. (B) The similarity networks were generated based on unweighted adjacency
matrices. The unweighted adjacency matrices were derived from similarity matrices. In the context of similarity matrices, values exceeding the 97.5th
percentile threshold were assigned a value of 1, while values below this threshold were assigned a value of 0.The nodes represent the patients where
the size represents the node betweenness centrality. Nodes were coloured based on their cluster assignments.
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an unsupervised network-based data fusion method, SNF, we were

able to group T2D individuals with similar multi-omics profiles into

two robust subgroups from two independent European cohorts. In

the DCS cohort, patients assigned to subgroup 1 and 2 showed clear

differences in insulin resistance and beta-cell function as measured

by HOMA2-B, -IR, C-peptide, and triglyceride levels, with similar

results obtained in the GoDARTS cohort (27). Thus subgroup 1
Frontiers in Endocrinology 06
appears to represent individuals with both increased insulin

resistance and islet beta cell function at diagnosis.

We also provide evidence from Cox proportional hazards

modelling in both cohorts that patients assigned to the different

subgroups show altered rates of disease progression as defined by

time of diagnosis to requirement for insulin treatment. We note that

in the current and prior studies (4), we ascertained the time to
B

A

FIGURE 2

Subgroup 1 shows clinical characteristics of more severe disease and faster glycaemic deterioration. (A) Distributions of nine clinical measurements
at baseline in both DCS and GoDARTS cohorts for each subgroup. (B) Cox proportional hazards models with the time required for insulin treatment
between subgroup 1 and subgroup 2 in both DCS (upper) and GoDARTS (lower). The hazard ratio for the second group relative to the first group is
shown. DBP, Diastolic Blood Pressure; SBP, Systolic Blood Pressure; BMI, Body Mass Index; HDL, high-density lipoprotein cholesterol; LDL, low-
density lipoprotein cholesterol; TAG, Triglycerides; HbA1C, Haemoglobin A1C; HOMA2, Homeostasis Model Assessment 2; DCS, Hoorn Diabetes
Care System; GoDARTS, Genetics of Diabetes Audit and Research in Tayside Scotland; S1, Multi-omics subgroup 1; S2, Multi-omics subgroup 2. *P-
value<=0.05. **P-value<=0.01. ***P-value<=0.001.
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insulin initiation based on two criteria: either the duration before an

individual commenced insulin treatment post-diagnosis, or when a

consistently elevated HbA1c levels was observed despite the use of

multiple (>2) non-insulin medications. This is an accepted

approach to effectively quantify glycaemic deterioration (26)

Amongst the lipids showing differences between the two

subgroups, TAG, DAG and PC showed significantly higher levels

in subgroup 1 than in subgroup 2, which potentially reflects an

association between circulating fatty acids and insulin resistance

(28, 29). In contrast, Sphingomyelin (SM) species were present at

higher levels in subgroup 2 compared to subgroup 1. Similar results

were also observed in our previous study (4) where decreased levels

of sphingomyelin SM 42:2;2 was a predictor of more rapid

glycaemic deterioration.

The proteins associated with the present study subgroups fell

into a number of different categories, notably immune regulatory

related proteins; metabolic enzymes e.g., Alcohol dehydrogenase;

hormones and growth factors; signalling proteins; and blood

coagulation factors e.g., E-selectin. Notably, several novel T2D

biomarkers, which were identified in our previous research as

associated with differing rates of T2D progression (4) were

significantly altered between subgroups in the present report,

suggesting that they form part of a molecular signature associated

with disease severity.

Previously, we detected immune regulation proteins IL-18R1,

CRELD1 and coactosin-like-protein, to be associated with T2D

progression across multiple independent studies (4). Of interest the

levels of these proteins are also significantly different between the

two subgroups identified in the present study. Moreover, patients in

subgroup 1 also showed higher expression levels of other immune-

related proteins e.g. CC motif chemokine 15/16/25, ferritin, IL-1R2

and IL-19 and lower level of COD29 and coactosin-like protein

(Supplementary Figure 5) highlighting the value of using an

unsupervised multivariate approach for detecting disease related
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signatures which may be missed by more conventional

supervised approaches.

The goal of the present study was to use plasma lipidomics and

proteomics data to uncover -omics signatures related to disease

severity. Thus, the two subgroups we identify should be primarily

seen as tools to help investigate molecular signatures underlying

disease rather than as a means to cluster or stratify patients.

Nevertheless, it is meaningful to compare these subgroups with

previously identified data driven clusters (5) since these latter

clusters have been validated and extensively analysed in the same

two cohorts (8, 13). The comparison showed small but significant

overlap between subgroup1 and SIRD and MOD, and between

subgroup2 and MDH indicating that although there are some

similarities, the multi-omics-based subgroups do not closely

correspond to any of these previously identified clusters. This

underscores the fact that clustering will give different results

depending on what data is used and is best employed to observe

tendencies, trends or patterns in underlying data rather than for

strict patient stratification.

During our analysis, we also tested the subgroups for

enrichment of ~400 known genetic loci associated with T2D (30)

since this could provide evidence for causal association to disease.

However, we found no significant enrichment of any of the T2D

variants within the subgroups, possibly reflecting lack of power to

detect such associations. The data used in this study, although

limited in terms of absolute number of patients, is substantial

considering the cost of generating the proteomics data alone

(>1000USD/sample). Nevertheless, although high cost precludes

performing this type of analysis on large populations or routinely in

the clinic, it would be beneficial in future studies to profile large

numbers of individuals with T2D with selected panels of protein/

lipid biomarkers similar to the ones presented here. Measuring

biomarkers over time is especially relevant as T2D is dynamic and

underlying molecular signatures may change as the disease
FIGURE 3

Circular heatmap showing similarities between multi-omics signatures in DCS and GoDARTS. Concentrations of each biomarker (logistic regression;
p<0.05) were first converted to log(concentration) and then normalised (Row Z-score). Each vertical line in the circular heatmap represents one
biomarker and each circle represents one patient. The heatmap was grouped based on first type of molecule, followed by hierarchical clustering.
The different layers in the circle are (from outer to inner circle): subgroup1 molecular expression heatmap; subgroup 2 molecular expression
heatmap; logistic regression p-value. For more details of each individual molecule profile, please refer to Supplementary Figure 5. CE, Ceramide;
DAG, Diacylglycerols; PC, Phosphatidylcholines; PE, Phosphatidylethanolamine; PI, Phosphatidylinositols; SM, Sphingomyelins; SE, Sterol Esters; TAG,
Triacylglycerols; DCS, Hoorn Diabetes Care System; GoDARTS, Genetics of Diabetes Audit and Research in Tayside Scotland; S1, Multi-omics
subgroup 1; S2, Multi-omics subgroup 2.
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progresses. Indeed, biomarkers such as TAG and DAG can be

subject to changes reflecting an individual’s lifestyle and/or

medication. These aspects will need to be assessed in future

prospective studies.
5 Limitations of the study

The subgroups in our study were derived primarily from

European patients. Consequently, the applicability of these results

to other ethnic groups is uncertain. In both DCS and GoDARTS,

patients were not necessarily recruited after diagnosis. This

heterogeneity in the disease duration could potentially have an

effect on the blood measurements obtained. Moreover, as

mentioned above, the absence of C-peptide measurements in the

fasted state precluded HOMA assessments in the GoDARTS cohort.

The effect of fasting or non-fasting state on the multi-omics

profiling in the current study is still not fully clear and needs

further investigation (31, 32).
6 Conclusions

We demonstrate that an unsupervised, “bottom-up” multi-

omics approach can segregate T2D patients into 2 subgroups

capturing differences in insulin resistance and glycaemic

deterioration. Several classes of biomarkers, notably those

involved in immune processes, were most strongly associated

with these subgroups and future investigations will be necessary

to establish their causal roles, if any, in disease progression.
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