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The application of predictive
value of diabetes autoantibody
profile combined with clinical
data and routine laboratory
indexes in the classification of
diabetes mellitus
Jiawen Xian1†, Rongrong Du1†, Hui Yuan2, Jingyuan Li1, Qin Pei1,
Yongjie Hao1, Xi Zeng1, Jingying Wang1 and Ting Ye1*

1Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University,
Sichuan, China, 2School of Basic Medical Sciences and School of Stomatology, Mudanjiang Medical
University, Heilongjiang, China
Objective: Currently, distinct use of clinical data, routine laboratory indicators or

the detection of diabetic autoantibodies in the diagnosis and management of

diabetes mellitus is limited. Hence, this study was aimed to screen the indicators,

and to establish and validate amultifactorial logistic regressionmodel nomogram

for the non-invasive differential prediction of type 1 diabetes mellitus.

Methods: Clinical data, routine laboratory indicators, and diabetes autoantibody

profiles of diabetic patients admitted between September 2018 and December

2022 were retrospectively analyzed. Logistic regression was used to select the

independent influencing factors, and a prediction nomogram based on the

multiple logistic regression model was constructed using these independent

factors. Moreover, the predictive accuracy and clinical application value of the

nomogram were evaluated using Receiver Operating Characteristic (ROC)

curves, calibration curves, decision curve analysis (DCA), and clinical impact

curves (CIC).

Results: A total of 522 diabetic patients were included in this study. These

patients were randomized into training and validation sets in a 7:3 ratio. The

predictors screened included age, prealbumin (PA), high-density lipoprotein

cholesterol (HDL-C), islet cells autoantibodies (ICA), islets antigen 2

autoantibodies (IA-2A), glutamic acid decarboxylase antibody (GADA), and C-

peptide levels. Based on these factors, a multivariate model nomogram was

constructed, which had an Area Under Curve (AUC) of 0.966 and 0.961 for the

training set and validation set, respectively. Subsequently, the calibration curves

demonstrated a strong accuracy of the graph; the DCA and CIC results indicated

that the graph could be used as a non-invasive valid predictive tool for the

differential diagnosis of type 1 diabetes mellitus, clinically.
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Conclusion: The established prediction model combining patient’s age, PA,

HDL-C, ICA, IA-2A, GADA, and C-peptide can assist in differential diagnosis of

type 1 diabetes mellitus and type 2 diabetes mellitus and provides a basis for the

clinical as well as therapeutic management of the disease.
KEYWORDS
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1 Introduction

Diabetes mellitus (DM) is a common clinical chronic disease

with high rate of morbidity, long duration, and lifelong elevation of

glucose levels, accompanied by insufficient secretion of insulin by

pancreatic islet b-cells or insufficient biological effect of insulin in

the peripheral tissues (1). According to the International Diabetes

Federation (IDF), by 2040, there will be 642 million diabetics

globally, up from the current projection of 460 million (2). Thus,

diabetes has now become a serious and urgent public health

problem which requires prior attention.

DM can be classified into type 1 diabetes mellitus (T1DM), type

2 diabetes mellitus (T2DM), other special types of diabetes mellitus

and gestational diabetes mellitus on the basis of etiological

characteristics. The majority of DM cases are classified as T2DM,

accounting for 90-95% of the total diabetic patients, and occur as a

result of insulin resistance combined with insufficient insulin

secretion. T1DM is the second most common, accounting for 5-

10% of the diabetic patients (3). T1DM is caused by insulin

insufficiency due to pancreatic b-cells dysfunction or autoimmune

disruption, and the patient is dependent on insulin for life (4, 5).

Approximately, 5-15% of the adults diagnosed with T2DM may

actually have T1DM (6). As a result, up to 50% of the actual T1DM

cases may be misdiagnosed as T2DM, i.e., the overall number of

T1DM cases is considerably underestimated (7). An accurate

differential diagnosis is, therefore, essential for the optimal

treatment and avoidance of complications.

Distinction between T1DM and T2DM can usually be done

according to clinical criteria, primarily based on clinical

presentation, age, and body mass index (BMI). However, owing

to disease complexity and the diversity of the population, it is

difficult to diagnose the phenotype. Regardingly, the laboratory tests

can help to differentiate between T1DM and T2DM by using

metabolic tests such as C-peptide, insulin, and insulinogen. In a

study by Bolinder (8), total insulinogen and intermediate

insulinogen degradation products were measured in the subjects,

and there was considerable overlap in the levels of total and

intermediate insulinogen between T1DM and T2DM patients 3-4

months after the onset of DM. Katz et al. (9) also showed that C-

peptide levels in T1DM and T2DM patients were overlapped.
02
Therefore, the use of these laboratory tests in the differential

diagnosis of T1DM and T2DM is constrained.

T1DM is caused by autoimmune b-cells destruction, whereas
T2DM is caused by insulin resistance, which causes relative b-cells
failure, eventually (10). Therefore, if autoantibodies targeting b-cells
are detected, this is suggestive of an autoimmune etiology and can

help to diagnose autoimmune T1DM (11). There are currently five

diabetes autoantibodies that can be used to diagnose T1DM and

predict disease progression in non-T1DM patients, which include

islet cells autoantibodies (ICA), insulin autoantibodies (IAA),

glutamic acid decarboxylase autoantibodies (GADA), islets

antigen 2 autoantibodies (IA-2A), and zinc transporter-8

autoantibodies (ZnT8A) (12). Of these, GADA, ICA and IAA are

considered to be the three most important antibodies (13). About

70–80% of the individuals with newly diagnosed T1DM have ICA

and GADA. 60% have IA-2A and ZnT8A identified, while IAA is

infrequent in adults with newly diagnosed T1DM but is present in

50–60% of adolescents with the disease (14). As the duration of

diabetes increases, fewer people remain positive for diabetes

autoantibodies other than anti-insulin antibodies (14). As in the

case of ICA, they are present for a shorter period of time, appearing

only in the early stages of T1DM (15). Moreover, the use of insulin

is associated with the production of insulin antibodies, and it is

impossible to distinguish between insulin antibodies and IAA after

14 days of insulin treatment (16). In addition, overweight or obese

adults with a clinical diagnosis of T2DM may also present with

positive diabetic autoantibodies (17). In summary, the diabetic

autoantibody profile has limitations in differentiating between

T1DM and T2DM.

Some studies have shown that cell counts (18–20), liver function

(21, 22), blood lipids (23) levels, etc. are linked with the incidence of

DM. To investigate the value of diabetic autoantibodies in

combination with the clinical data and routine laboratory

indicators in the classification of DM, the present study included

522 diabetic patients. The factors of interest including gender, age,

autoantibody profile, C-peptide levels, and other relevant variables

were recorded. Logistic regression and nomogram analysis were

employed to develop predictive models for T1DM, with the goal of

improving risk stratification and guiding personalized interventions

for individuals at risk of developing diabetes.
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2 Materials and methods

2.1 Study participants

The participants of this study involved 522 diabetic patients

admitted from September 2018 to December 2022 at the Affiliated

Hospital of Southwest Medical University. All these patients had been

clinically diagnosed in advance. There were 89 cases of T1DM, 46

males and 43 females, aged between 4 to 68 years, with a mean age of

(28.7 ± 15.06) years; 433 cases of T2DM, 231 males and 202 females,

aged between 11 to 88 years, with a mean age of (58.5 ± 14.03) years.

There was no statistically significant difference between the two groups

in terms of gender (p > 0.05), however, in regards to age, the difference

was statistically significant (p < 0.05). The participants were informed

about the content and methodology of the study, whereby, they

voluntarily participated and cooperated in the study. The study was

approved and consented by the Ethics Committee of the hospital.

Inclusion criteria: ①Meet the diagnostic criteria of DM proposed

by WHO in 1999; ② Availability of data on autoantibody profile, C-

peptide levels, and other relevant predictive factors; ③ Good mental

state; ④ Good compliance, can cooperate with the study and

examination; ⑤ No contraindication to examination.

Exclusion criteria: ① Other autoimmune diseases; ② Individuals

with a history of other types of diabetes (e.g. monogenic diabetes);

③ Hematological diseases; ④ Malignant tumors; ⑤ Acute and

chronic systemic infections; ⑥ Lack of essential data for logistic

regression and nomogram analysis.

These criteria were implemented to ensure the relevance and

accuracy of the predictions made in this clinical prediction study

on diabetes.
2.2 Diabetes autoantibodies measurements

To measure diabetes autoantibodies, 3 ml blood was collected from

the patients in the early morning. The upper layer of serum was

centrifuged at 3000 rpm/min for 10 min. Tenfly Blot-C (YHLO

Biotech) was used for the detection, and the reagents were the reagents

for the instrument (YHLO Biotech). The islets autoantibodies, including

GADA, IAA, ICA, IA-2A and ZnT8A, were tested by immunoblotting.
2.3 Clinical biochemistry
laboratory measurements

For clinical biochemistry laboratory measurements, participants

were instructed to fast overnight, 3 ml of fasting venous blood was

collected from the patients in the early morning, centrifuged at 3000

rpm/min for 5 min, and then detected by ADVIA 2400 automatic

biochemistry analyzer (SIEMENS), and the reagents were matching

reagents (SIEMENS). The test items included: alanine aminotransferase

(ALT), aspartate aminotransferase (AST), ALT/AST, total protein

(TP), prealbumin (PA), albumin (ALB), globulin (GLO), albumin/

globulin (A/G), total bilirubin (TBIL), direct bilirubin (DBIL), indirect

bilirubin (IBIL), total bile acids (TBA), r- glutamyl transferase (GGT),

alkaline phosphatase (ALP), urea, uric acid (UA), creatinine (Crea),
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retinol-binding protein (RBP), glomerular filtration rate (GFR), total

cholesterol (TC), triglycerides (TG), high-density lipoprotein

cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C),

apolipoprotein A1 (APOA1), apolipoprotein B (APOB), glucose

(GLU), glycated serum proteins (GSP), potassium ions (K+), sodium

ions (Na+), chloride ions (Cl-), calcium ions (Ca2+), carbon dioxide

(CO2), anion gap (AG), and C-peptide.
2.4 Complete blood count

For complete blood count, participants were instructed to fast

overnight, 2-5 ml of fasting venous blood was collected from patients in

the early morning, and tested by BC-6800 automatic blood cell analyzer

(Mindray), and the reagents were matching reagents (Mindray). The

test items included: white blood cell count (WBC), neutrophil count

(NEU), lymphocyte count (LYM), monocyte count (MONO),

eosinophil count (EOS), basophil count (BASO), neutrophil ratio

(NEU-R), lymphocyte ratio (LYM-R), monocyte ratio (MONO-R),

eosinophil ratio (EOS-R), basophil ratio (BASO-R), red blood cell

count (RBC), hemoglobin (HGB), hematocrit (HCT), mean

corpuscular volume (MCV), mean corpuscular hemoglobin volume

(MCH), mean corpuscular hemoglobin concentration (MCHC),

standard deviation in red blood cell distribution width (RDW-SD),

coefficient of variation of red blood cell distribution width (RDW-CV),

platelet count (PLT), mean platelet volume (MPV), platelet compact

volume (PCT), platelet volume distribution width (PDW), and platelets

larger cell ratio (P-LCR).

The above-mentioned tests were completed by the same group

of experienced testing personnel. The test process fully refers to the

standard operating procedures to ensure consistency of test results,

quality control according to CNAS-CL02: Accreditation Criteria for

the Quality and Competence of Medical Laboratories (ISO

15189:2012, Medical laboratories—Requirements for quality and

competence, IDT).
2.5 Statistical analysis

In this study, the collected data were randomly divided into two

groups in the ratio of 7:3 for the training and validation sets. For

variables with missing data points, we imputed values using predictive

mean matching and logistic regression methods within the multiple

imputation framework. Measurements were expressed as mean ±

standard deviation (x ± s). Student’s t-test was used to examine the

continuous variables, and chi-square test was used to analyze the

categorical variables. In the training cohort, the least absolute shrinkage

and selection operator (LASSO) logistic regression analysis was used

for multivariate analysis to screen the independent risk factors and

build a prediction nomogram for the Group. The Area Under Curve

(AUC) of the Receiver Operating Characteristic (ROC) curve and the

calibration curve were used to evaluate the accuracy of the nomogram;

and the clinical benefits of the nomogram were demonstrated using the

Decision Curve Analysis (DCA) and the Clinical Impact Curve (CIC).

Statistical analyses were performed using SPSS 27.0, SPSSAU, R 4.2.2,

along with the use of MSTATA software. Results with a p-value of

<0.05 were considered statistically significant.
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3 Results

3.1 The significant differences in age,
biochemistry and CBC levels between the
T1DM and T2DM groups

Firstly, the patients were divided into T1DM and T2DM groups

according to their clinical diagnosis, and t-test was performed to

analyze the age, biochemistry, and CBC levels of a total of 58

indicators in the two groups. According to the results, there were

significant differences in age, ALT/AST, PA, HDL-C, TBIL, IBIL,

ALP, Crea, RBP, GFR, GLU, GSP, WBC, NEU, LYM, MONO, EOS,

EOS-R, BASO-R, RBC, RDW-SD, PLT, PCT, Na+, CO2, AG, and C-

peptide between the two groups. The mean values of age, PA, TBIL,

IBIL, Crea, RBP, EOS, EOS-R, BASO-R, RDW-SD, Na+, CO2, and

C-peptide were significantly lower in the T1DM group than in the

T2DM group. The mean values of ALT/AST, HDL-C, ALP, GFR,

GLU, GSP, WBC, NEU, LYM, MONO, RBC, PLT, PCT, PLT, PCT,

Na+, CO2, and AG levels were significantly higher in the T1DM

group (p < 0.05). The result of the Student’s t test is presented in

the Table 1.
3.2 The regression analysis of age,
biochemistry, CBC levels and
diabetes typing

Further, logistic regression analysis using the typology of

diabetic patients included in this study as the dependent variable

(TIDM = 0, T2DM = 1) and the above indicators as independent

variables showed that age, ALT/AST, PA, HDL-C, EOS, EOS-R, and

C-peptide levels were the factors influencing diabetes typing, and

age, PA, EOS, EOS-R, and C-peptide levels were negatively

correlated with T1DM typing and positively correlated with

T2DM typing (p < 0 05). Moreover, ALT/AST and HDL-C levels

were positively correlated with T1DM typing and negatively

correlated with T2DM typing (p < 0. 05) (Table 2). The variance

inflation factor (VIF) of EOS and ESO-R is higher than 5 (Table 2),

so these two variables are screened out in consideration of the

possibility of strong multicollinearity.
3.3 The significant differences in ZnT8A,
ICA , IA-2A and GADA between T1DM
and T2DM groups

In addition, for independent samples, non-parametric test

(Kruskal-Wallis) was performed for both T1DM and T2DM

groups. Statistically significant differences were observed between

the two groups for ZnT8A, ICA, IA-2A and GADA (p < 0.05), as

indicated in the Table 3. However, no significant differences were

noted for IAA (p > 0.05), which suggests that ZnT8A, ICA, IA-2A,

and GADA may serve as the factors in the differentiation of T1DM

from T2DM.
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TABLE 1 Results of Student’s t test analysis between T1DM and T2DM.

Index Type (x ± s) t P
value

T1DM
(n = 89)

T2DM
(n = 433)

Age 28.70 ± 15.06 58.50 ± 14.03 -18.023 0.000

ALT/AST 1.30 ± 1.21 1.03 ± 0.56 2.055 0.043

PA 171.01 ± 65.81 224.73 ± 76.71 -6.156 0.000

HDL-C 1.20 ± 0.37 1.11 ± 0.34 2.248 0.026

ALT 29.60 ± 30.12 28.15 ± 26.51 0.459 0.646

AST 28.41 ± 21.10 25.55 ± 21.65 1.137 0.256

TP 70.21 ± 10.04 70.05 ± 7.29 0.142 0.887

ALB 42.38 ± 6.15 42.53 ± 5.19 -0.226 0.821

GLO 27.61 ± 6.09 27.40 ± 4.65 0.308 0.759

A/G 1.60 ± 0.31 1.60 ± 0.32 -0.039 0.969

TBIL 11.97 ± 5.61 13.56 ± 7.17 -1.973 0.049

DBIL 4.12 ± 2.23 4.21 ± 2.43 -0.326 0.745

IBIL 7.84 ± 4.29 9.47 ± 5.80 -2.513 0.012

TBA 4.88 ± 5.11 5.73 ± 6.13 -1.216 0.225

GGT 46.30 ± 106.63 37.01 ± 37.36 0.811 0.419

ALP 119.63 ± 90.22 90.87 ± 44.18 2.935 0.004

Urea 6.25 ± 5.20 7.19 ± 4.45 -1.750 0.081

UA 350.86 ± 164.81 344.25 ± 117.30 0.360 0.720

Crea 60.19 ± 32.07 78.22 ± 54.19 -4.210 0.000

RBP 28.26 ± 13.15 41.39 ± 15.51 -7.451 0.000

GFR 126.33 ± 33.32 91.98 ± 30.20 9.597 0.000

TC 4.63 ± 1.47 4.60 ± 1.25 0.213 0.832

TG 2.39 ± 2.92 2.23 ± 2.01 0.492 0.624

LDL-C 2.66 ± 0.90 2.74 ± 1.07 -0.750 0.455

APOA1 1.32 ± 0.33 1.34 ± 0.30 -0.575 0.566

APOB 0.89 ± 0.28 0.93 ± 0.45 -0.919 0.358

GLU 17.00 ± 9.87 13.34 ± 7.57 3.933 0.000

GSP 3.41 ± 0.97 2.78 ± 0.73 5.812 0.000

WBC 9.40 ± 5.63 7.36 ± 3.36 3.298 0.001

NEU 6.89 ± 5.16 5.12 ± 3.22 3.114 0.002

LYM 1.88 ± 0.88 1.65 ± 0.67 2.302 0.023

MONO 0.51 ± 0.40 0.41 ± 0.19 2.459 0.016

EOS 0.09 ± 0.15 0.14 ± 0.17 -2.524 0.012

BASO 0.03 ± 0.02 0.03 ± 0.02 -0.989 0.323

NEU-R 68.30 ± 15.21 67.20 ± 10.38 0.649 0.518

LYM-R 24.35 ± 13.33 24.40 ± 9.22 -0.030 0.976

MONO-R 5.74 ± 2.65 5.73 ± 1.97 0.015 0.988

(Continued)
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3.4 Age, PA, HDL-C, ICA, IA-2A, GADA, and
C-peptide were potential predictors of
TIDM prediction model

The data included in this study were randomly divided into two

groups in the ratio of 7:3 for the training and validation sets.

Patients’ baseline data are provided in the Supplementary Table 1.

These baseline characteristics provide a detailed overview of the
Frontiers in Endocrinology 05
study population and set the stage for further predictive research

analysis. The candidate predictors i.e., age, PA, AST/ALT, HDL-C,

C-peptide, and diabetes autoantibodies were included in the

original model, which were then reduced to 7 potential predictors

using LASSO regression analysis performed in the training cohort.

The cross-validated error plot of the LASSO regression model is

shown in the Figure 1A. The most regularized and parsimonious

model, with a cross-validated error within one standard error of the

minimum, included 7 variables. The coefficient profile is plotted in

the Figure 1B. As depicted in the Figure 1C, the ROC analysis of the

abovementioned variables yielded AUC values greater than 0.5.

Further univariate and multivariate logistic analysis were performed

as shown in the Tables 4, 5.
3.5 Construction and performance
of nomogram

The final logistic model included 7 independent predictors (age,

PA, HDL-C, ICA, IA-2A, GADA, and C-peptide) and was developed

as a simple-to-use nomogram to predict the probability of T1DM

(Figure 2A). Each parameter was assigned an exact score. The sum of

the scores in the graph is the total score, which corresponds to T1DM

risk. In Figure 1A, a higher total score indicates a higher risk of

T1DM. Plotting the ROC curve, in the training set, the Area Under

Curve (AUC) was 0.966(Figure 2B). Meanwhile, in the validation set,

the AUC also reached 0.961 (Figure 2C), indicating that the

nomogram has good predictive ability. In addition, the calibration

curves show that the nomogram is strongly calibrated in both the

training set (Figure 2D) and the validation set (Figure 2E).
3.6 Practical applications of the nomogram

The net benefit was examined using decision curve analysis

(DCA) in order to further evaluate this predictive model. The

results showed that the nomogram produced a net benefit relative

to the treat-all-patients scenario or no-treatment scenario when the

predictive probability of the nomogram for T1DM was less than

80% in both the training set (Figure 3A) and the validation set

(Figure 3B), indicating that the nomogram had therapeutic value.

To assess the nomogram’s clinical impact and illustrate its

qualitative significance, the Clinical Impact Curve (CIC) was

additionally plotted based on DCA result. The CIC demonstrated

the nomogram’s strong predictive ability in both the training set

(Figure 3C) and validation set (Figure 3D). Figures 3C, D illustrates

the number of patients predicted to have T1DM and the number of

patients who actually had T1DM at each risk threshold. When 20%

is the risk threshold, the anticipated number of patients is closer to

the actual number of patients.
3.7 Building a web application to
view nomograms

The nomogram can be accessed by medical staff through

our self-built web application at the given link (https://
TABLE 1 Continued

Index Type (x ± s) t P
value

T1DM
(n = 89)

T2DM
(n = 433)

EOS-R 1.23 ± 1.88 2.13 ± 2.33 -3.921 0.000

BASO-R 0.37 ± 0.27 0.47 ± 0.30 -2.891 0.004

RBC 4.63 ± 0.65 4.46 ± 0.74 1.993 0.047

HGB 137.78 ± 18.11 133.91 ± 21.74 1.770 0.079

HCT 0.41 ± 0.05 0.41 ± 0.06 0.970 0.332

MCV 89.74 ± 6.70 91.19 ± 7.25 -1.741 0.082

MCH 30.02 ± 2.22 30.16 ± 2.54 -0.479 0.632

MCHC 331.25 ± 33.56 329.68 ± 14.97 0.692 0.489

RDW-SD 40.89 ± 4.67 42.13 ± 3.95 -2.623 0.009

RDW-CV 13.08 ± 1.03 13.22 ± 1.13 -1.056 0.292

PLT 239.13 ± 72.52 213.93 ± 73.88 2.941 0.003

MPV 10.78 ± 1.44 10.69 ± 1.54 0.480 0.632

PCT 0.25 ± 0.07 0.23 ± 0.08 3.030 0.003

PDW 15.82 ± 1.84 15.99 ± 1.62 -0.847 0.397

P-LCR 32.06 ± 10.25 31.43 ± 10.67 0.513 0.608

K+ 4.27 ± 0.68 4.30 ± 0.53 -0.547 0.584

Na+ 138.78 ± 4.67 140.13 ± 4.13 -2.740 0.006

Cl- 105.34 ± 5.69 106.04 ± 7.19 -0.857 0.392

Ca2+ 2.37 ± 0.19 2.36 ± 0.17 0.192 0.848

CO2 21.22 ± 8.14 25.08 ± 3.89 -4.377 0.000

AG 12.39 ± 6.02 9.39 ± 4.52 4.395 0.000

C-peptide 1.12±0.85 2.08±1.48 -8.335 0.000
ALT/AST, alanine aminotransferase/aspartate aminotransferase; PA, prealbumin; HDL-C,
high-density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; TP, total protein; ALB, albumin; GLO, globulin; A/G, albumin/ globulin;
TBIL, total bilirubin; DBIL, direct bilirubin; IBIL, indirect bilirubin; TBA, total bile acids;
GGT, r-glutamyl transferase; ALP, alkaline phosphatase; UA, uric acid; Crea, creatinine; RBP,
retinol-binding protein; GFR, glomerular filtration rate; TC, total cholesterol; TG,
triglycerides; LDL-C :low-density lipoprotein cholesterol; APOA1, apolipoprotein A1;
APOB, apolipoprotein B; GLU, glucose; GSP, glycated serum proteins; WBC, white blood
cell count; NEU, neutrophil count; LYM, lymphocyte count; MONO, monocyte count; EOS,
eosinophil count; BASO, basophil count; NEU-R, neutrophil ratio; LYM-R, lymphocyte ratio;
MONO-R, monocyte ratio; EOS-R, eosinophil ratio; BASO-R, basophil ratio; RBC, red blood
cell count; HGB, haemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MCH,
mean corpuscular haemoglobin volume; MCHC, mean corpuscular haemoglobin
concentration; RDW-SD, standard deviation in red blood cell distribution width; RDW-
CV, coefficient of variation of red blood cell distribution width; PLT, platelet count; MPV,
mean platelet volume; PCT, platelet compact volume; PDW, platelet distribution width; P-
LCR, platelets larger cell ratio; K+, potassium ions; Na+, sodium ions; Cl-, chloride ions; Ca2+,
calcium ions; CO2: carbon dioxide; AG, anion gap.
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type1diabetesdiagnosis.shinyapps.io/dynnomapp/). The algorithm

automatically calculates the probability of a patient having

T1DM. The scoring system enables early differentiation of

patients with T1DM and facilitates appropriate therapeutic

measures. For example, when the patient is 14 years old, has a PA

level of 311.00 mmol/l, an HDL-C level of 2.00 mmol/l, and a

GADA level of +++, the probability of developing T1DM is

0.889 (Figure 4).
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4 Discussion

Diabetes mellitus (DM) is a group of metabolic diseases

characterized by hyperglycemia caused by defects in either insulin

secretion or action, or both. Diabetes-related chronic hyperglycemia is

linked to long-term damage, malfunction, and failure of several organs,

including the heart, blood vessels, kidneys, eyes, and nerves (24). The

healthcare expenditures and access to treatment are unequal between
TABLE 2 The regression analysis of biochemistry, CBC levels and diabetes mellitus typing.

Index

Unstandardised coefficient Standardised
coefficient

t p 95% CI VIF

B
standard
error

Beta

Age 0.012 0.001 0.577 10.861 0 0.010 ~ 0.014 2.68

ALT/AST -0.047 0.019 -0.09 -2.482 0.013 -0.083 ~ -0.010 1.239

PA 0.001 0 0.153 3.126 0.002 0.000 ~ 0.001 2.266

HDL-C -0.104 0.037 -0.095 -2.777 0.006 -0.177 ~ -0.031 1.112

TBIL 0.001 0.004 0.014 0.177 0.86 -0.007 ~ 0.009 5.575

IBIL 0.002 0.005 0.026 0.333 0.74 -0.008 ~ 0.012 5.77

ALP 0 0 0.023 0.64 0.522 -0.000 ~ 0.001 1.202

Crea 0 0 -0.007 -0.142 0.887 -0.001 ~ 0.001 2.408

RBP 0 0.001 0.005 0.091 0.927 -0.002 ~ 0.003 2.908

GFR -0.001 0.001 -0.061 -0.834 0.404 -0.002 ~ 0.001 5.072

GLU -0.002 0.002 -0.035 -0.771 0.441 -0.006 ~ 0.002 1.963

GSP -0.024 0.02 -0.051 -1.162 0.246 -0.063 ~ 0.016 1.855

WBC 0.012 0.067 0.124 0.175 0.861 -0.120 ~ 0.144 475.526

NEU -0.018 0.068 -0.178 -0.267 0.79 -0.151 ~ 0.115 423.5

LYM -0.006 0.069 -0.012 -0.088 0.93 -0.141 ~ 0.129 16.63

MONO -0.071 0.1 -0.046 -0.706 0.48 -0.267 ~ 0.125 3.966

EOS -0.496 0.227 -0.219 -2.188 0.029 -0.941 ~ -0.052 9.53

EOS-R 0.034 0.016 0.205 2.091 0.037 0.002 ~ 0.065 9.123

BASO-R -0.046 0.046 -0.037 -1 0.318 -0.136 ~ 0.044 1.308

RBC 0.036 0.021 0.07 1.693 0.091 -0.006 ~ 0.078 1.648

RDW-SD 0 0.003 -0.005 -0.142 0.887 -0.007 ~ 0.006 1.343

PLT 0.001 0 0.112 1.908 0.057 -0.000 ~ 0.001 3.275

PCT -0.272 0.273 -0.057 -0.997 0.319 -0.807 ~ 0.263 3.059

Na+ -0.005 0.004 -0.051 -1.27 0.205 -0.011 ~ 0.002 1.555

CO2 0.004 0.004 0.055 1.119 0.263 -0.003 ~ 0.011 2.306

AG 0 0.004 0.002 0.039 0.969 -0.007 ~ 0.007 2.254

C-peptide 0.011 0.009 0.041 1.199 0 0.140~0.500 1.02
ALT/AST, alanine aminotransferase/aspartate aminotransferase; PA, prealbumin; HDL-C, high-density lipoprotein cholesterol; TBIL, total bilirubin; IBIL, indirect bilirubin; ALP, alkaline
phosphatase; Crea, creatinine; RBP, retinol-binding protein; GFR, glomerular filtration rate; GLU, glucose; GSP, glycated serum proteins; WBC, white blood cell count; NEU, neutrophil count;
LYM, lymphocyte count; MONO, monocyte count; EOS, eosinophil count; EOS-R, eosinophil ratio; BASO-R, basophil ratio; RBC, red blood cell count; RDW-SD, standard deviation in red blood
cell distribution width; PLT, platelet count; PCT, platelet compact volume; Na+, sodium ions; CO2, carbon dioxide; AG, anion gap.
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developed and developing countries, nevertheless, both bear a huge

financial burden (25, 26). Early and accurate identification of DM is

important for determining treatment options, improving outcomes

and reducing the economic burden. However, there are limitations in

classifying T1DM and T2DM based on the clinical data, laboratory

metabolic testing, and diabetes autoantibody testing (8, 9, 14–17).

Additionally, the value of routine laboratory tests for typing is unclear.

In this study, we constructed a quantifiable and simple nomogram for

predicting T1DM, which can help clinicians to differentiate between

T1DM and T2DM, and which contains one clinical parameter (age),

two routine laboratory tests (PA, HDL-C), one islet b-cells function
assessment test (C-peptide) and three diabetic autoantibody tests

(GADA, ICA, IA-2A).

There is a clear distinction between the age of onset of T1DM

and T2DM. The onset of T1DM is usually between 5-7 years of age
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and adolescence, but can occur at any age (7), while the onset of

T2DM occurs after puberty. In the present study, the mean age of

patients in the T1DM group was 28.7 years, which was significantly

lower than that of the T2DM group, which was 58.5 years (p < 0.05).

Moreover, in the Logistic regression model, the regression

coefficient of age was 0.012 (p < 0.05), indicating that age is a

significant influence on DM typing.

Prealbumin (PA) is a negative acute phase response protein and

non-specific host defense substance, mainly synthesized by the liver,

with a half-life of about 2 days, which makes it more sensitive

compared to albumin, which has a half-life of 20 days, and has been

used in clinical practice mainly to assess hepatic impairment and

malnutrition (27). In recent years, it has been discovered that PA

contributes to autoimmune diseases. One study (28) has shown that

PA levels were negatively correlated with the degree of

autoimmunity, which is consistent with the negative correlation

between PA and T1DM typing in this study. In the present study,

PA levels in the T2DM group were significantly higher than those in

the T1DM group and were positively correlated with T2DM, which

confirms that patients with T2DM are more prone to cardiovascular

disease (29). Nicoletta Dozio et al. (30) also showed that PA levels

vary at different stages of T1DM disease course, with lower levels in

patients with longer disease duration, and this study is expected to

play a role in evaluating the stage of disease and prognosis of

patients at the time of initial diagnosis of T1DM.

High-density lipoprotein cholesterol (HDL-C) has anti-

atherosclerotic and antioxidant properties and prevents oxidized
TABLE 3 Results of Kruskal-Wallis test.

Index c2 df p-value e2

ZnT8A 5.9400 1 0.015 0.011401749

ICA 2.3100 1 0.046 0.004058273

IAA 0.0824 1 0.774 0.000158102

IA-2A 5.0400 1 0.025 0009671312

GADA 19.1000 1 < 0.001 0.036576088
ZnT8A, zinc transporter-8 autoantibodies; ICA, autoantibodies; IAA, insulin autoantibodies;
IA-2A, islet antigen 2 autoantibodies; GADA, glutamic acid decarboxylase autoantibodies.
FIGURE 1

Lasso regression cross-validation Plot (A) Lasso regression coefficient path plot (B) Coefficients of Lasso regression analysis (C).
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LDL (ox-LDL) interceded endothelial dysfunction (31).

Characteristic dyslipidemia usually precedes the diagnosis of

T2DM, such as reduced HDL-C levels, suggesting that reduced

HDL-C promotes the onset and progression of T2DM and diabetic

vascular complications (32). Indeed, it has been found that there is a

bidirectional association between HDL-C and T2DM, whereby

hyperglycemia and hyperinsulinemia occurring in T2DM may

lead to reduced HDL-C levels and deterioration of HDL function

through various alterations in the HDL particles proteome and

lipidome (33).Thus, via altering insulin secretion, peripheral insulin

sensitivity, non-insulin-dependent glucose uptake, and adipose

tissue metabolic activation, HDL-C may also have an impact on

glucose homeostasis (34). In the present study, the mean HDL-C

values in the T2DM group were lower than those in the T1DM

group, and there was a negative correlation between the HDL-C

values and the T2DM phenotype, which is consistent with the

findings mentioned above.

As described in 1967 (35), C-peptide is a 31-amino acid peptide,

facilitating the correct folding of insulin and formation of its
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disulfide bridges. Proinsulin is cleaved into insulin and C-peptide.

These two proteins are stored in the secretory granules of the

pancreatic b-cells and eventually released together in equimolar

amounts. C-peptide has negligible extraction by the liver and

constant peripheral clearance. Its half-life is longer than insulin

(20–30 vs. 3–5 min) (36). Therefore, the physiology of C-peptide

makes it appropriate for assessing insulin secretion. Absolute

insulin deficiency is a key feature of Type 1 diabetes, and

C-peptide levels taken within the first few years of diagnosis may

be useful in confirming Type 1 diabetes if results are low (37). As

such, C-peptide has been a valuable tool in elucidating the

pathophysiology of T1DM and T2DM. In the present study, the

mean C-peptide values in the T2DM group were higher than those

in the T1DM group, which is consistent with the above-

mentioned findings.

Autoimmunity and cellular immunity in T1DM patients

contribute to the onset and progression of the disease.

Pertinently, some scholars have proposed that diabetic

autoantibody detection in patients’ serum can be an effective

diagnostic method for typing of diabetic patients, and currently

the clinical use of antibodies including GADA, IAA, IA-2A, ZnT8A,

ICA (12). Among diabetic autoantibodies, the highest positive rate

belongs to the Glutamic acid decarboxylase (GAD) antibody. GAD

is a key enzyme in the synthesis of inhibitory neurotransmitter g-
aminobutyric acid, and the available data confirm that its level can

be elevated several years or even more than 10 years prior to the

onset of T1DM. Moreover, it has the characteristics of high

sensitivity and specificity, and is considered to be a specific

marker for immune destruction of pancreatic islet b-cells in

T1DM patients (38). GADA is the earliest antibody to GAD, and

some scholars have found that a single positive GADA has a

predictive value for insulin b-cell function (39). IAA was

discovered in 1983 in T1DM patients who had not used

exogenous insulin (40). Subsequent studies have shown that anti-

insulin antibodies are present prior to the onset of T1DM (41), and

were negatively correlated with age at onset of T1DM (42). ICA is a

cytoplasmic antibody to pancreatic islet b-cells, which can cause an

immune response upon binding to islet cell surface antigen,

resulting in cytotoxic effects on islet cell cytoplasmic components,

leading to cell lysis, death, and ultimately DM. Also, ICA is the first

diabetic autoantibody found to be associated with the development

of T1DM disease (43). According to earlier research, ICA is present

in approximately 70% of T1DM patients, but for a short period of

time i.e., appearing only in the early stages of T1DM (15). Positive

ICA is now considered to be indicative of autoimmune damage to

pancreatic b-cells and is highly predictive of T1DM when it is

persistently positive or at high levels.

The results of the present study demonstrated that the difference in

the positive rates of ZnT8A, ICA, IA-2A and GADA between patients

in the T1DM and the T2DM group was statistically significant (p <

0.05), suggesting that the pancreatic b-cells had undergone a strong

autoimmune reaction, which had caused impaired insulin secretion

from the b-cells, leading towards pancreatic b-cell failure, which was in
line with the main characteristics of T1DM. Between the two groups,

there was no statistically significant difference in the positive rates of

IAA (p > 0.05).
TABLE 4 Results of univariate logistic regression.

Characteristic N
Event
N

OR
95%
CI

p

Age 365 65 0.90 0.88,
0.92

<0.001

PA 365 65 0.99 0.98,
0.99

<0.001

HDL-C 365 65 3.07 1.38,
6.83

0.006

ICA 365 65 1.64 0.88,
3.06

0.037

IA-2A 365 65 1.97 1.29,
3.03

0.002

GADA 365 65 1.76 1.30,
2.38

<0.001

C-peptide 365 65 0.45 0.32,
0.61

<0.001
PA, prealbumin; HDL-C, high-density lipoprotein cholesterol; ICA, autoantibodies; IA-2A,
islet antigen 2 autoantibodies; GADA, glutamic acid decarboxylase autoantibodies.
TABLE 5 Results of multivariate logistic regression for training cohort.

Characteristic N Event N OR 95% CI p

Age 365 65 0.89 0.86, 0.92 <0.001

PA 365 65 0.98 0.98, 0.99 <0.001

HDL-C 365 65 7.29 1.96,
27.08

0.003

ICA 365 65 4.79 1.58,
14.56

0.006

IA-2A 365 65 2.46 1.07, 5.65 0.034

GADA 365 65 1.43 0.87, 2.35 0.047

C-peptide 365 65 0.39 0.23, 0.66 <0.001
PA, prealbumin; HDL-C, high-density lipoprotein cholesterol; ICA, autoantibodies; IA-2A,
islet antigen 2 autoantibodies; GADA, glutamic acid decarboxylase autoantibodies.
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In this study, the following seven predictors were selected: age, PA,

HDL-C, ICA, IA-2A, GADA, and C-peptide. A multivariate predictive

model, nomogram, was established with excellent efficacy, and it could

distinguish T1DMwell, with an AUC of 0.966 and 0.961 in the training

set and validation set, respectively. According to the calibration curves,

the nomogram has a strong calibration. Moreover, it can serve as a

useful tool for clinical applications and lower the cost and burden of

disease, according to subsequent DCA and CIC assessments. Finally,

we have built a web-based computational tool that may facilitate

doctors’ by providing a platform for convenient and enhanced

application of the nomogram. A previous study (44) built a similar

predictive model that included age, body mass index, FPG, and TC to

focus on the risk of developing T2DM in hypertensive patients.

Another study (45) developed and validated a personalized

prediction nomogram for non-obese adults with 5-year T2DM risk,
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including age, GGT, TG, FPG, HbA1c, and fatty liver. In our study, we

introduced a novel predictive model integrating autoantibody profiles

with clinical and laboratory data, and the differential prediction of

T1DM and T2DM was carried out, which is a supplement to the

former and the field. Unlike existing models that often rely on single

diagnostic criteria or limited parameters, our approach aims to

significantly enhance classification accuracy by considering a

comprehensive set of predictors.

However, there are still some limitations in this study. First, our

participants were all patients from the same hospital, which may

make the results not applicable to other countries and regions.

Second, we excluded patients with incomplete data, leading to

potential selection bias inherent in our participant recruitment

process. Future research efforts should prioritize addressing these

limitations through larger, multicenter studies involving diverse
FIGURE 2

Nomogram predicting T1DM in patients with DM (A) ROC curve of the nomogram in training set (B) and validation set (C) Calibration curves of the
nomogram prediction in training set (D) and validation set (E).
frontiersin.org

https://doi.org/10.3389/fendo.2024.1349117
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xian et al. 10.3389/fendo.2024.1349117
FIGURE 3

Decision curve analysis (DCA) of the nomogram in training set (A) and validation set (B)clinical impact curve (CIC) of the nomogram in training set
(C) and validation set (D).
FIGURE 4

An example of T1DM prediction using the nomogram via a link.
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patient populations and rigorous validation protocols. Such

endeavors would enhance the generalizability and reliability of

predictive models for classifying diabetes mellitus types. By

expanding the scope of research beyond single-center studies and

incorporating broader patient demographics, we can strengthen the

evidence base supporting clinical decision-making in diabetes care.

Despite these limitations, our findings remain a supporting tool

for clinical decision making. Our study demonstrates that the

predictive nomogram integrating specific autoantibodies and

laboratory indices can significantly improve the accuracy of

diabetes mellitus classification. It provides quantitative predictions

based on individual patient data, aiding clinicians in making

informed decisions about treatment, monitoring requirements,

and patient education efforts. However, implementing the

nomogram in clinical settings may present challenges. Healthcare

providers must ensure access to the necessary laboratory tests and

interpret the nomogram’s results within the context of each

patient’s clinical presentation and medical history. Training and

education for healthcare providers on the use and interpretation of

the nomogram are essential to optimize its utility and minimize the

risk of misclassification or misinterpretation of results.

In conclusion, the application of individual clinical data, routine

laboratory indicators or diabetes autoantibodies in the diagnosis

and treatment of DM is relatively limited, and it is necessary to

comprehensively consider age, PA, HDL-C, ICA, IA-2A, GADA,

and C-peptide. Conclusively, the nomogram that is created based

on these variables may provide useful differentiation between

T1DM and T2DM, and the assessment of changes through the

course of DM, which can provide a scientific guide to clinicians for

diabetes prevention and treatment.
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