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ERCC4: a potential regulatory
factor in inflammatory bowel
disease and inflammation-
associated colorectal cancer
Runjie Shi †, Shanping Wang †, Ying Jiang, Guoqiang Zhong,
Mingsong Li * and Yan Sun *

Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases,
Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated
Hospital of Guangzhou Medical University, Guangzhou, China
The pathogenesis of inflammatory bowel disease (IBD) remains unclear and is

associated with an increased risk of developing colitis-associated cancer (CAC).

Under sustained inflammatory stimulation in the intestines, loss of early DNA

damage response genes can lead to tumor formation. Many proteins are involved

in the pathways of DNA damage response and play critical roles in protecting

genes from various potential damages that DNA may undergo. ERCC4 is a

structure-specific endonuclease that participates in the nucleotide excision

repair (NER) pathway. The catalytic site of ERCC4 determines the activity of

NER and is an indispensable gene in the NER pathway. ERCC4may be involved in

the imbalanced process of DNA damage and repair in IBD-related inflammation

and CAC. This article primarily reviews the function of ERCC4 in the DNA repair

pathway and discusses its potential role in the processes of IBD-related

inflammation and carcinogenesis. Finally, we explore how this knowledge may

open novel avenues for the treatment of IBD and IBD-related cancer.
KEYWORDS

excision repair cross complementation group 4, inflammatory bowel disease, colorectal
cancer, colitis-associated cancer, NER (nucleotide excision repair)
1 Introduction

Colorectal cancer (CRC) is one of the most common malignancies, ranking third

globally in terms of incidence and second in mortality among malignant tumors, and is

the leading digestive system malignancy in terms of both incidence and morbidity (1, 2).

In recent years, the incidence of CRC in China has been increasing year by year, now

ranking second in digestive system incidence and first in morbidity of malignant tumors
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(3–5). In 1863, the German pathologist Rudolf Virchow first

proposed the idea that “tumors originate from chronic

inflammation (6), and previous studies have shown that “tumor-

related inflammation is the seventh major characteristic of

tumors”. According to recent epidemiological investigations, a

variety of tumors are related to inflammation, and chronic

inflammation of the intestinal mucosa is an important high-risk

factor for inducing colorectal cancer (7, 8).

Inflammatory bowel disease (IBD), including ulcerative colitis

(UC) and Crohn’s disease (CD), is a chronic, non-specific, and

recurrent disease that can affect the entire digestive tract. IBD is an

autoimmune disorder that presents as immune hyperactivity

(9–11). As a chronic disease, various intestinal or extraintestinal

complications and/or complications are easy to occur throughout

the course of IBD, including bowel fistula, gastrointestinal

bleeding, and tumors (12). While CD and UC have different

clinical symptoms, they both have characteristics of chronic

inflammation and immune response dysregulation. Colon

cancer induced by inflammation is the most serious

complication of IBD. Based on its pathological mechanisms,

clinical characteristics, and pathological types, colorectal cancer

transformed from colitis is collectively referred to as colitis-

associated cancer (CAC) (13, 14). Studies have shown that

colorectal cancer is the leading cause of death in IBD patients,

accounting for 10%-15% of all-cause mortality in IBD patients.

The risk of IBD patients developing CRC is about three times that

of the general population, and with the expansion of the IBD

patient population, the detected population of IBD-related CRC is

also increasing (15–17). IBD patients face twice the risk

of developing CRC compared to the general population,

accounting for 1-2% of all CRC cases. A meta-analysis

examining UC-associated neoplasia suggests an overall cancer

incidence of 3.7% among IBD patients. Furthermore, the risk of

CAC escalates annually with disease duration, with reported

incidence rates of 2% within 10 years of IBD diagnosis, 8% after

20 years, and 18% after 30 years (18, 19).

Compared with the pathogenesis of sporadic CRC, there are

some obvious differences in the pathogenesis of CAC. The process of

developing sporadic CRC from adenoma to cancer involves early loss

of tumor suppressor gene APC and activation of the typical Wnt/b-
catenin pathway, accompanied by mutation of the oncogene K-ras,

and ultimately, loss of the tumor suppressor gene p53 (20–22). With

the development of multi-omics analysis and the construction of

chronic gastrointestinal inflammatory animal models, more and

more evidence suggests that intestinal inflammation caused by IBD

can induce genetic changes closely related to the development of

CAC, oxidative stress-driven DNA damage, early loss of p53, and

host immune response dysregulation. The development of CAC

follows a complex trajectory, during which DNA damage and

repair are consistently involved (23, 24).

This review provides the current research and data on the

function of ERCC4, emphasizing its potential therapeutic role in

IBD and associated cancer. This study will contribute to a better

understanding of the mechanisms underlying the development
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and progression of IBD and provides crucial information for the

development of related treatment strategies.
2 IBD and the development of
inflammation-associated colorectal
cancer involve DNA damage

DNA damage poses a serious threat to the health of the body,

including DNA mismatches during replication and DNA damage

caused by endogenous reactive oxygen species (ROS). Additionally,

various physical and chemical substances from the external

environment, such as UV radiation and carcinogenic chemicals,

can also attack DNA. Therefore, cells have evolved a DNA damage

response (DDR) to counteract DNA damage (25, 26). The DDR

allows cells to survive in the face of genomic instability or leads to

senescence or programmed cell death of irreparable damaged cells.

If DNA damage cannot be repaired or is repaired incorrectly, it may

be transmitted to daughter cells during cell division, accumulate

over time, and eventually lead to mutations in important genes

(such as activation of oncogenes and inactivation of tumor

suppressor genes), ultimately resulting in the development of

cancer (27, 28). Somatic mutations are an important mechanism

for gene inactivation at the DNA sequence level. Somatic mutations

correlated with DDR pathways are found in some hereditary cancer

syndromes, such as hereditary nonpolyposis colorectal cancer

(Lynch syndrome), as well as hereditary breast and ovarian

cancer (29–31). Besides these inherited syndromes, DDR-related

germ-line mutations have been identified in sporadic cancers as

well. DDR-related genes can also undergo high-frequency somatic

mutations. In a pan-cancer analysis of 17 tumor types, 72 key DDR

genes were found to harbor somatic mutations, with at least 1% of

samples in a given tumor having mutations, and appearing in more

than one type of cancer (32). Research by Chen R found that the

level of DNA damage in UC colon cells is higher compared to the

normal control group, especially in UC patients with dysplasia and

cancer (33).
3 The ERCC4 gene and its
biological functions

As mentioned above, both endogenous and exogenous

carcinogens can cause DNA damage, and the body can repair

damaged DNA through the process of DNA damage repair,

which helps maintain genomic stability and suppress the

development of cancer (26). Different DNA repair mechanisms

have evolved in response to various types of damage to prevent the

accumulation of DNA defects and preserve genetic information.

The DDR system is broadly categorized into three major classes.

The first class is ubiquitous across prokaryotes and eukaryotes and

includes mechanisms such as direct repair, base excision repair

(BER), and mismatch repair (MMR) (34). The second class is
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specific to eukaryotes and primarily evolved to counteract single

and double-strand breaks in DNA, exemplified by homologous

recombination (HR) and non-homologous end joining (NHEJ).

The third class encompasses nucleotide excision repair (NER),

which has evolved to combat DNA damage leading to distortion

of the DNA helical structure, such as UV-induced lesions or

chemical cross-linking (35). NER is the most important pathway

among these repair pathways and can repair cellular damage caused

by DNA double helix distortion (36–39).

Excision repair cross complementation group 4 (ERCC4), also

known as XPF, is located on human chromosome 16p13.12 and

consists of 11 exons, spanning approximately 28.2 kb. ERCC4 is

widely expressed in various normal tissues in mammals, including

the skin, nervous system, reproductive system, endothelial cells, and

various immune cells including T lymphocytes and macrophages

(40). The protein encoded by ERCC4 is one of the key enzymes in

the NER pathway and is involved in the formation of nucleases,

DNA repair, and maintenance of chromosomal stability. The

ERCC1-ERCC4 complex is a dual-subunit structure-specific

endonuclease. This endonuclease specifically cleaves DNA near

the junction between single-stranded and double-stranded DNA,

excising damaged 5’ ends and linking newly synthesized DNA

strands to the intact portion. ERCC1-ERCC4 plays a central role

in NER. Furthermore, ERCC1-ERCC4 contributes to several other

DNA repair pathways, such as repairing double-strand breaks

(DSBs) and interstrand crosslinks (ICLs), possibly due to its

unique catalytic cleavage properties (41, 42).

Studies have shown that ERCC4 often functions as a complex

with ERCC1 in NER, and it is involved in double-strand break repair,

telomere maintenance, and immunoglobulin switching (Figure 1).
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Both ERCC1 and ERCC4 are indispensable for the function of the

ERCC1-ERCC4 complex in NER, although the actual catalytic region

of this complex resides in the ERCC4 protein (43–45).
3.1 The role of ERCC4 in NER

(GG-NER) and transcription-coupled NER (TC-NER) (46). XPC-

RAD23B initiates GG-NER by recognizing DNA distortion, followed

by the assembly of TFIIH, XPA, RPA, XPG, and ERCC1-ERCC4 to

form a pre-incision complex. ERCC1-ERCC4, a key endonuclease,

interacts significantly with XPA during repair in both replicating and

non-replicating cells. TC-NER is triggered by RNA polymerase II

stalling, recruiting repair proteins like CSA, CSB, TFIIH, XPA, and

RPA to the damaged site. ERCC1-ERCC4 and XPG make incisions on

the 5’ and 3’ sides of the lesioned DNA strand, releasing fragments

approximately 27-29 nucleotides in length (47, 48).

Inherited mutations in NER-related genes are associated with UV

sensitivity and cancer susceptibility. NER deficiencies increase

sensitivity to platinum-based chemotherapy due to impaired

interstrand crosslink repair. Monitoring key NER enzyme levels can

aid in patient stratification. Despite potential downregulation effects of

cyclosporine and cetuximab on XPG and ERCC1-ERCC4 expression,

small molecule NER inhibitors remain challenging to develop (49).
3.2 The role of ERCC4 in DSB

DSB can arise from external sources like ionizing radiation and

chemical agents, as well as internal factors during DNA replication,
A B C

FIGURE 1

Schematic representation of the biological functions of the ERCC4/XPF complex. (A) DNA substrate example for the ERCC1-ERCC4 endonuclease.
During NER, the ERCC1-ERCC4 endonuclease introduces a heteroduplex 5′ incision on one strand. The pre-incision complex is shown here,
composed of the transcription factor IIH (TFIIH), XPA, RPA, and XPG. The DNA strand is separated in an ATP-dependent reaction to create a
substrate for ERCC1-ERCC4 cleavage. The ERCC1/ERCC4 complex is recruited to the site of damage, and the subsequent 3′ incision causes a
conformational change in XPG, which catalyzes the 5′ incision around the lesion. The cleaved strand dissociates from the junction in a 5′ to 3′
direction. (B) Interstrand crosslink repair model. Due to replication stalling or with the help of a DNA helicase, damaged DNA forms a Y-structure
near the crosslink site. ERCC1/ERCC4 first cleaves on the 5′ side of one arm of the crosslink and then makes an additional incision on the 3′ side to
complete the repair. Dashed lines represent the invading homologous DNA strand. (C) ERCC1/ERCC4 plays a role in telomere maintenance, where it
degrades overhangs containing 3′G when the function of telomere-binding protein 2 (TRF2) is inhibited.
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recombination, and cellular metabolism. They are among the most

deleterious DNA damages and necessitate repair for genome

stability (50). Cells lacking ERCC1-ERCC4 exhibit heightened

sensitivity to DSB-inducing agents, such as X-rays and gamma

radiation, compared to normal cells. ERCC1-ERCC4 deficiency in

mice and mouse fibroblasts leads to increased gH2AX foci (DNA

damage markers) and chromosomal abnormalities post-ionizing

radiation exposure. DSB repair primarily occurs through non-

homologous end joining (NHEJ) and homologous recombination

(HR) (51, 52). The ERCC1/ERCC4 endonuclease plays a crucial role

in efficient single-strand annealing and gene conversion in

mammalian cells. Specifically, during single-strand annealing,

ERCC1-ERCC4 performs DNA incision. Moreover, ERCC4

interacts with Rad52’s N-terminal DNA binding region

independently of DNA, aiding ERCC1-ERCC4 in cleaving 3’-

overhangs and processing recombination intermediates during

DSB repair. In mammalian cells, ERCC1-ERCC4 is vital for

removing long non-homologous ends targeted for homologous

recombination. ERCC1-ERCC4 may also engage in NHEJ when

substantial 3’-end trimming is necessary at DSB ends, regulated by

DNA-dependent protein kinase (DNA-PK) within the NHEJ

complex (51–53). These observations emphasize the pivotal role

of ERCC1-ERCC4 in DSB repair pathways.

Research has found an increase in DSBs levels in the DNA of

IBD patients (54, 55). Wiebke Lessel et al. discovered that histone

H2AXg could serve as a biomarker for UC-associated colorectal

cancer, used to evaluate DNA damage induced by ROS in UC

patients. The mechanism of its formation remains unclear, possibly

involving changes in colonic epithelial cell apoptosis or cell division

(56). Whether ERCC4 affects the development process of diseases in

IBD and IBD-related CAC through regulating the DSB pathway is

not fully understood at present, and further research is anticipated.
3.3 The role of ERCC4 in BER

Organisms constantly undergo subtle genomic changes due to

endogenous genotoxins like reactive ROS, ionizing radiation, and

environmental alkylating agents. BER pathway primarily handles

minor DNA alterations such as single-strand breaks (SSBs) (57).

Initiated by damaged bases, BER excises and replaces them with

newly synthesized DNA. Apurinic/apyrimidinic endonuclease

(APE) cleaves at the AP site, creating a 3′OH end at the damage

site. DNA polymerase and ligase then seal the gap left by the

damaged base removal. In budding yeast, the absence of AP

endonuclease doesn’t hinder the processing of the 3’ end, relying

on Rad1-Rad10. Similarly, mammalian ERCC1-ERCC4 can remove

3’-phosphoglycolate from DNA’s 3’ end (resulting from oxidative

attack) in vitro. Hence, ERCC1-ERCC4 may act as a backup for

processing oxidatively damaged DNA in mammalian cells (57–59).
3.4 The role of ERCC4 in MMR

MMR is a conservative mechanism addressing mispaired

nucleotides stemming from DNA damage or replication errors.
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Despite the proofreading function of replicative polymerases, some

nucleotides often elude this process, leading to mismatches. MMR

encompasses mismatch recognition, nascent strand incision,

mismatch excision, and repair synthesis. In higher organisms,

MutSa (MSH2-MSH6 heterodimer) or MutSb (MSH2-MSH3

heterodimer) identifies mismatches (60).

Human SLX4 interacts with MSH2 and MSH3, forming MutSb,
crucial for repairing heteroduplex loops in DNA replication.

However, the interaction between SLX4 and MutSb, and their

role in genome stability, was poorly understood until recently.

MutSb is also involved in removing 3’-nonhomologous tails

during single-strand annealing (SSA), vital for repairing DSBs

between direct repeats (60, 61). Repair involves annealing repeats

on both sides of the DSB, resulting in the loss of intervening

sequences, dependent on RAD52. MutSb is pivotal for removing

nonhomologous tails generated during annealing reactions. For

instance, in budding yeast, MutS is recruited to DSB sites via

Rad52. MutSb aids in tail removal by interacting with the yeast

homolog of ERCC4-ERCC1 (Rad1-Rad10) and recruiting them

(60–62).
3.5 The role of ERCC4 in ICLs

Addressing DNA ICLs presents significant challenges due to

their interference with DNA replication and transcription. Cells

lacking ERCC1 and ERCC4 display heightened sensitivity to ICL-

inducing agents like cisplatin. Conversely, deficiencies in other NER

genes result in relatively lower sensitivity to ICL-inducing agents,

underscoring the pivotal role of ERCC1-ERCC4 in ICL repair (63).

Mutations in ERCC4 and ERCC1 have been linked to impairments

in the incision or ‘uncoupling’ stage of ICL repair. ERCC1-ERCC4

enhances nuclease activity during ICL repair through interactions

with SLX4 and ubiquitinated FANCD2. A subset of ERCC4-ERCC1

interacts with SLX1-SLX4 in human cells, facilitated by direct

interaction between ERCC4 and the MEI9 interaction region

(MLR) of SLX4. SLX4 promotes ERCC4-mediated cleavage of

branched DNA structures, including replication forks and ICLs,

consistent with its role in ICL repair. Additionally, SLX4IP is

indispensable for efficient ICL repair by interacting with SLX4

and ERCC4-ERCC1. These findings underscore the importance of

the SLX4-SLX4IP-ERCC4ERCC1 complex in the incision process

during ICL repair (64–66).
3.6 The role of ERCC4 in
telomere maintenance

ERCC1–ERCC4 exhibits a genetic interaction with the telomere

maintenance protein TRF2. Mice overexpressing TRF2 show

hypersensitivity to ultraviolet radiation compared to normal mice,

resulting in telomere loss in their chromosomes. Conversely,

expression of ERCC1-ERCC4 in TRF2-deficient cells leads to

increased chromosomal end fusion (67). Mechanistically, ERCC1-

ERCC4 can cleave at the 3’ end of telomeres, causing telomere

shortening and premature aging in mice. ERCC1-ERCC4 and TRF2
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are associated through interaction with the SLX4 protein and

collectively participate in regulating telomere length. The balance

between ERCC1-ERCC4 and TRF2 expression may be crucial for

expected lifespan and genome stability (68, 69).
4 Diseases and animal models
associated with ERCC4 deletion

Previous studies have shown that ERCC4 gene defects can lead

to genetic instability and carcinogenic effects. There have been

numerous studies both domestically and abroad that have

confirmed the association between ERCC4 gene polymorphisms

and the occurrence of colorectal cancer, gastric cancer, lung cancer,

breast cancer, glioma, and osteosarcoma (70, 71). Arora et al.

demonstrated that lowering ERCC4 protein expression through

shRNA sensitizes cells to DNA cross-linking agents (such as

platinum derivatives), which are widely used in the treatment of

breast cancer, prostate cancer, ovarian cancer, and other cancers

(72, 73). Therefore, defects in the ERCC4 gene may lead to genetic

instability and carcinogenic effects.
4.1 Xeroderma pigmentosum

XP is one of the most prominent diseases caused by NER defects

and is a congenital condition that results in skin damage in sun-

exposed areas of the body. XP patients also have an increased risk of

developing lung and gastrointestinal cancers, suggesting a lack of

NER defense against carcinogens from air and food. Additionally,

approximately 20% of XP patients suffer from neurological disorders

such as neurodegeneration, dementia, and microcephaly. Mutations

in any NER-related enzyme genes (i.e., XPA, XPB, XPC, XPD, XPE,

XPF, XPG) can cause XP. These XP patients exhibit clinical

symptoms before the age of 2 and develop cancer before the age of

10. In contrast, patients with XPF (ERCC4) have milder symptoms,

with later onset of skin cancer, possibly due to the fact that XPF

mutations are usually point mutations occasionally resulting in

frameshift, leading to the unstable truncation of the XPF protein

(74, 75).
4.2 Cockayne syndrome

CS is a severe condition that causes accelerated aging. Common

symptoms include neurodegeneration, intellectual disabilities,

growth retardation, severe cataracts, retinal degeneration,

microcephaly, vascular abnormalities, and pneumonia as a

common cause of death. So far, mutations in the XPB, XPD, XPF,

and XPG genes have been identified as occasional causes of CS. Due

to defects in NER repair mechanisms, these mutations impede

replication and transcription, leading to CS. Even a relatively slight
Frontiers in Endocrinology 05
level of unrepaired mutations within the transcribed genes is

sufficient to significantly shorten lifespan (76, 77).
4.3 Fanconi anemia

FA is a disease characterized by progressive bone marrow failure

and increased susceptibility to cancer. Currently, at least fifteen

proteins have been identified to be associated with FA (78, 79).

Previous studies involved whole-protein-coding gene sequencing of

an FA patient, revealing mutations in the ERCC4 gene. Genetic,

biochemical, and functional analyses of this mutation indicated a

sharp decrease in the function of ERCC4 in interstrand crosslink

repair (80). Furthermore, another case presented a combined

phenotype of FA, XP, and CS symptoms. These findings highlight

the multifunctional role of ERCC4 beyond DNA repair.

Currently, diseases associated with ERCC4 deficiency such as XP,

CS, FA, etc., are closely linked to defects in the NER pathway.

Therefore, repairing or compensating for NER pathway function

may directly target the pathogenic mechanisms of these diseases.

Effective treatment strategies are currently lacking, with symptomatic

treatment being the mainstay (81). Research on causal treatments

mainly involves stem cell therapy, gene therapy, and improving

mitochondrial function, among others, which are still under further

investigation (82). However, studies have shown that the combination

therapy of PARP inhibitors and topoisomerase I toxins may be most

effective against tumors lacking ERCC1-XPF. Platinum-based drugs

like cisplatin, carboplatin, and nitrosoureas repair DNA damage

induced by endogenous and environmental DNA-damaging agents

through the NER pathway, thereby safeguarding the genome. Several

clinical studies have demonstrated the efficacy of NER pathway-based

treatments for diseases such as bladder cancer, soft tissue sarcoma,

hepatoblastoma (83). However, NER pathway involvement

encompasses multiple proteins and steps, and treatment involves

complex molecular biology mechanisms, posing significant technical

challenges that may require highly specialized medical professionals

and laboratory conditions. Targeted therapy against this pathway may

require precise regulation and substantial clinical trials to establish its

safety and avoid unnecessary side effects (49, 84–86).
4.4 Construction of ERCC4 gene knockout
mouse model

Previous research has mainly focused on the construction of

ERCC1 gene knockout mice, with less emphasis on ERCC4 gene

knockout mouse models. Tian M et al. generated XPF-mutant mice

with a nonsense mutation designed in exon 23 to mimic human

ERCC4 gene deletion. Homozygous pups had a weight that was 27%

of the wild-type control or heterozygous mutants around 15 days

after birth. Homozygous ERCC4 mutant mice died at approximately

3 weeks of age. Their organs appeared morphologically normal but

noticeably smaller. However, hepatocytes from homozygous mutant
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mice contained enlarged nuclei. This severe phenotype resembles that

of ERCC1-mutant mice, suggesting the role of ERCC1-ERCC4 as a

complex (87). Janin Lehmann et al. successfully knocked out ERCC4

using CRISPR/Cas5 technology in fetal lung fibroblasts, which

resulted in significantly increased sensitivity to cisplatin.

Additionally, reduced NER and ICL repair capacity in these cells

were assessed through genetic testing. Importantly, ERCC1 could not

be detected in the nuclei of XPF-knockout cells, suggesting that a

functional XPF/ERCC1 complex is necessary for ERCC1 to enter the

nucleus (88).
5 ERCC4 as a potential regulator in
IBD-related CAC development

The development of CAC may involve the formation of

abnormal crypt foci, polyps, adenomas, and cancerous tissues

(89–91). CAC initiation factors associated with IBD primarily

involve repeated cycles of damage and healing in colonic

epithelial cells (IECs). Factors contributing to CAC pathogenesis

include the degree and duration of chronic inflammation, genetic

susceptibility, and interactions with the microbiota. Over the past

decade, significant progress has been made in understanding the

molecular mechanisms underlying CAC development, thanks to the

application of genomic, epigenomic methods, and genetically

modified mouse models. However, the exact molecular

mechanisms underlying the transition from inflammation to

cancer remain unclear (13, 14, 23).
5.1 ERCC4 may be a potential regulatory
factor for genetic mutations in IBD-
related CAC

5.1.1 p53 regulates the ERCC family and
influences DNA repair

UC patients are more prone to develop colorectal cancer (13). It

has been reported that persistent inflammation in the colon leads to

increased cell numbers requiring repair due to intestinal barrier

damage. Molecularly, telomere shortening, chromosomal instability,

and p53 gene mutations also drive tumor development (92, 93).

Telomeres are located at the ends of chromosomes and protect

chromosome ends from DNA damage. Studies have found that

telomere depletion plays two opposite roles in cancer: as a tumor

suppressor mechanism when DNA damage checkpoints are intact,

and as a mechanism for generating chromosomal instability when

DNA damage checkpoint functions are impaired (54, 94, 95).

Telomere length decreases with age in most human tissues,

including the colon, and it has been hypothesized that short

telomeres may partially explain the link between cancer and aging

(96, 97). Previous studies have found genetic interactions between

ERCC1–ERCC4 and the telomere maintenance protein TRF2. Mice

overexpressing TRF2 are more sensitive to UV radiation, resulting in

telomere loss. Conversely, ERCC1-XPF expression in TRF2-deficient

cells leads to increased fusion of chromosome ends (98, 99). Previous

studies have shown that UC patients have shortened telomeres in
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colon cells, particularly in those progressing to dysplasia and cancer.

This hypothesis was supported by the observation of shorter

telomeres in UC patients’ colonic epithelial biopsies compared to

normal control groups (100, 101). Rosa et al. found that telomeres

were shortest in low-grade dysplasia (LGD) samples from UC

patients, longer in high-grade dysplasia (HGD) samples compared

to LGD samples, showing the opposite result. P53 expression was

lower in non-dysplastic biopsies but gradually increased in LGD and

HGD (102). These results suggest a progression model of

inflammation, telomere shortening, and high levels of DNA

damage activation leading to colonic senescence in UC. Senescence

acts as a tumor suppressor mechanism to prevent further

development of colitis cells. Ultimately, some colonic cells bypass

this mechanism and extend telomeres through activation of

telomerase and loss of p53 function, resulting in progression to

HGD and UC-related CAC (103).

Studies have shown that NER is tightly regulated by p53. In the

case of NER, p53 affects DNA repair by activating downstream

effectors such as gadd45a and p48-XPE. The observation of

increased overall genomic repair with p53 supports the possibility

of p53-dependent DNA repair in vivo (104). Recent studies have

also found that p53 can regulate ERCC5 for NER (105). Watanabe

et al. demonstrated that telomere shortening triggers DNA damage

signaling, enhancing p53 transcriptional activity and inducing

senescence or apoptosis, thereby inhibiting telomerase activity in

IECS cells (106). Nancy et al. found downregulation of mRNA

expression of telomere-binding proteins TRF1 and TRF2 in

ulcerative colitis and Crohn’s disease, suggesting a role for these

telomere-binding proteins in telomere regulation and possibly

leading to telomere fusion and chromosomal abnormalities

observed in UC (Figure 2) (107).

Although there is currently no specific mechanism-related

study on the regulation of ERCC4 in the development of IBD-

related CAC through p53, based on its role as a member of the XP

family and its biological functions in DSB repair pathways and

telomere maintenance pathways, it is hypothesized that ERCC4

may be a potential regulatory factor in the occurrence and

development of ulcerative colitis and related cancers.
5.1.2 ERCC4 may have potential value in inducing
IBD intestinal epithelial damage and IBD-related
CAC through the regulation of USP37 expression

It is known that USP37 is a member of the deubiquitinase family

and can prevent the degradation of cancer proteins by

deubiquitinating them in cancer. The first documented function of

USP37 stems from Dixit and colleagues, who identified it in a

proteomic screening where USP37 was observed to facilitate the

interaction of the Anaphase Promoting Complex/Cyclosome

(APC/C) with its associated proteins (108, 109). The deubiquitinase

activity of USP37 is known to contribute to the timely onset of S-

phase and progression through mitosis. Further analysis revealed that

cells depleted of USP37 exhibit elevated levels of replication stress and

DNA damage markers, including gH2A.X and 53BP1, particularly

under conditions of replication perturbation. Depletion of USP37

also reduces cell proliferation and increases sensitivity to drugs
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inducing replication stress. Investigations into the heightened

sensitivity revealed instability of checkpoint kinase 1 in the absence

of USP37, thereby compromising its function (109, 110).

Mechanistically, Chenming Wu et al. discovered that DNA double-

strand breaks promote the phosphorylation of USP37 by ATM and

enhance the binding between USP37 and the RecQ helicase BLM

(111). Through bioinformatics analysis, we predicted that ERCC4

may regulate the expression of USP37.

Previous reports have suggested that USP37 may participate in

the process of DNA damage repair, but its specific role in nucleotide

excision repair remains unclear. Through bioinformatics analysis,

we predicted that ERCC4 may regulate the expression of USP37

(111–114). The interaction and mode of action between ERCC4 and

USP37 in the development of IBD have not been reported. Our

previous experiments revealed that the forkhead transcription

factor FOXO4 downstream of the PI3K/AKT pathway can

regulate the invasion and metastasis of colorectal cancer by

participating in the APC2/b-catenin axis (115). Overexpression of

FOXO4 (tumor suppressor) can reduce the expression of Snail

(116). Snail is a zinc finger transcription factor that can inhibit the

transcription of epithelial cell calcium adhesion protein (E-

cadherin) and promote the process of epithelial-mesenchymal

transition (EMT) (117, 118). Previous studies have also

emphasized the role of USP37 in regulating Snail in EMT. USP37

plays an important role in promoting cancer cell migration,

downregulating E-cadherin, and upregulating wave protein by

stabilizing Snail expression (119–121). Wu et al.’s recent research

reported the detailed mechanism of USP37-mediated SNAI1

deubiquitination in gastric cancer (GC) cells (Figure 3) (119). The

specific role of the ERCC4-USP37-Snail pathway in the mucosal

barrier injury and repair process induced by IBD inflammation is

still unclear and requires further experimental confirmation.
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5.2 ERCC4 may be involved in regulating
chronic inflammation and
immune microenvironment

5.2.1 Oxidative stress damage
Previous studies have suggested that persistent intestinal

chronic inflammation stimulation can lead to genetic mutations

in intestinal epithelial cells, malignant cell proliferation, and the

production of a large amount of activated immune cells generating

ROS and reactive nitrogen intermediates, which can induce DNA

damage or mutation. Inhibiting nitric oxide synthase activity can

reduce adenoma formation and tumor occurrence (122, 123).

Oxidative stress escalation is a hallmark of chronic inflammation,

as activated cells of the innate immune system release a variety of

reactive oxygen and nitrogen species (RONS) into the tissue

microenvironment. These species include superoxide, hydrogen

peroxide, hydroxyl radicals, and nitric oxide. RONS interact with

cellular DNA, leading to diverse forms of DNA damage such as

single and double-strand breaks, abasic sites, and nucleotide

modifications. These damages contribute to tumorigenesis by

influencing oncogenes or tumor suppressor genes. Thus,

maintaining genomic integrity against ROS is essential for normal

cellular function and the preservation of internal balance. in the

realm of IBD, research underscores the association between elevated

levels of RONS and disease activity, coupled with diminished

antioxidant levels. Notably, heightened nitric oxide concentrations

correlate with oxidative damage observed in both active and

inactive IBD tissue samples (124, 125).

In human IBD, research indicates a correlation between

heightened levels of RONS and disease activity, coupled with

reduced antioxidant levels. For example, 8-oxo-7,8-dihydro-2’-

deoxyguanosine, a base modification sensitive to oxidative stress,
FIGURE 2

Graphical representation of stress signal-mediated dysregulation of p53 expression during progression from colitis to cancer. Various endogenous or
exogenous stress signals are detected, which are transmitted by proteins in different signaling pathways within the cell leading to activation or
inhibition of p53. Inflammation and aging are associated with decreased expression and/or activity of p53 in cells or tissues, resulting in impairment
or inactivation of the p53 pathway and stress response. DNA damage is associated with increased expression and/or activity of p53 due to extensive
ROS stimulation in the tissue. LGD, Low-grade dysplasia; HGD, High-grade dysplasia; ARF, Alternate reading frame; ATM, Ataxia telangiectasia
mutant; ATR, Ataxia telangiectasia related; CHK, Checkpoint; ROS, Reactive oxygen species; NF-kB, Nuclear factor-kB.
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is frequently detected in inflamed and dysplastic tissues but is less

prevalent in healthy mucosa (126). Likewise, increased

concentrations of nitric oxide are associated with oxidative

damage observed in both active and inactive IBD tissue samples.

DDR are activated to address mutations triggered by reactive

oxygen species, employing diverse repair mechanisms including

NER (127). Moreover, NER modulates cell proliferation by

instigating premature cellular senescence, an irreversible halting

of the cell cycle process that curtails the amplification of defective

DNA and the proliferation of mutant clones. Notably, in IBD, Sohn

et al. observed augmented DDR (H2A.Xg, phosphorylated

checkpoint kinase 2) and aging (heterochromatin protein 1 g)
markers in inflamed tissue specimens from IBD patients (128, 129).

In addition, oxidative stress can also activate DNA nucleotide

excision repair enzymes, including ERCC4. Stephen P et al. found

that mice fed with azoxymethane (AOM) alone showed a significant

increase in ERCC4 expression in intestinal epithelial cells after 5

weeks, suggesting that the DNA repair program is induced and

maintained in colonic tissue in response to the DNA-damaging

agent AOM-induced intestinal injury. However, they found that

after inducing chronic colitis in mice using DSS or AOM/DSS

multiple times, the expression of DDR genes MLH1, Anapc1, and

ERCC4 mRNA significantly decreased, suggesting that the

downregulation of ERCC4 expression after chronic colitis may be

related to the occurrence of early tumors, which warrants further

exploration (130). These results indicate that tissue-specific ERCC4

gene deletion triggers the gradual accumulation of persistent

cytotoxic DNA damage.

5.2.2 Immune cell-mediated immune response
During inflammation, the fate of cells depends on the relative

balance between pro-tumor immune response and anti-tumor
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immune response. Like other solid tumors, colon inflammation-

associated tumors are infiltrated by various types of immune cells.

In other types of cancer, T cell infiltration is associated with poor

prognosis. However, in the pathogenesis of CAC, immune

surveillance leads to the detection and clearance of aberrant crypt

foci, keeping the tumor in a dormant state (131, 132). Immune

surveillance is crucial in the process of cancer cell metastasis, and

the core role of cancer immune surveillance is attributed to

cytotoxic CD8+ cells. After tumor-specific antigens are presented

by dendritic cells (DC), CD8+ T cells are activated and release a

large amount of cytotoxic cytokines, inducing tumor cell apoptosis

(133, 134).

Programmed death 1 (PD-1) is an immune receptor expressed

on activated CD4+ T cells, CD8+ T cells, and peripheral B cells. PD-

1 inhibits T cell proliferation and interferon-gamma (IFN-g)
production. Programmed death ligand 1 (PD-L1) has been

identified as the ligand for PD-1. The main function of PD-1/PD-

L1 interaction is to regulate the autoimmune response in peripheral

tissues (135, 136). It has been reported that human PD-1 gene or

single nucleotide polymorphisms (SNPs) associated with enhanced

PD-1 expression are related to human autoimmune diseases.

Therefore, the interaction between PD-1 and PD-L1 is crucial for

controlling the overall immune response in the human body

(137, 138). PD-L1 is regulated by various inflammation-related

transcription factors, including STAT1/3, interferon regulatory

factor 1 (IRF-1), and nuclear factor kappa-B (NF-kB). Increasing
evidence suggests that exogenous cellular stress induces

upregulation of PD-L1 in cancer (139–142). IBD is a chronic

inflammatory disease associated with DNA damage, and the

DNA double-strand break repair pathway is involved in IBD-

related dysplasia or CAC. Previous studies have found that mice

with ERCC4 deficiency and mouse fibroblasts showed increased
FIGURE 3

FOXO4 may be involved in the progression from IBD to inflammatory CRC through its mediation of ERCC4. External stimuli such as DNA damage
can activate p53, which regulates the FOXO4 through APC2. FOXO4 may mediate the involvement of ERCC4 in the occurrence and progression of
IBD to inflammatory CRC, participating in the process of DNA repair after cellular DNA damage. Additionally, FOXO4 can bind to p53 to regulate
DNA repair after damage.
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H2AXg and chromosomal abnormalities such as radial structures,

gaps, and breaks, which are manifestations of double-strand DNA

breaks (DSB) after exposure to ionizing radiation (76). Naoya

Ozawaet al. found that the expression of PD-L1 in UC and UC-

related dysplasia/colorectal cancer tissues was significantly

upregulated compared to sporadic colorectal cancer tissues and

corresponding non-cancerous mucosa. In addition, the expression

of PD-L1 in tumor-infiltrating CD8+ T lymphocytes in UC-related

dysplasia/CAC tissues was higher than that in SCRC tissues (143).

They also found that the upregulation of PD-L1 was associated with

increased expression of gH2AX and IRF-1 in clinical UC-related

dysplasia and colorectal cancer tissues, but not in SCRC tissues or

corresponding non-cancerous UC mucosa. In cancer cells, PD-L1 is

associated with the activation of DNA damage repair kinases such

as ATR and ATM (Figure 4) (144, 145). Combining the biological

role of ERCC4 in the DSB repair pathway, it can be hypothesized

that ERCC4 affects the expression of PD-L1 on CD8+ T cells

through the DSB/IRF-1 signaling axis in the intestinal tract of

patients with UC and UC-related dysplasia/CAC, and may serve as

a biomarker for inflammatory DNA damage in the future.

Macrophages have been proposed to play a promoting role in the

development of IBD to tumors (146). M1 macrophages promote the

tumor microenvironment by producing pro-tumor cytokines and have

a proliferative effect on colon cells through the NF-kB and STAT3

pathways. Macrophage infiltration has also been observed in IBD-

related CAC, and the level of macrophage infiltration is positively

correlated with the degree of pathology (147, 148). Another study

showed that the percentage of M2-like macrophages significantly

increased in IBD-related cancer, indicating that macrophages

polarize into anti-inflammatory or immunosuppressive phenotypes
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during the transition from dysplasia to cancer. Therefore, macrophages

display both pro-inflammatory and anti-inflammatory mechanisms

that contribute to IBD-related cancer (149–151). It can be imagined

that M1macrophages initially invade the inflamed intestinal mucosa in

IBD and contribute to carcinogenesis by producing pro-inflammatory

mediators. As inflammation becomes chronic, M1-like macrophages

acquire the M2-like immune suppressive phenotype, which may

further accelerate carcinogenesis. Further research is needed to better

characterize the role of macrophages in IBD-related cancer.

Goulielmaki et al. conditionally depleted the expression of the

ERCC1-ERCC4 complex in macrophages of mice, which led to Golgi

dispersion, endoplasmic reticulum expansion, autophagy, and

exosome release in infiltrated macrophages, causing metabolic

abnormalities and increased glucose intake in vivo. Additionally,

they observed macrophage infiltration in tissues, which promotes

the release of cytokines such as IL6 and IL8, triggering chronic

inflammation. Lymphocyte and monocyte aggregation was observed

in the liver, lungs, and kidneys of mice, with elevated expression of

cell adhesion molecules ICAM-1 and VCAM-1 (152). These findings

suggest a potential role of ERCC4 in modulating macrophage

function and influencing the progression of IBD-associated

inflammation and carcinogenesis. However, the exact mechanisms

and whether ERCC4 affects the process requires further investigation,

considering its crucial role in the NER repair pathway.

5.2.3 Cytokine-mediated immune response
During the development of CAC, intestinal epithelial cells

(IECs) play two main roles. First, they utilize highly specialized

cell types such as Paneth cells and goblet cells to prevent the

invasion of intestinal pathogens. Disruption of the functional
FIGURE 4

ERCC4 may serve as an important regulatory factor for the upregulation of PD-L1 expression induced by DNA damage signals and DDR defects.
DNA damage and repair signals can induce the expression of PD-L1 mRNA, which depends on the activity of the ATM-ATR/CHK1 signaling pathway,
while DDR defects may be associated with the upregulation of PD-L1 induced by DSBs. In the case of immune response, external stimuli such as
DNA damage can activate the downstream STAT1/3-IRF through the ATM-ATR/CHK1 signaling pathway, which is crucial for the production of PD-L1
mRNA that can be activated at the transcriptional level. p53 may be involved in the process of DNA repair after cellular DNA damage through its
mediation of ERCC4. Meanwhile, immune cells induced by inflammation (including large amounts of ROS from oxidative stress), such as CD8+ T
cells, can secrete large amounts of pro-inflammatory cytokines and participate in the regulation pathway of PD-L1 by activating the ATM-ATR/CHK1
signaling pathway.
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homeostasis of IECs leads to the infiltration and overactivation of

innate immune cells. Additionally, IECs act as both producers and

participants in cytokine and chemokine signaling, which affects the

proliferation, migration, and survival of epithelial cells. This creates

a favorable local environment for epithelial transformation and

tumor development (153–155). The influx of immune cells into the

intestinal epithelial layer and lamina propria forms a unique

inflammatory microenvironment. Studies have shown that tumor-

infiltrating monocytes, macrophages, and neutrophils secrete large

amounts of pro-inflammatory cytokines such as IL-6, IL-8, and

TNF-a, promoting tumor development in CAC models (155, 156).

In a CAC mouse model, treatment with IL-6 neutralizing antibodies

effectively inhibits chronic intestinal inflammation, while IL-6

knockout reduces tumor burden and significantly promotes IEC

apoptosis (157–159). It has been found that XPF/XPG-mediated

DNA damage can promote the expression of NF-kB target genes

and host cell survival, while the expression of NF-kB target genes

further promotes the secretion of inflammatory and cytokine

factors such as TNF-a and IL-6, exacerbating the disease. Studies

have shown the presence of high levels of IL-6, IL-8, and TNF-a in

the serum of IBD patients. TNF-a, produced mainly by monocytes,

macrophages, NK cells, and T lymphocytes, is an inflammatory

cytokine that, upon binding to its receptor, activates NF-kB in cells

through signal transduction. Activation of NF-kB upregulates the

expression of interleukins IL-1 and IL-6, inducing inflammation

and promoting cell survival, thus amplifying the inflammatory

cascade reaction. This leads to the disruption of tight junctions

and apoptosis of epithelial cells in the intestinal epithelium,

impairing the intestinal mucosal barrier, and ultimately causing

intestinal mucosal damage (160, 161). As mentioned earlier,

patients with XP have a significantly higher risk of developing

lung and gastrointestinal cancers, but the likelihood of developing

IBD-associated CAC is still unknown. As a member of the XP

family, it is currently unclear whether ERCC4 can affect the disease

progression through the induction of cytokine secretion in the

development of IBD and related CAC. Further research is needed to

explore this relationship.
6 Conclusion

ERCC4 (XPF) and ERCC1 play important roles in genome

maintenance as heterodimers involved in various DNA repair

pathways and telomere maintenance. Due to the complexity of

their many functions observed in mice and humans, it is difficult to

individually elucidate the importance of each function. Further

research is aimed at linking specific structural domains or amino

acid sequences of the complex to certain functions. It is becoming

increasingly clear that although ERCC4 is crucial for genome

maintenance, elevated levels of ERCC4 mRNA and protein in

cancer patients may paradoxically result in chemotherapy

resistance and poor prognosis. The ERCC1/ERCC4 heterodimer

thus becomes both a potentially interesting target for predicting

treatment outcomes in patients and a potential target for drug

therapy. The incidence of IBD has been increasing worldwide over

the past 20 years. Importantly, IBD currently cannot be cured and is
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a lifelong disease, progressively worsening intestinal inflammation

ultimately leading to structural and functional impairments in the

digestive tract, seriously affecting patients’ growth, reproduction, as

well as learning, working, and daily life. IBD, especially UC, is

strongly associated with gastrointestinal tumors, particularly CRC,

which can develop as colorectal cancer associated with IBD (CAC).

Despite previous studies on the relationship between inflammation

and tumors receiving significant attention from researchers

worldwide, the mechanism by which ERCC4 influences the

occurrence and development of IBD and subsequently leads to

colorectal cancer at the protein level remains unclear. Further

research is needed to understand how to control and prevent the

occurrence and progression of inflammation-related colorectal

tumors and reduce the incidence of inflammation-related

colorectal tumors.
Author contributions

RS: Investigation, Methodology, Writing – original draft. SW:

Investigation, Methodology, Writing – original draft. YJ:

Investigation, Writing – original draft. GZ: Investigation, Writing –

original draft. ML: Methodology, Supervision, Writing – review &

editing. YS: Methodology, Project administration, Supervision,

Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work is

supported by the National Natural Science Foundation of China

(Grant No. 82070565).
Acknowledgments

All authors acknowledge biorender for generating the figures

(Figures 1, 3, 4).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1348216
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Shi et al. 10.3389/fendo.2024.1348216
References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers
in 185 countries. Ca: A Cancer J Clin. (2018) 68:394–424. doi: 10.3322/caac.21492

2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36
cancers in 185 countries. Ca: A Cancer J Clin. (2021) 71:209–49. doi: 10.3322/
caac.21660

3. Li N, Lu B, Luo C, Cai J, Lu M, Zhang Y, et al. Incidence, mortality, survival, risk
factor and screening of colorectal cancer: a. Cancer Lett. (2021) 522:255–68.
doi: 10.1016/j.canlet.2021.09.034

4. Zheng R, Zeng H, Zhang S, Chen T, Chen W. National estimates of cancer
prevalence in China, 2011. Cancer Lett. (2016) 370:33–8. doi: 10.1016/
j.canlet.2015.10.003

5. Lin S, Gao K, Gu S, You L, Qian S, Tang M, et al. Worldwide trends in cervical
cancer incidence and mortality, with predictions for the next 15 years. Cancer. (2021)
127:4030–39. doi: 10.1002/cncr.33795

6. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma
generation and wound healing. New Engl J Med. (1986) 315:1650–59. doi: 10.1056/
NEJM198612253152606

7. Singh N, Baby D, Rajguru JP, Patil PB, Thakkannavar SS, Pujari VB.
Inflammation and cancer. Ann Afr Med. (2019) 18:121–26. doi: 10.4103/
aam.aam_56_18

8. Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and
consequences. Immunity. (2019) 51:27–41. doi: 10.1016/j.immuni.2019.06.025

9. Digby-Bell JL, Atreya R, Monteleone G, Powell N. Interrogating host immunity to
predict treatment response in inflammatory bowel disease. Nat Rev Gastroenterol
Hepatol. (2020) 17:9–20. doi: 10.1038/s41575-019-0228-5

10. Kucharzik T, Ellul P, Greuter T, Rahier JF, Verstockt B, Abreu C, et al. Ecco
guidelines on the prevention, diagnosis, and management of infections in. J Crohn’s
Colitis. (2021) 15:879–913. doi: 10.1093/ecco-jcc/jjab052

11. Kelsen JR, Sullivan KE. Inflammatory bowel disease in primary
immunodeficiencies. Curr Allergy Asthma Rep. (2017) 17:57. doi: 10.1007/s11882-
017-0724-z

12. Kaplan GG, Windsor JW. The four epidemiological stages in the global evolution
of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. (2021) 18:56–66.
doi: 10.1038/s41575-020-00360-x

13. Rogler G. Chronic ulcerative colitis and colorectal cancer. Cancer Lett. (2014)
345:235–41. doi: 10.1016/j.canlet.2013.07.032

14. Shah SC, Itzkowitz SH. Colorectal cancer in inflammatory bowel disease:
mechanisms and management. Gastroenterology. (2022) 162:715–30. doi: 10.1053/
j.gastro.2021.10.035

15. Burke KE, Nayor J, Campbell EJ, Ananthakrishnan AN, Khalili H, Richter JM.
Interval colorectal cancer in inflammatory bowel disease: the role of guideline
adherence. Dig Dis Sci. (2020) 65:111–18. doi: 10.1007/s10620-019-05754-9

16. Cohen-Mekelburg S, Schneider Y, Gold S, Scherl E, Steinlauf A. Advances in the
diagnosis and management of colonic dysplasia in patients with inflammatory bowel
disease. Gastroenterol Hepatol. (2017) 13:357–62. doi: 10.1056/NEJM198612253152606
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