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Introduction: Preeclampsia is a disease with an unknown pathogenesis and is

one of the leading causes of maternal and perinatal morbidity. At present, early

identification of high-risk groups for preeclampsia and timely intervention with

aspirin is an effective preventive method against preeclampsia. This study aims to

develop a robust and effective preeclampsia prediction model with good

performance by machine learning algorithms based on maternal

characteristics, biophysical and biochemical markers at 11–13 + 6 weeks’

gestation, providing an effective tool for early screening and prediction

of preeclampsia.

Methods: This study included 5116 singleton pregnant women who underwent

PE screening and fetal aneuploidy from a prospective cohort longitudinal study in

China. Maternal characteristics (such as maternal age, height, pre-pregnancy

weight), past medical history, mean arterial pressure, uterine artery pulsatility

index, pregnancy-associated plasma protein A, and placental growth factor were

collected as the covariates for the preeclampsia prediction model. Five

classification algorithms including Logistic Regression, Extra Trees Classifier,

Voting Classifier, Gaussian Process Classifier and Stacking Classifier were

applied for the prediction model development. Five-fold cross-validation with

an 8:2 train-test split was applied for model validation.

Results:We ultimately included 49 cases of preterm preeclampsia and 161 cases

of term preeclampsia from the 4644 pregnant women data in the final analysis.

Compared with other prediction algorithms, the AUC and detection rate at 10%

FPR of the Voting Classifier algorithm showed better performance in the

prediction of preterm preeclampsia (AUC=0.884, DR at 10%FPR=0.625) under

all covariates included. However, its performance was similar to that of other

model algorithms in all PE and term PE prediction. In the prediction of all

preeclampsia, the contribution of PLGF was higher than PAPP-A (11.9% VS

8.7%), while the situation was opposite in the prediction of preterm

preeclampsia (7.2% VS 16.5%). The performance for preeclampsia or preterm
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preeclampsia using machine learning algorithms was similar to that achieved by

the fetal medicine foundation competing risk model under the same predictive

factors (AUCs of 0.797 and 0.856 for PE and preterm PE, respectively).

Conclusions: Our models provide an accessible tool for large-scale population

screening and prediction of preeclampsia, which helps reduce the disease

burden and improve maternal and fetal outcomes.
KEYWORDS

preeclampsia, machine learning, cohort, voting classifier, competing risk model
1 Introduction

Pre-eclampsia (PE) is one of the great obstetrical syndromes (1–3)

and affects 2–5% of pregnancies worldwide. PE is a major cause of

maternal and perinatal morbidity and mortality (4, 5), accounting for

70000 maternal deaths and 500000 fetal deaths worldwide every year

(6). The pathogenesis of PE remains unclear and curative treatments

are limited in clinical practice, with placental ischemia, endothelial

dysfunction, and immune maladaptation being possible mechanisms

leading to PE (7–9). Previous researches showed that early intervention

with aspirin given from 12 gestational weeks can effectively reduce the

occurrence of PE (10, 11). Thus, accurately predicting and identifying

high-risk groups of PE during the first trimester of pregnancy is

beneficial for timely prevention strategies and improving maternal and

fetal outcomes. The prevailing strategy for PE screening involves

identifying risk factors based on maternal demographic

characteristics and medical history (12, 13). As outlined in the

guidelines from the American College of Obstetricians and

Gynecologists (ACOG), Obstetrics and Gynecology branch of the

Chinese Medical Association, if the pregnant women exhibit any

high-risk factors (like the history of PE, chronic hypertension, renal

disease, type 1 or 2 diabetes and autoimmune disease etc.) or if they

have at least two moderate-risk factors (such as age≥40 years,

nulliparity, etc.) they should take asplin (14, 15). An increasing body

of evidence suggests that the incorporation of maternal history with

some physical signs, such as mean arterial pressure (MAP), uterine

artery pulsatility index (UtA-PI), and biomarkers such as serum
ege of Obstetricians and

terine artery pulsatility
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pregnancy-associated plasma protein A (PAPP-A), and serum

placental growth factor (PLGF) will improve the prediction efficiency

of PE. The Competing risks model in screening for PE maternal

characteristics and medical history established by wright indicates that

the model-based Bayes theorem using the combination of a priori risk

from maternal characteristics and the biomarkers results greatly

improved the overall screening performance of PE (16, 17).

Recently, Machine Learning (ML), a subset of artificial

intelligence, has emerged as a revolutionary tool in the realm of

complex diseases prediction and diagnosis (18, 19). With the

capacity to process vast amounts of data and extract meaningful

patterns, ML algorithms have been instrumental in early disease

detection, enhancing diagnostic accuracy, and offering insights

beyond the capabilities of traditional methods. Ansbacher-

Feldman Z (19) and Gil MM (20) research have found that

machine-learning models utilizing neural networks can effectively

screen for PE with high accuracy, using maternal characteristics and

raw biomarker data. Melinte-Popescu AS’s study (21) included four

machine learning-based models: decision tree (DT), naïve Bayes

(NB), support vector machine (SVM), and random forest (RF) for

PE screening in the first trimester, the study indicates that machine

learning-based models could be useful tools for PE prediction in the

first trimester of pregnancy. Torres-Torres J (22) study also finds

that elastic net regression offers a potential solution for developing

accurate and efficient prediction models for PE and offers significant

clinical benefits. The predictive model performance of PE may vary

among different ethnic groups. Currently, there are few studies on

developing machine learning algorithm-based prediction models

specifically for Chinese population cohorts. Liu M study (23) shows

that machine learning, particularly using RF, accurately predicts PE

by using clinical history and prenatal screening results in a

retrospective cohort study in China.

In this study, we develop predictive models for PE using new

ML techniques such as the Extra Trees Classifier (ETC), Voting

Classifier (VC), Gaussian Process Classifier (GPC), and Stacking

Classifier (SC) based on prospective cohort study in China. These

advanced algorithms offer more nuanced and potentially more

accurate predictive capabilities compared to traditional machine

learning algorithms.
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2 Materials and methods

2.1 Study population

This was a prospective cohort longitudinal study from early

pregnancy within 14 weeks of gestation (with a crown-rump length

of 45–84 mm) to childbirth for PE studybased on the combined

screening for fetal aneuploidy in early pregnancy. This study

included 5116 singleton pregnant women who underwent PE

screening and fetal aneuploidy at the affiliated Nanjing Drum

Tower Hospital of Nanjing University Medical School from

January 2017 to September 2020. This study excluded patients

with incomplete information (including 275 missing PLGF data

and 34 missing UtA-PI data), and those who experienced natural

miscarriages before 28 weeks (56 cases). Also, patients who

terminated their pregnancy for personal reasons (6 cases), those

who terminated due to fetal malformations or chromosomal

abnormalities (18 cases), and those lost to follow-up (83 cases)

were excluded. A total of 4,644 participants were ultimately

included in this analysis. This study protocol was approved by the

institutional review board of Nanjing Drum Tower Hospital (2016–

113–01). This study followed the TRIPOD statement for

reporting (24).
2.2 Model covariates and outcome

Covariates in the prediction model included (1) maternal

demographic characteristics (maternal age, height, pre-pregnancy

weight, nulliparous, method of conception [natural; ovulation

induction; in-vitro fertilization-embryo transfer], family history

of PE, and smoking); (2) past medical history (history of PE,

history of chronic hypertension, history of chronic kidney disease,

type 1 or type 2 diabetes, history of systemic lupus erythematosus

and/or antiphospholipid syndrome); (3) Biophysical markers

(MAP, UtA-PI); (4) Biochemical markers (PAPP-A and PLGF).

The measurement of biophysical and biochemical markers was

conducted between 11 weeks and 13 + 6 weeks of gestation.

The reasons for choosing four biophysical or biochemical

markers as predictive factors are as follows: UtA-PI is a measure

of the resistance to blood flow in the uterine arteries. High

resistance (high UtA-PI) suggests poor placentation, as it reflects

the inadequate remodeling of spiral arteries. The uterine blood

supply consists of a vascular structure decreasing in size as it

progresses through the myometrium and endometrium,

culminating in spiral arteries. During early pregnancy, >100 spiral

arteries are remodeled into high-flow uteroplacental vessels with

low resistance, to ensure the provision of an adequate blood supply

to the developing fetus. These vascular changes are therefore crucial

for decreasing maternal vascular resistance and increasing

uteroplacental blood flow by up to ten-fold during this time

(from ~50 ml per minute pre-pregnancy to ~500 ml per minute

upon completion of placentation). Impaired or incomplete spiral

artery remodeling is implicated in PE, intrauterine growth

restriction and recurrent miscarriage, due to various degrees of

insufficient blood flow to the fetus. In PE pregnancies, abnormal
Frontiers in Endocrinology 03
spiral artery remodeling with incomplete placentation and poor

placental perfusion, can lead to maternal systemic hypoxia and

hypertensive pathology, activation of the maternal renal and

cardiovascular systems with endothelial damage, and potential

end-organ damage (25–28). MAP is a composite measure of

cardiac output and systemic vascular resistance. Systemic vascular

resistance is increased due to endothelial dysfunction in PE, which

can be reflected in elevated MAP early in pregnancy before clinical

symptoms appear (29); PAPP-A is a protein produced by the

placenta. Low levels in the first trimester have been associated

with poor placental development and function, leading to increased

risk of PE (30); PLGF is an angiogenic factor that promotes

placental blood vessel development. Low levels of PLGF are

indicative of placental insufficiency and have been linked to the

development of PE (31). The outcome in this study was the

development of PE, PE is defined as the occurrence of a systolic

blood pressure of ≥140 mmHg and/or a diastolic blood pressure of

≥90 mmHg in pregnant women after 20 weeks of gestation,

accompanied by any one of the following: a urinary protein

quantitation of ≥0.3 g/24 h, a urine protein/creatinine ratio of

≥0.3, or a random urinary protein level of ≥ (+) (as a testing method

when protein quantitation is not conducted unconditionally). We

divided PE into preterm PE (delivery gestational week <37 weeks)

and term PE (delivery gestational week ≥37 weeks) (32). Gestational

week in this study was determined by measurements of fetal crown-

rump length (CRL) within the first trimester of pregnancy (33).
2.3 Quality control

All selected pregnant women were interviewed on-site by

researchers to collect their medical history. The pregnancy

outcomes for women who gave birth in our hospital were

obtained from medical records (accounting for 90.8%), while

those for women who gave birth in other hospitals were collected

through dedicated telephone follow-ups (accounting for 9.2%). All

research data were collected with the Viewpoint 6.0 software by

data administrators.

Quality control standards for the detections of biophysical and

biochemical markers were as follows (1). MAP: Blood pressure was

measured on-site in a standardized manner using an automatic

blood pressure measuring device (3BTO-A2, Microlife Corporation,

Taiwan, China) by trained designated doctors. The blood pressure

monitor was regularly calibrated by the hospital’s quality inspection

department. Before measuring blood pressure, pregnant women

were seated comfortably for at least 5 minutes, and a cuff of

appropriate size was selected based on the arm circumference.

The blood pressure of both arms were measured simultaneously,

recorded every 1 minute, until the difference in consecutive readings

was within 10 mmHg for systolic pressure and within 6 mmHg for

diastolic pressure. The MAP for both arms were calculated based on

the average of the last two stable measurements. The final blood

pressure was determined by the higher average MAP of the two

arms (34); (2) UtA-PI: The measurement of UtA-PI was conducted

using the Voluson E8 color Doppler ultrasound diagnostic device

from GE, USA, with the probe models RAB6-D/0B and RAB4–8-D/
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OB, and a frequency of 4–6 MHz. The measurement was performed

by ultrasound doctors who had participated in FMF ultrasound

technology training and passed the uterine artery monitoring

qualification certification. In accordance with FMF measurement

standards, pulse wave Doppler was used to obtain three similar

continuous waveforms from the ascending uterine artery at the level

of the cervical internal. The UtA-PI of both sides was measured and

the average UtA-PI was calculated (35); (3) PAPP-A: PAPP-A was

derived from the records of serum screening for Down syndrome

during early pregnancy in our hospital. It was detected using the

AutoDELFIA 1235 automatic immune analysis system (time-

resolved fluorescence immunoassay method, AutoDELFIA PAPP-

A reagent kit, PerkinElmer Company, Finland); (4) PLGF: Blood

samples from all subjects were collected on the day of enrollment

and sent to the sample bank for centrifugation within 2 hours

without anticoagulants. After drawing blood for PlGF, the sample

was inverted at least 5 times, then the clot was allowed to sit at room

temperature for about 30 minutes before centrifugation. After

centrifugation, the serum was stored at -80°C. The PlGF value

was measured using the AutoDELFIA 1235 automatic immune

analysis system (time-resolved fluorescence immunoassay,

PerkinElmer AutoDELFIA PlGF reagent kit, Finland) or Cobas

e602 system (Roche Diagnostics, Germany). Quality control

requirements stipulate that the coefficient of variation for

measurements of quality control materials with different

concentrations in each batch must be less than 5%; and the

measurement range for quality control materials in each test

should be within two standard deviations.
2.4 Model development

In our model, five classification algorithms including Logistic

Regression (LR)[2], Extra Trees Classifier (ETC), Voting Classifier

(VC), Gaussian Process Classifier (GPC)[3] and Stacking Classifier

(SC) were applied. To enhance the overall accuracy and robustness

of our model, we incorporated certain ensemble learning techniques

[6], the VC and SC which are frequently deployed in algorithm

competitions. As for VC, multiple models were trained on the same

dataset, and their predictions were combined to make a final

prediction. The VC can be used for classification problems, where

each individual model is an estimator, and the final prediction is

made by combining the predictions of all the classifiers using a

voting strategy. For our model, we chose Random Forest (RF) and

ETC as its estimators. The voting criteria we used was soft

voting, which calculates the voting based on the estimators’

predicted probabilities.

For the SC, multiple models, known as base models, were

trained on the same dataset. Instead of directly combining their

predictions, these outputs served as input features for another

model. This subsequent model, the ‘meta’ classifier or ‘meta

learner’, is particularly important in the stacking approach. In our

setup, we employed the GPC as the meta classifier. This model was

trained to make the final prediction, informed by the outputs of the

base models. The unique advantage of the SC is its capability to

discern nuanced patterns and relationships in the predictions of
Frontiers in Endocrinology 04
individual base models. For our base models, we opted for Support

Vector Machines (SVM), ETC, and GPC. By strategically leveraging

these models through the SC, we aim to harness the individual

strengths of each model, potentially surpassing the accuracy and

consistency that any single model could achieve on its own.

Since our dataset was unbalanced with a 1:23 positive and

negative weights, we set class weight of LR, ETC, and all the

estimators of VC to balanced, this automatically adjusted the

weights inversely proportional to their frequencies in the data.

Before training, we normalized all the data in the range from 0 to

1, which could help improve the performance and stability

of training.

To optimize the performance of each algorithmic model, we

implemented Bayesian Optimization, conducting hyperparameter

tuning across 20 repetitions of 5-fold cross-validation. The Area

Under the Receiver Operating Characteristic (AUC-ROC) curve

was chosen as the metric to evaluate the effectiveness of tuning for

each model. Given the complex nature of voting classifiers

and stacking classifiers, which, as ensemble learning techniques,

amalgamate diverse models and thus exhibit a vast hyperparameter

space, we strategically tuned the hyperparameters of each

constituent estimator in isolation. Following this meticulous

individual optimization, we then proceeded to integrate these

finely tuned estimators.
2.5 Model evaluation

We evaluated the performance of our model using both

discrimination and calibration metrics. We used the area under

the receiver operating characteristic curve (AUC-ROC), sensitivity,

specificity to evaluate the discrimination of our model. We also

determined the cut-off value for classification using the Youden

Index[8], which is a commonly used algorithm for calculating the

optimal cut-off point. This algorithm determines the cut-off value

when sensitivity = 1 - specificity in the ROC-curve. We evaluated

the calibration of our model using the Brier score, calibration slope,

and calibration intercept. The Brier score measures the accuracy of

probabilistic predictions, while the calibration slope and intercept

indicate the reliability of the predicted probabilities.

ML models are often considered “black boxes,” making it

difficult to interpret their results. In our study, we introduced

SHAP (SHapley Additive exPlanations) values[9] to break down

our models and explain their predictions. We plotted a beeswarm

chart and a pie chart for the VC model to analyze the distribution of

the feature values and the contribution of each feature.
2.6 Model validation

To validate the performance of our model, we applied a 5-fold cross-

validation with an 8:2 train-test split. We conducted 200 repetitions of

cross-validation with random seeds for all the models individually. After

each fold in every repetition, we recorded the performance

measurements. Upon concluding 1000 evaluations (5 folds * 200

repetitions), we employed the bootstrapping method to calculate the
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95% confidence interval of the aggregate results, thus providing a robust

measure of the model’s reliability.
2.7 Statistical analysis

Our model was developed using Scikit-learn 1.2.0 (sklearn), a

widely recognized open-source ML library in Python. To ensure

rigorous and transparent evaluation, all performance metrics were

presented as point estimates accompanied by 95% confidence

intervals (CIs). This interval estimation approach was pivotal in

comparing the performance of different models. The selection of the

best model was grounded on its Area Under the Receiver Operating

Characteristic (AUROC), ascertained from the validation set. For

the statistical description of continuous metrics, we employed mean

and standard deviation, whereas categorical data were characterized

using frequencies and percentages.
2.8 Comparison to previous studies

We have also evaluated our optimal algorithm for predicting PE

or Pre-term PE, contrasting it with algorithms from previous studies

conducted over the past five years. Studies were selected based on the

following criteria: (1) The document type was required to be an

original article; (2) The model predictive factors were required to

include maternal baseline and clinical biomarkers; (3) Clinical

biomarkers were required to include at least two of PLGF, PAPP-

A, UtA-PI and MAP; (4) Preterm PE was required to be defined as
Frontiers in Endocrinology 05
occurring before 37 weeks of gestation; (5) The compared algorithm

was required to be the best-performing one in the study; (6) All

predictive indicators was required to be obtained early in pregnancy

(within 14 weeks of gestation). All selected publications needed to

report the sample size, data sources, model algorithms, predictive

factors used in the model, and model performance indicators.
3 Results

3.1 Study population characteristics

A total of 5116 singleton pregnant women participated in this

cohort, 472 were excluded for various reasons (Figure 1), and 4644

were ultimately included for analysis. Among them, 210 pregnant

women developed PE, with an incidence of 4.5%. This includes 49

cases of preterm PE and 161 cases of term PE. A detailed flow chart

of the study is presented in Figure 1. Table 1 shows maternal

characteristics and biophysical markers for study subjects with and

without PE (used in the prediction model of PE). Subjects who

developed PE had older age and higher weight than those without

PE. Participants with a history of PE, chronic hypertension, or a

family history of PE were more likely to develop PE. The MAP in

those who developed PE was higher than those who did not develop

PE, but with lower level of PLGF and PAPP-A. There was

statistically significant difference in maternal age, pre-pregnancy

weight, nulliparous, history of diabetes mellitus, history of chronic

hypertension, family history of PE, MAP, UtA-PI and PAPP-A

between the preterm PE group and no preterm PE group.
FIGURE 1

The flow chart of the study.
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3.2 Model performance

The reported area under the AUC, sensitivity, specificity for PE

model on the test set are summarized in Table 2. The prediction was

performed based on the maternal demographic characteristics and

medical history data and those characteristics plus MAP, PAPP-A,

UtA-PI and PLGF respectively. The AUC increased consistently

with the addition of the biomarkers. Specifically, the AUC for PE

model in VC algorithms increased from 0.746 to 0.814 when MAP

was added in the model, the sensitivity increased from 0.678 to

0.755, but the specificity was remained unchanged at 0.866. When

adding the other biomarkers for VC algorithms, the results were

slightly improved (AUC of 0.831 and sensitivity of 0.770).

Compared to other algorithms, the LR algorithm performed

better in terms of AUC in most model scenarios for all PE

prediction, especially achieving the best AUC in the scenario of

Maternal Characteristics plus MAP (LR: AUC=0.816; ETC:

AUC=0.811; VC: AUC=0.814; GPC: AUC=0.814; SC:

AUC=0.811).ROC plots with respective AUC of LR, ETC, VC,

GPC and SC algorithms for PE model with maternal characteristics

plus all biomarkers are shown in Figure 2. The AUC value for each

of the LR, ETC, VC, GPC and SC algorithms was 0.824, 0.817,
Frontiers in Endocrinology 06
0.832, 0.828 and 0.825 respectively. The performance results of the

term PE model are shown in the Supplementary Table S1.

The performance results of the preterm PE model are presented

in Table 3. Compared to the PE prediction model, the evaluation

indicators of preterm PE predictive model in VC algorithms based on

the maternal characteristics plus MAP have increased (AUC of 0.842

and sensitivity of 0.762). Notably, the AUC value for predicting PE

with maternal characteristics plus the all biomarkers we used was

highest in the VC and GPC (Figure 3). When the prediction

performances were compared among the five algorithms, the VC

algorithms had the best performance for predicting preterm PE. The

AUC of the VC algorithms was 0.884, sensitivity was 0.860, specificity

was 0.834. Details about the model’s calibration are provided in the

Appendix, specifically within Supplementary Tables S2-5.

The FMF competing risk models for predicting PE and preterm

PE, incorporating maternal characteristics plus all biomarkers,

exhibit AUCs of 0.797 and 0.856, respectively. The performance

for PE or preterm PE using ML algorithms in this study was similar

to that achieved by the FMF competing risk model under the same

predictive factors. Details about the performances of FMF

competing risk model for PE and preterm PE prediction are

provided in Supplementary Table S6.
TABLE 1 Study population characteristics.

Characteristic

Preeclampsia model Preterm preeclampsia model

Preeclampsia
(N=210)

No
Preeclampsia
(N=4434)

P value Preterm
preeclampsia

(N=49)

No preterm
preeclampsia
(N=4595)

P value

Maternal age, year* 30.18 ± 3.74 29.63 ± 3.26 0.0379 31.02 ± 4.42 29.64 ± 3.27 0.0348

Height, cm* 162.00 ± 4.74 162.01 ± 4.78 0.9942 161.52 ± 4.23 162.01 ± 4.79 0.4737

Pre-pregnancy weight, kg* 62.36 ± 11.11 56.97 ± 8.50 <.0001 62.81 ± 10.66 57.15 ± 8.67 <.0001

Nulliparous, n (%) 171 (81.43) 3439 (77.56) 0.1879 31 (63.27) 3579 (77.89) 0.0144

Previous History of PE,
n (%)

19 (9.05) 28 (0.63) <.0001 12 (24.49) 35 (0.76) <.0001

History of Diabetes
Mellitus, n (%)

6 (2.86) 27 (0.61) 0.0032 2 (4.08) 31 (0.67) 0.0468

History of Chronic
Hypertension, n (%)

30 (14.29) 25 (0.56) <.0001 12 (24.49) 43 (0.94) <.0001

Assisted Reproduction,
n (%)

43 (20.48) 454 (10.24) <.0001 6 (12.24) 491 (10.69) 0.7254

Family history of PE,
n (%)

2 (0.95) 30 (0.68) 0.6546 2 (4.08) 30 (0.65) 0.0442

SLE/APS, n (%) 1 (0.48) 45 (1.01) 0.7224 0 (0.00) 46 (1.00) 1.0000

Smoking, n (%) 1 (0.48) 10 (0.23) 0.3992 0(0.00) 11 (0.24) 1.0000

MAP (mmHg)* 92.89 ± 11.25 82.62 ± 7.29 <.0001 95.71 ± 13.68 82.95 ± 7.61 <.0001

UtA-PI* 1.81 ± 0.59 1.80 ± 0.47 0.6940 1.95 ± 0.61 1.80 ± 0.48 0.0849

PLGF (pg/mL)* 25.75 ± 12.07 33.81 ± 46.25 0.0117 24.87 ± 12.27 33.54 ± 45.51 0.1828

PAPP-A (IU/L)* 3.61 ± 2.37 4.56 ± 2.63 <.0001 3.07 ± 2.64 4.53 ± 2.62 0.0001
*Data are presented as mean ± standard deviation.
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TABLE 2 Performance of machine learning algorithms in the preeclampsia model.

PE-All Algorithm
AUC

(95% CI)
Sensitivity
(95% CI)

Specificity
(95% CI)

10% FPR
(95% CI)

20% FPR
(95% CI)

Maternal Characteristics LR 0.749
(0.747, 0.751)

0.659
(0.652, 0.666)

0.750
(0.743, 0.757)

0.400
(0.395, 0.404)

0.544
(0.540, 0.549)

ETC 0.743
(0.741, 0.745)

0.675
(0.668, 0.682)

0.725
(0.718, 0.731)

0.368
(0.364, 0.372)

0.529
(0.524, 0.533)

VC 0.746
(0.744, 0.748)

0.678
(0.671, 0.685)

0.722
(0.715, 0.729)

0.374
(0.370, 0.378)

0.529
(0.524, 0.533)

GPC 0.750
(0.745, 0.754)

0.669
(0.655, 0.684)

0.740
(0.726, 0.754)

0.394
(0.385, 0.403)

0.544
(0.535, 0.553)

SC 0.746
(0.741, 0.750)

0.668
(0.654, 0.682)

0.733
(0.720, 0.746)

0.376
(0.368, 0.385)

0.532
(0.524, 0.541)

Maternal Characteristics + MAP LR 0.816
(0.814, 0.818)

0.763
(0.756, 0.769)

0.748
(0.742, 0.754)

0.487
(0.482, 0.491)

0.648
(0.644, 0.652)

ETC 0.811
(0.810, 0.813)

0.762
(0.755, 0.768)

0.736
(0.729, 0.743)

0.481
(0.477, 0.486)

0.635
(0.631, 0.640)

VC 0.814
(0.812, 0.816)

0.755
(0.748, 0.761)

0.747
(0.740, 0.753)

0.468
(0.463, 0.472)

0.644
(0.640, 0.649)

GPC 0.814
(0.811, 0.818)

0.752
(0.740, 0.764)

0.754
(0.742, 0.767)

0.473
(0.464, 0.482)

0.651
(0.643, 0.66)

SC 0.811
(0.808, 0.815)

0.755
(0.743, 0.767)

0.742
(0.728, 0.755)

0.485
(0.476, 0.493)

0.637
(0.629, 0.645)

Maternal Characteristics + MAP + PAPP-A LR 0.822
(0.820, 0.824)

0.782
(0.776, 0.787)

0.749
(0.743, 0.754)

0.495
(0.490, 0.499)

0.669
(0.665, 0.673)

ETC 0.817
(0.815, 0.819)

0.779
(0.773, 0.785)

0.733
(0.727, 0.739)

0.493
(0.489, 0.498)

0.642
(0.638, 0.647)

VC 0.823
(0.822, 0.825)

0.769
(0.764, 0.775)

0.757
(0.752, 0.762)

0.495
(0.491, 0.499)

0.664
(0.659, 0.668)

GPC 0.821
(0.817, 0.825)

0.783
(0.772, 0.793)

0.745
(0.734, 0.756)

0.485
(0.475, 0.495)

0.664
(0.656, 0.673)

SC 0.818
(0.814, 0.822)

0.781
(0.768, 0.794)

0.73
(0.718, 0.743)

0.498
(0.489, 0.507)

0.64
(0.632, 0.649)

Maternal Characteristics + MAP + PAPP-A
+UtA-PI

LR 0.826
(0.824, 0.828)

0.776
(0.77, 0.781)

0.763
(0.757, 0.769)

0.506
(0.501, 0.51)

0.68
(0.676, 0.684)

ETC 0.818
(0.816, 0.82)

0.784
(0.778, 0.789)

0.729
(0.723, 0.736)

0.491
(0.487, 0.496)

0.642
(0.638, 0.647)

VC 0.826
(0.825, 0.828)

0.763
(0.758, 0.768)

0.766
(0.761, 0.771)

0.508
(0.504, 0.513)

0.671
(0.667, 0.675)

GPC 0.826
(0.822, 0.829)

0.766
(0.755, 0.778)

0.765
(0.754, 0.776)

0.507
(0.498, 0.516)

0.674
(0.665, 0.683)

SC 0.822
(0.818, 0.826)

0.779
(0.767, 0.790)

0.741
(0.730, 0.752)

0.502
(0.492, 0.511)

0.654
(0.645, 0.663)

Maternal Characteristics + MAP + PAPP-A
+UtA-PI+PLGF

LR 0.826
(0.824, 0.828)

0.777
(0.772, 0.783)

0.763
(0.757, 0.768)

0.506
(0.502, 0.511)

0.681
(0.677, 0.685)

ETC 0.819
(0.817, 0.821)

0.787
(0.781, 0.793)

0.728
(0.722, 0.734)

0.491
(0.486, 0.496)

0.642
(0.637, 0.646)

VC 0.831
(0.829, 0.832)

0.77
(0.765, 0.775)

0.769
(0.765, 0.774)

0.513
(0.509, 0.518)

0.681
(0.677, 0.685)

GPC 0.826
(0.823, 0.83)

0.772
(0.761, 0.783)

0.759
(0.747, 0.771)

0.508
(0.499, 0.518)

0.674
(0.666, 0.682)
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3.3 Contribution of variables to
prediction accuracy

The influence of each variable on prediction accuracy was

evaluated by Shapley values, a large absolute Shapley value

indicates that the input variable typically contributes more to

decision making. The Shapley values represent the average

contribution to the score of each input variable when computed

with different combinations of the other variables. Contributions of

variables to PE prediction are shown in Figure 4. The highest

contribution was provided by MAP, for which a high value led to a

high risk for preterm PE, followed in order by PLGF, pre-pregnancy

weight, PAPP-A, nulliparous, UtA-PI, history of chronic

hypertension, assisted reproduction, maternal age, and previous

history of PE (Figures 4A, C). From the feature contribution

distribution chart (Figure 4B), the contribution ratio of MAP for

PE prediction is 44.3%, with the maternal characteristics contributing

29.6%. This is followed by three biomarkers: PLGF, PAPP-A, and

UtA-PI, which account for 11.9%, 8.7%, and 5.5%, respectively.

The relative importance of the selected variables in the preterm

PE prediction model is described in Figure 5. The most important

predictive factor is still MAP, followed by PAPP-A, pre-pregnancy

weight, UtA-PI, maternal age, and PLGF. Other indicators, such as

smoking, had a very limited contribution (Figures 5A, C). The
Frontiers in Endocrinology 08
contributions of MAP and maternal characteristics to the prediction

of preterm PE are 37.0% and 29.8% respectively. Among the three

biomarkers, PAPP-A has the highest proportion at 16.5%, while the

remaining PLGF and UtA-PI account for 7.2% and 9.5%

respectively (Figure 5B).
3.4 Comparison to previous studies

We searched PubMed for articles on prediction models for PE

published between 2019 and 2023, including both developed and

validated models. We retrieved a total of 242 publications within the

past five years from the PubMed database using the search terms

(Preeclampsia [Title]) AND (prediction [Title]). Ultimately, nine

relevant publications were selected based on the inclusion and

exclusion criteria (Table 4). In the articles predicting all PE, we

identified that the Ansbacher-Feldman (19) study from the UK and

the Gil, M. M (20) study from Spain employed the same clinical

biomarkers as we did. The predictive model AUCs in these two

studies were 0.817 and 0.848, respectively, and the detection rates

at a 10% false positive rate were 0.529 and 0.548, respectively,

which are comparable to the levels of VC algorithm in our

study (AUC=0.831, DR at 10%FPR=0.513). Similarly, the two

aforementioned studies used the same predictive factors to

forecast pre-term PE, with AUCs of 0.909 and 0.912, respectively.

The detection rates at a 10% false positive rate were 0.753 and 0.778,

slightly higher than VC algorithm in our study (AUC=0.884, DR at

10%FPR=0.625).
4 Discussion

In this study, we successfully developed a fully automated

prediction model for all PE and preterm PE by using various ML

algorithms. Compared with other prediction algorithms, the AUC

and detection rate at 10% FPR of the VC algorithm showed better

performance in the prediction of PE (AUC=0.831, DR at 10%

FPR=0.513) and preterm PE (AUC=0.884, DR at 10%FPR=0.625).

For predicting PE and preterm PE, the most crucial predictive

factors were MAP and maternal characteristics. In predicting all PE,

the contribution of PLGF was higher than PAPP-A (11.9% versus

8.7%), whereas the situation was reversed in the prediction of

preterm PE (7.2% versus 16.5%).

The guidelines of both the International Society for the Study of

Hypertension in Pregnancy (39) and the International Federation of

Gynecology and Obstetrics (FIGO) (6) emphasized the critical

importance of early prediction and prevention of PE for reducing

the incidence of PE, and directly improving the health outcomes of
TABLE 2 Continued

PE-All Algorithm
AUC

(95% CI)
Sensitivity
(95% CI)

Specificity
(95% CI)

10% FPR
(95% CI)

20% FPR
(95% CI)

SC 0.823
(0.820, 0.827)

0.772
(0.76, 0.784)

0.752
(0.741, 0.764)

0.503
(0.494, 0.512)

0.655
(0.646, 0.663)
LR, Logistic Regression; ETC, Extra Trees Classifier; VC, Voting Classifier; GPC, Gaussian Process Classifier; SC, Stacking Classifier.
FIGURE 2

Receiver operating characteristics (ROC) curves for the five ML
algorithms in the PE prediction (Maternal Characteristics + MAP +
UtA-PI + PLGF + PAPP-A). The plot displays the ROC curve results
from the validation set for each of the five model, differentiated by
distinct colors. The mean ROC representing the average outcome
across all folds within a single epoch of cross-validation. The dashed
line is a reference line. AUC is the area under the ROC curve.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1345573
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2024.1345573
TABLE 3 Performance of machine learning algorithms in the preterm preeclampsia model.

Preterm PE Algorithm
AUC

(95% CI)
Sensitivity
(95% CI)

Specificity
(95% CI)

10% FPR
(95% CI)

20% FPR
(95% CI)

Maternal Characteristics LR 0.804
(0.798, 0.809)

0.735
(0.726, 0.744)

0.848
(0.84, 0.856)

0.519
(0.51, 0.528)

0.617
(0.608, 0.625)

ETC 0.799
(0.794, 0.805)

0.719
(0.710, 0.728)

0.864
(0.857, 0.872)

0.543
(0.533, 0.552)

0.647
(0.638, 0.655)

VC 0.788
(0.783, 0.793)

0.698
(0.689, 0.708)

0.866
(0.858, 0.874)

0.508
(0.499, 0.517)

0.593
(0.585, 0.602)

GPC 0.802
(0.791, 0.812)

0.714
(0.695, 0.733)

0.862
(0.846, 0.877)

0.515
(0.497, 0.534)

0.605
(0.588, 0.623)

SC 0.765
(0.754, 0.777)

0.676
(0.657, 0.695)

0.872
(0.855, 0.888)

0.496
(0.478, 0.515)

0.576
(0.559, 0.593)

Maternal Characteristics + MAP LR 0.836
(0.832, 0.841)

0.779
(0.770, 0.787)

0.852
(0.845, 0.859)

0.571
(0.562, 0.579)

0.664
(0.656, 0.672)

ETC 0.839
(0.834, 0.843)

0.773
(0.765, 0.781)

0.864
(0.858, 0.87)

0.584
(0.576, 0.593)

0.674
(0.666, 0.681)

VC 0.842
(0.838, 0.846)

0.762
(0.755, 0.77)

0.866
(0.859, 0.872)

0.577
(0.568, 0.585)

0.655
(0.647, 0.663)

GPC 0.842
(0.833, 0.851)

0.782
(0.765, 0.800)

0.849
(0.839, 0.860)

0.565
(0.548, 0.581)

0.688
(0.672, 0.703)

SC 0.841
(0.834, 0.849)

0.777
(0.762, 0.792)

0.86
(0.848, 0.871)

0.575
(0.559, 0.591)

0.67
(0.657, 0.683)

Maternal Characteristics + MAP + PAPP-A LR 0.853
(0.849, 0.857)

0.828
(0.821, 0.836)

0.829
(0.822, 0.835)

0.577
(0.568, 0.585)

0.695
(0.688, 0.703)

ETC 0.87
(0.866, 0.873)

0.853
(0.846, 0.86)

0.818
(0.811, 0.824)

0.589
(0.581, 0.598)

0.715
(0.708, 0.722)

VC 0.877
(0.874, 0.881)

0.852
(0.845, 0.859)

0.828
(0.821, 0.835)

0.608
(0.600, 0.617)

0.715
(0.708, 0.722)

GPC 0.87
(0.863, 0.877)

0.847
(0.834, 0.86)

0.828
(0.818, 0.838)

0.585
(0.569, 0.601)

0.727
(0.714, 0.740)

SC 0.87
(0.862, 0.877)

0.842
(0.827, 0.857)

0.826
(0.812, 0.839)

0.585
(0.567, 0.603)

0.704
(0.689, 0.718)

Maternal Characteristics + MAP + PAPP-A
+UtA-PI

LR 0.86
(0.856, 0.864)

0.833
(0.826, 0.841)

0.826
(0.819, 0.832)

0.589
(0.58, 0.597)

0.702
(0.695, 0.71)

ETC 0.878
(0.874, 0.881)

0.863
(0.856, 0.870)

0.816
(0.809, 0.823)

0.603
(0.595, 0.612)

0.715
(0.708, 0.721)

VC 0.889
(0.885, 0.892)

0.868
(0.861, 0.874)

0.834
(0.828, 0.84)

0.623
(0.615, 0.632)

0.741
(0.735, 0.748)

GPC 0.883
(0.877, 0.890)

0.874
(0.862, 0.886)

0.821
(0.809, 0.833)

0.602
(0.586, 0.619)

0.739
(0.725, 0.753)

SC 0.876
(0.87, 0.883)

0.864
(0.85, 0.877)

0.814
(0.8, 0.828)

0.589
(0.573, 0.605)

0.714
(0.7, 0.728)

Maternal Characteristics + MAP + PAPP-A
+UtA-PI+PLGF

LR 0.858
(0.854, 0.862)

0.828
(0.821, 0.836)

0.829
(0.823, 0.836)

0.583
(0.575, 0.591)

0.698
(0.691, 0.706)

ETC 0.878
(0.875, 0.881)

0.868
(0.862, 0.875)

0.814
(0.807, 0.821)

0.603
(0.595, 0.611)

0.717
(0.709, 0.724)

VC 0.884
(0.881, 0.888)

0.860
(0.853, 0.866)

0.834
(0.828, 0.841)

0.625
(0.617, 0.632)

0.729
(0.723, 0.736)

GPC 0.883
(0.876, 0.889)

0.870
(0.858, 0.882)

0.822
(0.81, 0.834)

0.599
(0.582, 0.616)

0.743
(0.730, 0.757)
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the maternal and newborns. FMF competing risk model had

provided significant insights and an effective method for PE

prediction (40). Our study showed that the AUC for the PE

prediction model, based on the competing risk model with

maternal characteristics plus all biomarkers, was 0.797, while the

AUC for the preterm PE prediction model was 0.856. Some

researchers had adopted other predictive algorithms for PE

prediction, demonstrating similar model performance. For

example, Tarca, A. L. et al. achieved good performance in

predicting PE using a multivariate Poisson regression model

based on maternal baseline, biophysical and biochemical

biomarkers (36). Our study constructed prediction models for PE

using several ML algorithms and obtained similar model

performance. However, the biomarkers values in the ML

algorithms do not need to be expressed as multiples of the

median (MoM) and adjusted for gestational age and various

maternal factors, the application scenarios for ML algorithms may

be more extensive. ML algorithms can particularly utilize raw

clinical data directly and are capable of analyzing complex,

nonlinear, and high-dimensional data, aligning with the practical

scenarios of PE clinical predictions. Additionally, ML algorithms
Frontiers in Endocrinology 10
learn and adapt to new data, leading to continuous improvement in

predictions over time. Therefore, establishing rapid and simple

prediction tools, such as online web pages, based on ML

algorithms is suitable for carrying out large-scale screening and

prediction of PE.

Apart from the prediction model algorithms, the predictive

factors included are also crucial for predicting PE. The models that

are overly complex or costly are not practical for screening large

populations at the community level. A required predictive model

should be both cost-effective and highly sensitive, meaning that the

predictors within the model should be low-cost and yet acceptable

in terms of accuracy (41). Our research findings indicate that in the

prediction model for PE, the combination of maternal

characteristics, MAP, PAPP-A as predictors can achieve an AUC

of 0.82. For preterm PE, this combination can achieve an AUC of

0.87. The increase in predictive effect was limited by adding the

other parameters. PLGF and UtA-PI could only increase the AUC

to 0.83 for PE prediction and to 0.88 for preterm PE prediction. J.

Torres-Torres’s study (22) also found that in PE prediction, the

AUC was 0.786 when the predictive factors included maternal

characteristics and MAP. However, when PLGF and UtA-PI were

added, the AUC decreased to 0.778. In Benkő, Z’s study (42) on the

prediction of preterm PE in twin pregnancy, a similar finding was

observed. The AUC was 0.742 when the prediction was based on

maternal characteristics and MAP alone. However, with the

inclusion of PLGF, UtA-PI, and PAPP-A, the AUC only

increased to 0.776. In summary, based on the performance of the

predictive model, the combination of maternal baseline, MAP, and

PAPP-A meets the expectations for predicting PE and preterm PE.

Considering the interpretability and parsimony of the model, as

well as the real-world requirements for low-cost effectiveness

analysis in clinical applications, we recommend the combination

of maternal baseline characteristics with MAP and PAPP-A as

predictive factors for the prediction of PE and preterm PE.

The strengths of this study are listed as follows: Firstly, the study

was designed as a prospective cohort study. Strict quality control

was maintained in data collection throughout the research process

to ensure that the data used for modeling were objective and

credible; Secondly, the model underwent rigorous validation using

a 5-fold cross-validation with an 8:2 train-test split. This stringent

testing ensures that the model is not only accurate but robust,

instilling confidence in its practical application; Finally, despite the

often “black box” nature of ML models, we employed SHAP values

to enhance the interpretability of our model. This transparency is

crucial for clinical adoption, offering insights into the underlying

factors driving the predictions. The main limitation of this study is

the relatively small sample size from a single center, lacking external
TABLE 3 Continued

Preterm PE Algorithm
AUC

(95% CI)
Sensitivity
(95% CI)

Specificity
(95% CI)

10% FPR
(95% CI)

20% FPR
(95% CI)

SC 0.878
(0.871, 0.885)

0.867
(0.853, 0.881)

0.813
(0.799, 0.828)

0.595
(0.578, 0.612)

0.718
(0.704, 0.733)
LR, Logistic Regression; ETC, Extra Trees Classifier; VC, Voting Classifier; GPC, Gaussian Process Classifier; SC, Stacking Classifier.
FIGURE 3

Receiver operating characteristics (ROC) curves for the ML learning
algorithms in the preterm PE prediction (Maternal Characteristics +
MAP + UtA-PI + PLGF + PAPP-A). The plot displays the ROC curve
results from the validation set for each of the five model,
differentiated by distinct colors. The mean ROC representing the
average outcome across all folds within a single epoch of cross-
validation. The dashed line is a reference line. AUC is the area under
the ROC curve.
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A B C

FIGURE 5

Contribution of variables to preterm PE prediction based on Shapley values. (A) The mean Shapley values of predictors of preterm PE based on the
VC model. Input variables are ordered by their mean Shapley value, which reflect the relative importance of the predictors in preterm PE predictive
model. (B) The pie chart of the feature group contribution based on the VC model for preterm PE prediction. the average feature group contribution
was calculated based on the mean absolute Shapley values for each feature group. (C) Shapley summary plot for preterm PE predictors based on the
VC model. The input predictors (Y-axis) are ordered by the mean absolute Shapley values, which represent their average influence on the model
output. Values of the predictor for each subject are colored by their Shapley values, red indicating high contribution and blue indicating low
contribution. Positive Shapley values indicate increased risk for preterm PE and negative Shapley values indicate decreased risk for preterm PE.
A B C

FIGURE 4

Contribution of variables to PE prediction based on Shapley values. (A) The mean Shapley values of predictors of PE based on the VC model. Input
variables are ordered by their mean Shapley value, which reflect the relative importance of the predictors in PE predictive model. (B) The pie chart of
the feature group contribution based on the VC model for PE prediction. the average feature group contribution was calculated based on the mean
absolute Shapley values for each feature group. (C) Shapley summary plot for PE predictors based on the VC model. The input predictors (Y-axis) are
ordered by the mean absolute Shapley values, which represent their average influence on the model output. Values of the predictor for each subject
are colored by their Shapley values, red indicating high contribution and blue indicating low contribution. Positive Shapley values indicate increased
risk for PE and negative Shapley values indicate decreased risk for PE.
TABLE 4 Predictive performances of the Voting Classifier model for the PE compared to those from previous studies.

Source
Data

Source
Algorithm SampleSize

ROC
(95% CI)

DR at
10%FPR

Predictive factors

All PE

Adi L. TARCAet
al,2022 (36)

USA
Multivariable

Poisson regression
1150 0.76(0.71–0.81)

0.44
(0.35–0.54)

MC+MAP+PLGF+sVEGFR-
1+sEng

Ansbacher-Feldman, Z.et
al,2022 (19)

UK Artificial neural network 60789
0.817

(0.797–0.837)
0.529

(0.482–0.576)
MC+MAP+PLGF+PAPP-A

+UtA-PI

Piya Chaemsaithong,et
al,2019 (32)

Asian
FMF Bayes theorem-

based model
10935

0.769
(0.761–0.777)

0.493
(0.429–0.559)

MC+MAP+PLGF+UtA-PI

Liu,M,et al,2022 (23) CHINA Random Forest 11152
0.86

(0.80–0.82)
NA

MC+MAP+b-HCG+PAPP-A+
+UtA-PI

(Continued)
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data validation. It is essential to test the model on a more varied

dataset to confirm its applicability across different populations. It is

anticipated that it will be necessary to assess the model performance

in diverse real-world settings to confirm its efficacy and reliability.
Frontiers in Endocrinology 12
5 Conclusions

In conclusion, our study offers several automated machine-

learning algorithms to make PE and preterm PE predictions more
frontiersin.or
TABLE 4 Continued

Source
Data

Source
Algorithm SampleSize

ROC
(95% CI)

DR at
10%FPR

Predictive factors

All PE

Melinte-Popescu, A. S,et
al,2023 (21)

Romania
support vector
machine (SVM)

233 0.98 NA
MC+MAP+PAPP-A+UtA-PI

+PLGF+PP-13

Torres-Torres, J,et
al,2023 (22)

Mexico elastic net 3050
0.776

(0.724–0.829)
0.481

(0.364–0.587)
MC+MAP+UtA-PI+PLGF

Gil, M. M.et al,2023 (20) Spain
fully connected
neural network

10110
0.848

(0.822–0.873)
0.548

(0.481–0.613)
MC+MAP+UtA-PI+PLGF

+PAPP-A

Our Study CHINA Voting Classifier
4644 0.831

(0.773–0.883)
0.513

(0.381–0.643)
MC+MAP+UtA-PI+PLGF

+PAPP-A

Our Study CHINA
Logistic Regression 4644 0.826

(0.824–0.828)
0.506

(0.502–0.511)
MC+MAP+UtA-PI+PLGF

+PAPP-A

Our Study CHINA
Extra Trees Classifier 4644 0.819

(0.817–0.821)
0.491

(0.486–0.496)
MC+MAP+UtA-PI+PLGF

+PAPP-A

Our Study CHINA
Gaussian

Process Classifier
4644 0.826

(0.823–0.830)
0.508

(0.499–0.518)
MC+MAP+UtA-PI+PLGF

+PAPP-A

Our Study CHINA
Stacking Classifier 4644 0.823

(0.820–0.827)
0.503

(0.494–0.512)
MC+MAP+UtA-PI+PLGF

+PAPP-A

Pre-term PE

Adi L. TARCAet
al,2022 (36)

USA
Multivariable

Poisson regression
1150 0.78(0.70–0.86)

0.55
(0.39–0.70)

MC+MAP+PLGF+sVEGFR-
1+sEng

Ansbacher-Feldman, Z.et
al,2022 (19)

UK Artificial neural network 59551
0.909

(0.895–0.923)
0.753

(0.689–0.817)
MC+MAP+PLGF+PAPP-A

+UtA-PI

Jing Zhang.et al,2019 (37) CHINA PREDICTOR algorithm 3270
0.901

(0.890–0.911)
0.875

(0.474–0.997)
MC+MAP+PLGF+PAPP-A

Piya Chaemsaithong,et
al,2019 (32)

Asian
FMF Bayes theorem-

based model
10935

0.857
(0.851–0.864)

0.640
(0.534–0.747)

MC+MAP+PLGF+UtA-PI

Rezende, K. B. C,et
al,2019 (38)

Brazilian competitive risk model 1531 0.77(0.68–0.86) NA
MC+MAP+UtA-PI+Crown-

rump length

Torres-Torres, J,et
al,2023 (22)

Mexico elastic net 3050
0.883

(0.853–0.942)
0.733

(0.600–0.837)
MC+MAP+UtA-PI+PLGF

Gil, M. M.et al,2023 (20) Spain
fully connected
neural network

10110
0.912

(0.880–0.944)
0.778

(0.664–0.867)
MC+MAP+UtA-PI+PLGF

+PAPP-A

Our Study CHINA Logistic Regression 4644
0.858

(0.854–0.862)
0.583

(0.575–0.591)
MC+MAP+UtA-PI+PLGF

+PAPP-A

Our Study CHINA Extra Trees Classifier 4644
0.878

(0.875–0.881)
0.603

(0.595–0.611)
MC+MAP+UtA-PI+PLGF

+PAPP-A

Our Study CHINA Voting Classifier 4644
0.884

(0.881–0.888)
0.625

(0.617–0.632)
MC+MAP+UtA-PI+PLGF

+PAPP-A

Our Study CHINA
Gaussian

Process Classifier
4644

0.883
(0.876–0.889)

0.599
(0.582–0.616)

MC+MAP+UtA-PI+PLGF
+PAPP-A

Our Study CHINA Stacking Classifier 4644
0.878

(0.871–0.885)
0.595

(0.578–0.612)
MC+MAP+UtA-PI+PLGF

+PAPP-A
aDR, Detection rate; FPR, False-positive rate; MC, Maternal Characteristic; MAP, mean arterial pressure; PAPP-A, pregnancy-associated plasma protein-A; PLGF, placental growth factor; UtA-
PI, uterine artery pulsatility index; b-HCG, b-human chorionic gonadotropin; sVEGFR, soluble vascular endothelial growth factor receptor; sEng, soluble endoglin.
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accessible, cost-effective, and reliable in the first-trimester. The

integration of maternal baseline, MAP, and PAPP-A into the

predictive model could potentially revolutionize PE screening,

making it more accessible and reliable, especially in developing

countries where resources and specialized training are limited.
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