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Background: Previous studies have reported that the occurrence and

development of osteonecrosis is closely associated with immune-inflammatory

responses. Mendelian randomization was performed to further assess the causal

correlation between 41 inflammatory cytokines and osteonecrosis.

Methods: Two-sample Mendelian randomization utilized genetic variants for

osteonecrosis from a large genome-wide association study (GWAS) with 606

cases and 209,575 controls of European ancestry. Another analysis included

drug-induced osteonecrosis with 101 cases and 218,691 controls of European

ancestry. Inflammatory cytokines were sourced from a GWAS abstract involving

8,293 healthy participants. The causal relationship between exposure and

outcome was primarily explored using an inverse variance weighting approach.

Multiple sensitivity analyses, including MR-Egger, weighted median, simple

model, weighted model, and MR-PRESSO, were concurrently applied to

bolster the final results.

Results: The results showed that bFGF, IL-2 and IL2-RA were clinically causally

associated with the risk of osteonecrosis (OR=1.942, 95% CI=1.13-3.35, p=0.017;

OR=0.688, 95% CI=0.50-0.94, p=0.021; OR=1.386, 95% CI=1.04-1.85, p =

0.026). there was a causal relationship between SCF and drug-related

osteonecrosis (OR=3.356, 95% CI=1.09-10.30, p=0.034).

Conclusion: This pioneering Mendelian randomization study is the first to

explore the causal link between osteonecrosis and 41 inflammatory cytokines.

It conclusively establishes a causal association between osteonecrosis and bFGF,

IL-2, and IL-2RA. These findings offer valuable insights into osteonecrosis

pathogenesis, paving the way for effective clinical management. The study

suggests bFGF, IL-2, and IL-2RA as potential therapeutic targets for

osteonecrosis treatment.
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Introduction

Osteonecrosis, characterized by bone cell and marrow death,

encompasses a group of diseases (1). Triggered by factors like trauma,

drugs, alcohol, or blood disorders, it induces an immune response

inhibiting bone repair, leading to osteonecrosis (2–6). Although

osteonecrosis often occurs in weight-bearing joints, including the hip,

knee, and humerus, it can occur in any bone or location, even the

craniofacial area (7, 8). It is a progressive disease that imposes a

substantial burden on society, especially since it affects young people

in their prime working years, and can lead to disability in important

weight-bearing joints (9, 10).

The specific etiology and pathophysiology of osteonecrosis remain

not fully understood due to its highly heterogeneous nature. Nonetheless,

past research underscores the crucial role of the immune inflammatory

response in its initiation and progression. Anomalies in immune

responses and immune cell infiltration in osteonecrotic tissue often

leads to uncontrolled inflammation. While inflammation is integral to

bone tissue repair by recruiting immune cells and bone marrow

mesenchymal stem cells for assistance (11, 12), persistent inflammation

can impede repair and exacerbate failures, particularly in the case of

osteonecrosis (6, 13). Nevertheless, we still know very little about the

specific inflammatory cytokines involved in osteonecrosis development.

Several observational studies in the past have attempted to explore the

relationship between inflammatory cytokines and osteonecrosis. Li et al.

explored potential inflammation-related biomarkers of osteonecrosis

using the Gene Expression Omnibus (GEO) database (14), and Zou

et al. explored the relationship between TH17 and IL-17 with

osteonecrosis (15). However, the sample sizes of these studies were

usually small, resulting in low confidence in the results. In addition,

their results may be affected by unforeseen confounding variables or

reverse causality because confounding factors were not excluded, which

also poses a challenge in establishing a clear causal relationship (16).

Mendelian randomization (MR) analysis methods use genetic

variation in nonexperimental data to infer the causal effect of
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exposure on outcome. Because alleles are randomly assigned during

meiosis, MR reduces conventional confounding variables and reverse

causality, thus providing better evidence for causal inference (17). Two-

sample MR analysis allows researchers to assess instrument-exposure

and instrument-outcome associations in two separate population

samples, thereby improving the applicability and validity of the test.

In this study, we extracted validated genetic variants for 41

inflammatory cytokines for the first time from published genome-

wide association study (GWAS) pooled data and innovatively used

Mendelian randomization analysis to investigate the association

between inflammatory cytokines and osteonecrosis, aiming to fill the

gaps in the understanding of the etiology and pathophysiology of

osteonecrosis, which utilizes genetic variation as an instrument for the

estimation of causality variables, which can alleviate the problem of

confounding variables and reverse causality and provide stronger

evidence for causal inference.
Method

Data resources

The research design is illustrated in Figure 1, incorporating

osteonecrosis cases derived from two distinct meta-analysis studies

focused on individuals of European ancestry. The first dataset (finn-b-

M13_OSTEONECROSIS) comprises 604 cases and 209,575 controls,

while the second dataset (finn-b-OSTEON_DRUGS) involves 101 cases

and 218,691 controls. Genetic predictors of and genetic associations with

cytokines and other systemic inflammatory modulators were obtained

from the most recent GWAS of 41 systemic inflammatory modulators

in 8293 Finns from three multicenter studies. The three population-

based cohorts were: the Cardiovascular Risk in Young Finns Study

(mean age of men: 37.4 years; mean age of women: 37.5 years) and the

“FINRISK1997” study (mean age of men: 48.3 years; mean age of

women: 47.3 years). FINRISK1997” study (mean age of men: 48.3 years;
FIGURE 1

Schematic diagram of the study design in this Mendelian randomization (MR) analysis. Forty-one important instrumental variables for inflammatory
cytokines and osteonecrosis were selected and then explored for bidirectional causality. The three basic assumptions of MR analysis, namely
correlation, independence, and exclusionary restrictions, are illustrated in this causally directed acyclic graph.
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mean age of women: 47.3 years) and “FINRISK2002” study (mean age

of men: 60.4 years; mean age of women: 60.1 years). The studies

measured circulating inflammatory modulators using Bio-Rad’s

premixed Bio-Plex Pro Human Cytokine 27-plex Assay and 21-plex

Assay and a Bio-Plex 200 reader with Bio-Plex 6.0 software. Only

measurements within the detectable range for each cytokine were

considered in the analysis; any cytokine with more than 90% missing

values (48 out of 7) was excluded from the analysis. Genetic associations

were adjusted for age, sex, body mass index, and the top 10 genetic

principal components and corrected for genomic controls. All study

participants provided informed consent (18).
Selection of cytokine SNPs

Mendelian Randomization (MR) analysis relies on three

fundamental assumptions: correlation, independence, and exclusion

restriction (19). The premise is that the chosen genetic variants

exhibit an association with risk factors (correlation) but not with any

confounding factors in the risk factor-outcome relationship

(independence). Additionally, it assumes that these genetic variants

are not linked to the outcome through any pathway other than the

targeted risk factor (exclusion restriction). This two-way study integrates

data from three Genome-Wide Association Studies (GWAS)

encompassing 41 inflammatory cytokines, osteonecrosis, and drug-

induced osteonecrosis. The SNP selection process involved applying a

genome-wide significance threshold of p < 5 × 10^-8 to identify SNPs

strongly associated with osteonecrosis/drug-induced osteonecrosis and

inflammatory cytokines. To mitigate linkage disequilibrium, SNPs were

clustered with a threshold of kb = 10,000 and r^2 = 0.001. Palindromic

SNPs were excluded, considering the challenges in identifying these

SNPs in the exposure and outcome GWASs where systemic

inflammatory regulators were aligned in the same direction. The R^2

value of each SNP was utilized to compute the proportion of variance in

exposure, while the F statistic was employed to estimate instrumental

strength, thereby avoiding weak instrumental bias (20, 21). Finally, we

will replace the unavailable SNPs in the result summary with the proxy

SNPs (r^2 > 0.8) from LDlink (LDlink | An Interactive Web Tool for

Exploring Linkage Disequilibrium in Population Groups (nih.gov)) (22).
Statistical analysis

Given the varying number of SNPs associated with each cytokine,

our primaryMR analysis for cytokines with only one SNP employed the

Wald ratio (23). For those with two or more SNPs, we opted for inverse

variance weighting (IVW) as the primary MR analysis (24). This

approach aimed to investigate the potential pathogenic role of

inflammatory cytokines in relation to the risk of osteonecrosis. To

assess the presence of heterogeneity in our primary MR analysis (IVW),

we conducted a Cochrane Q test. Most outcomes exhibited no

significant heterogeneity (p > 0.05), though a few displayed

heterogeneity. It’s important to note that since IVW was our primary

analysis and may inherently contain heterogeneity, the presence of

heterogeneity in individual outcomes does not significantly impact the

overall prediction of causality (25).
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To further evaluate causality and explore potential pleiotropy,

we implemented additional checks, including MR Egger regression

and MR-PRESSO (26). Additionally, a Leave-one-out analysis was

performed to examine the influence of individual SNPs on the

overall MR analysis. To eliminate potential confounding effects, we

utilized PhenoScanner to investigate potential dimorphic

phenotypes associated with the evaluated individual SNPs. Much

of this analytical work was carried out using R analysis software

(version 4.0.3) and relevant R packages, encompassing two-sample

MRs, data arrays, and others.
Result

Supplementary Table 1 provides comprehensive details about

the study and dataset. Notably, all participants in the study were of

European descent (100%), a deliberate choice aimed at mitigating

the impact of ethnic differences on the research outcomes. This

meticulous consideration ensures a homogenous participant pool

and enhances the study’s reliability by eliminating potential

confounding factors associated with ethnic diversity.
Selection of instrumental variables

A flowchart outlining the full-text logic is provided in Figure 1, and

raw data for inflammatory cytokines are available from the link

(Cytokines GWAS results - Datasets - data.bris). Genetic variants

were screened against screening criteria (P<5×10-8, r^2<0.001,

kb=10,000) as described previously. The associations of inflammatory

cytokines on osteonecrosis and and drug-induced osteonecrosis are

summarized in Supplementary Tables 2–7, including chromosomal

location, gene, effector allele (EA), other allele and effector allele

frequency (EAF). In addition, estimates of the association between

each SNP and inflammatory cytokines and osteonecrosis are given,

including beta values, standard errors (SE) and P values.
Causal relationship with osteonecrosis

Our findings suggest a potential involvement of cyclic bFGF, IL-

2RA, and IL-2 in the risk of osteonecrosis development, as indicated

by the IVW approach (refer to Figure 2). Utilizing the IVWmethod,

we observed that elevated genetic prediction levels of cyclic bFGF

correlated with an increased risk of osteonecrosis (OR=1.942, 95%

CI=1.13-3.35, p=0.017 per 1 standard deviation (SD)) (see

Supplementary Figure 1). Cochran’s Q test did not reveal any

heterogeneity (P=0.858), and directional polymorphisms were

absent (MR Egger-intercept=0.038, P=0.717 for MR Egger-

intercept; P=0.858 for MR PRESSO global test).

Furthermore, heightened IL-2RA levels were associated with an

elevated risk of osteonecrosis (OR=1.386, 95% CI=1.04-1.85, p=0.026),

while increased IL-2 levels were linked to a decreased risk (OR=0.688,

95% CI=0.50-0.94, p=0.021, per 1 standard deviation (SD) increase).

Cochran’s Q test indicated no heterogeneity (p=0.523; p=0.681), and no

directional polymorphism was found (MR Egger-intercept = -0.085, p =
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0.135 forMR Egger-intercept, p = 0.568 forMRPRESSO global test;MR

Egger-intercept = -0.024, p = 0.689 forMREgger-intercept, p = 0.736 for

MR PRESSO global test) (refer to Supplementary Tables 2–4). With the

exception of bFGF, IL-2RA, and IL-2, other cytokines such as VEGF,

GRO-a, Trail, MIG, IL-7, and IL-17 did not demonstrate any

association with osteonecrosis risk in the IVW primary MR analysis

or secondary analyses. Notably, our heterogeneity test revealed

significant heterogeneity in IL-4 (p=0.015), MIG (p=0.036), and

PDGFbb (p=0.042), whereas most other cytokines exhibited

significant non-heterogeneity. Aside from MIP1b (p=0.045 for MR

Egger-intercept), MR-Egger regression did not identify any

polymorphisms in p-values for all cytokines. Our MR-PRESSO assay,

serving as an additional robustness test, did not identify any outliers,

except for IL-4 (p = 0.01) and MIG (p < 0.04).
Causal relationship with drug-
induced osteonecrosis

As previously mentioned, various factors can contribute to

osteonecrosis, with steroid-induced osteonecrosis being a prominent
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cause of nontraumatic occurrences in nontraumatic fractures.

Additionally, osteonecrosis of the jaw induced by bisphosphonates

has emerged as a significant area of research interest in recent years.

Despite differing mechanisms of action, these drugs share a common

outcome—they induce osteonecrosis by disrupting the delicate balance

between bone resorption and formation, ultimately interfering with the

bone remodeling process. To enhance the robustness of our study, we

delved into the causal effects of inflammatory cytokines on the risk of

drug-induced osteonecrosis. Notably, bFGF with genetically predicted

levels of IL-2RA exhibited a positive, though not statistically significant,

causal effect on drug-induced osteonecrosis (OR=2.324, 95% CI=0.62-

8.72, p=0.211 per 1 standard deviation (SD); OR=1.053, 95% CI=0.51-

2.19, per 1 standard deviation (SD) P=0.888). Similarly, the genetic

prediction level of IL-2 demonstrated a negative, albeit not statistically

significant, causal effect with drug-induced osteonecrosis (OR=0.507,

95% CI=0.17-1.55, per 1 standard deviation (SD) P=0.232). This trend

aligns with the earlier study results, ensuring consistency (Figures 3, 4).

Furthermore, in drug-induced osteonecrosis, a higher genetic

prediction level of cyclic SCF was associated with an elevated risk of

osteonecrosis according to the IVW approach (OR=3.356, 95%

CI=1.09-10.30, P=0.034 per 1 standard deviation (SD))
FIGURE 2

Causal correlations of 41 inflammatory cytokines on osteonecrosis. The change in the odds ratio (OR) of osteonecrosis per one-SD rise in the
cytokine level is shown by OR and 95% confidence interval. P-value 0.05/41 = 0.0012 was found significant after multiple-comparison correction.
The results from the inverse variance weighted method were shown for all cytokines. bNGF, beta nerve growth factor; CTACK, cutaneous T cell-
attracting chemokine; FGFBasic, basic fibroblast growth factor; GCSF, granulocyte colony-stimulating factor; GROa, growth-regulated oncogene-a;
HGF, hepatocyte growth factor; IFNg, interferon gamma; IL, interleukin; IP, interferon gamma-induced protein 10; MCP1, monocyte chemotactic
protein 1; MCP3, monocyte-specific chemokine 3; MCSF, macrophage colony-stimulating factor; MIF, macrophage migration inhibitory factor; MIG,
monokine induced by interferon gamma; MIP1a, macrophage inflammatory protein-1a; MIP1b, macrophage inflammatory protein-1b; PDGFbb,
platelet-derived growth factor BB; RANTES, regulated upon activation normal T cell expressed and secreted factor; SCF, stem cell factor; SCGFb,
stem cell growth factor beta; SDF1a, stromal cell-derived factor-1 alpha; SNPs, single-nucleotide polymorphisms; TNFa, tumor necrosis factor alpha;
TNFb, tumor necrosis factor beta; TRAIL, TNF-related apoptosis-inducing ligand; VEGF, vascular endothelial growth factor.
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(Supplementary Figure 2). Importantly, Cochran’s Q test did not reveal

heterogeneity (p=0.667), and directional polymorphisms were absent

(MR Egger-intercept=0.071, p=0.655 for MR Egger-intercept; p=0.673

for MR PRESSO global test) (Supplementary Tables 5–7).
Discussion

In our current investigation, our findings strongly indicate a

causal relationship between elevated levels of bFGF/IL-2RA and an

increased risk of osteonecrosis. Moreover, higher circulating levels

of IL-2 appear to be suggestively associated with a reduced risk of

osteonecrosis. Additionally, we identified a positive causal effect of

SCF on drug-induced osteonecrosis. These results contribute novel

evidence to the etiological understanding of osteonecrosis,

underscoring the advantages of employing the MR approach. It is

noteworthy that our study represents the inaugural application of

MR analysis to ascertain whether heightened levels of inflammatory

cytokines are correlated with an elevated risk of osteonecrosis. This

exploration is based on genetic data extracted from publicly

available databases, marking a significant contribution to the field

by leveraging robust and unbiased genetic information.

The immune-inflammatory response plays a pivotal role in both the

development and progression of osteonecrosis, representing a

prominent feature of the condition (27, 28). Within the necrotic bone

tissue, the sustained production of inflammatory cytokines serves as a
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constant attractant for both innate immune cells, including

macrophages, neutrophils, and dendritic cells, and adaptive immune

cells like T and B cells. This creates a positive feedback loop, wherein

these immune cells release additional inflammatory cytokines, thereby

amplifying the overall inflammatory response (29–31). Furthermore,

chronic inflammation not only overstimulates bone resorption but also

hinders bone formation, thereby contributing to the pathogenesis of

osteonecrosis. This disruption of the normal coordination between pro-

inflammatory activation and anti-inflammatory silencing during bone

repair forms the pathophysiological basis of osteonecrosis (Figure 5).

Numerous studies have delved into the relationship between

osteonecrosis and the immune-inflammatory response. However, the

causal direction and the extent of association between inflammatory

cytokines and the risk of osteonecrosis remain unclear, with

observational studies constituting the primary mode of investigation.

These studies are susceptible to confounding, reverse causality bias, and

measurement errors, which limit their ability to provide causal estimates

of exposure-outcome effects and, consequently, hinder their utility in

informing prevention and treatment strategies. In contrast, MR analysis

employs specific genetic variants that meet instrumental variable

assumptions to systematically address causality issues in

epidemiological studies, thereby mitigating the potential for inherent

bias. Moreover, MR analysis is a more cost-effective and feasible

approach compared to randomized controlled trials. According to our

present MR analysis, bFGF in conjunction with IL-2RA may contribute

to the development of osteonecrosis, while IL-2 exhibits an opposing
FIGURE 3

Causal correlations of 41 inflammatory cytokines on drug-induced osteonecrosis. The change in the odds ratio (OR) of drug-induced osteonecrosis
per one-SD rise in the cytokine level is shown by OR and 95% confidence interval. P-value 0.05/41 = 0.0012 was found significant after multiple-
comparison correction. The results from the inverse variance weighted method were shown for all cytokines.
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effect. Additionally, our findings underscore the significance of SCF as a

crucial factor in promoting the onset of drug-induced osteonecrosis.

These insights gleaned fromMR analysis offer a valuable contribution to

understanding the complex interplay between inflammatory cytokines

and osteonecrosis, offering potential avenues for further research and

therapeutic exploration.

IL-2 (interleukin-2) is a regulator of the immune and inflammatory

response that participates in the regulation of immune cell activation
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and proliferation (32). IL-2RA (CD25) is the alpha subunit of the IL-2

receptor and is likewise involved in immune inflammatory responses

(33, 34). IL-2 plays a multifaceted regulatory role in the development of

bone tissue, activating Treg cells to regulate the activity of innate and

adaptive immune system cells and suppress the inflammatory response,

which reduces the occurrence of local inflammatory responses, protects

blood vessels and bone cells from damage (35–37). IL-2 plays a pivotal

role in mitigating osteonecrosis and fostering the healing of bone tissue
FIGURE 5

The immune inflammatory response plays a critical role in the development and progression of osteonecrosis. Various adverse factors trigger a
chronic immune inflammatory response, resulting in sustained production of pro-inflammatory cytokines, progressive tissue damage, and abnormal
tissue remodeling. In necrotic bone tissue, inflammatory cytokines and chemokines attract innate immune cells and adaptive immune cells, which
release additional inflammatory cytokines in a positive feedback loop to amplify the overall inflammatory response. Furthermore, chronic
inflammation excessively activates bone resorption, inhibits bone formation, and drives osteonecrosis.
FIGURE 4

Causal estimation of bFGF, IL-2, IL-2RA and SCF on osteonecrosis and its drug-induced subtype. Forest plots depict the causal estimates of bFGF,
IL-2, IL-2RA and SCF on osteonecrosis and its drug-induced subtypes. The dominance ratio (OR) was estimated using the fixed-effects IVW method.
Horizontal bars indicate 95% confidence intervals (CI).
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by impacting various cellular processes. Specifically, it influences

osteoblast proliferation and differentiation, promotes osteoclast

activity, and inhibits the activity of bone-resorbing cells. Osteoblasts,

being crucial for bone repair, are significantly influenced by IL-2, as

evidenced by Reyes-Botella et al.’s study, which demonstrated that IL-2

fosters an increase in the number of osteoblasts (38). Furthermore, a

vitro research by Sartori et al. suggests that IL-2 can stimulate the

upregulation of glucocorticoid receptors, indirectly fostering osteoblast

proliferation (39). Additionally, a finding by Sun et al. suggests that IL-2

can hinder osteoclastogenesis, thus indirectly safeguarding bone tissue

and aiding in the alleviation of osteonecrosis (40). Due to the limited

number of observational clinical studies or meta-analyses linking IL-

2RA to osteoimmunity, little is known about the role of IL-2RA in bone

tissue healing. IL-2RA has been shown to be associated with the

development of autoimmune inflammatory diseases (41, 42), and

immune disorders affecting the skeleton may be an important cause

of osteonecrosis, with a strong association between abnormal immune

responses and immune cell infiltration in osteonecrosis tissue, often

resulting in necrotic bone tissue showing signs of uncontrolled

inflammation (43, 44). Rheumatoid arthritis (RA) is an autoimmune

inflammatory disease that leads to persistent synovitis and severe bone

and cartilage destruction, which is closely associated with osteonecrosis

(45). Lakshmanan et al. showed that IL-2RAmay be clearly linked to the

pathogenesis of arthritis (46), and Hinks et al. stated in an earlier study

that IL-2RA was juvenile idiopathic arthritis sensitive gene locus, which

may reveal another important pathogenesis of osteonecrosis (47).

However, the precise mechanisms of IL-2 and IL-2RA in this regard

demand further research and exploration to provide a more precise

scientific basis and clinical application outlook for the treatment of

diseases associated with the skeletal field.

Fibroblast growth factor (FGF) comprises a peptide family with 22

distinct peptides (48), of which basic fibroblast growth factor (bFGF) is a

key coordinating factor that affects bone homeostasis. Kawaguchi et al.

demonstrated that bFGF, acting on osteoblasts at high concentrations, not

only efficiently stimulates bone formation via COX-2 induction and

production of prostaglandins, but also stimulates bone resorption,

whereas at low concentrations it acts directly on mature osteoclasts to

resorb bone (49). In a follow-up study, Kawaguchi demonstrated that

bFGF affects bone resorption by acting directly on osteoclasts through

activation of FGF receptor 1 and p42/p44 MAP kinase, proving the

previous study (50). In addition, a study by Taketomi et al. found that

bFGF stimulation induced high levels of Sprouty2 expression, inhibited

the expression of markers of osteoblast differentiation, and also inhibited

osteoblast matrix mineralization (51). Previous investigations have

highlighted bFGF’s capability to induce the differentiation of bone

marrow mesenchymal stem cells into lipogenic cells (52, 53). This

induction leads to intraosseous fat deposition, triggering structural

alterations in bone that impact blood supply and mechanical

properties, ultimately culminating in osteonecrosis (54, 55). In addition,

the above arguments are supported by Ganguly et al. who showed that

myeloid-specific TGF-b signaling, which promotes bFGF expression, is

strongly associated with the development of osteolytic bone lesions, and

Lee et al.’s study suggests that bFGF plays a key role in the onset and

development of RA, which provides support for the above argument (56,

57). Interestingly, however, it has been shown that bFGF in combination

with BMP-2 and VEGF promotes osteogenic differentiation of bone
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marrow MSCs (58). It has also been consequently investigated as a

promising agent for promoting bone tissue healing (59, 60), contributing

to the development of novel materials to promote bone tissue healing. As

a versatile factor, bFGF is anticipated to emerge as a new therapeutic

target for preventing osteonecrosis and promoting bone tissue healing.

This multifaceted role positions bFGF as an active participant in the

development and prognosis of osteonecrosis, presenting potential avenues

for therapeutic interventions.

Our study found an interesting association between stem cell factor

(SCF) and a higher risk of developing pharmacological osteonecrosis

(OR=3.356, 95% CI=1.09-10.30, p=0.034 per 1 standard deviation (SD)).

Earlier studies have demonstrated the potent enhancing effect of SCF on

osteoclast activity in vitro (61), and glucocorticoids, one of the causative

agents of pharmacologic osteonecrosis, also increase the expression of

SCF in various ways (62), which may reveal one of the key pathogenetic

mechanisms of drug-induced osteonecrosis. Furthermore, it is worth

noting that Molfetta et al. demonstrated that sustained stimulation of

SCF promotes the proliferation of connective tissue-like mast cell

subpopulations and maintains a pro-inflammatory microenvironment

in the body, which may also be one of the potential factors contributing

to the development of osteonecrosis lesions (63). Interestingly, however,

the positive effects of SCF on osteogenesis, possibly through the c-Kit-

Akt signaling pathway, have been recognized in recent years, which may

also suggest that SCF may have beneficial effects on osteonecrosis repair

(64, 65). Additionally, studies have shown that SCF can stimulate cell

migration and proliferation, promote blood vessel formation and

maturation, and play an important role in angiogenesis and tissue

engineering, which may be a potential therapeutic target for

osteonecrosis (66, 67). While only a limited number of clinical

observational studies or meta-analyses have investigated the correlation

between SCF and osteonecrosis or drug-induced osteonecrosis, our

current MR analysis presents compelling evidence suggesting that

elevated levels of circulating SCF are indeed associated with an

increased risk of osteonecrosis. This insight, derived from the unique

perspective of MR analysis, contributes valuable information to the

existing body of research and emphasizes the importance of considering

SCF as a potential factor in the development of osteonecrosis.

The current study has successfully established a causal relationship

between bFGF, IL-2, IL-RA, and osteonecrosis from a genetic

perspective. Although SCF did not exhibit any statistically significant

causal association with osteonecrosis, it remains a potential key player in

the mechanism of drug-induced osteonecrosis development. This study

holds several notable advantages. Firstly, it is the inaugural MR study to

illuminate the relationship between inflammatory cytokines and the risk

of osteonecrosis. Secondly, in contrast to observational studies, our

approach substantially mitigates the impact of confounders and reverse

causality, enhancing the reliability of causality inferences. Thirdly,

leveraging publicly available GWAS databases and a substantial

amount of original study data contributes to the robustness of our

findings. Fourthly, compared to the time-consuming nature of

randomized controlled trials (RCTs), our study provides cost-effective

insights. Nevertheless, the study does have certain limitations. Firstly,

owing to the European origin of the database, the results may not be

fully generalizable to other populations. Secondly, the study faced

constraints due to the limited dataset of cases and non-cases with

osteonecrosis. Given that genetic variation typically exerts a modest
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effect on exposure, necessitating large sample sizes for statistically

significant results, our dataset size might be limiting. In addition, this

study only does not have validation against other databases, which may

have some impact on the usability of our findings. Lastly, the publicly

available pooled meta-analyses lacked comprehensive information on

sex and age, and therefore did not allow for subgroup analyses based on

demographic or clinical factors, nor did they allow for a comprehensive

assessment of potential nonlinear associations between circulating levels

of inflammatory factors and osteonecrosis, which may have led to less

than comprehensive study results.
Conclusion

In conclusion, this Mendelian randomization study stands as the

inaugural investigation into the causal relationship between

osteonecrosis and 41 distinct inflammatory cytokines. Notably, the

study unequivocally establishes a causal association between bFGF,

IL-2, and IL-2RA with osteonecrosis. These findings not only

contribute significant insights into the pathogenesis of

osteonecrosis but also pave the way for the development of effective

management strategies in clinical settings. The identification of bFGF,

IL-2, and IL-2RA as causally linked to osteonecrosis suggests

promising avenues for potential therapeutic interventions. This

novel perspective positions these cytokines as potential targets for

the treatment of osteonecrosis, offering hope for the development of

more targeted and effective therapeutic approaches in the future.

However, it’s noted that due to the European origin of the database,

the generalizability of the findings to other populations, beyond

individuals of European ancestry, may be limited.
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