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Predictive value of ultrasonic
artificial intelligence in placental
characteristics of early
pregnancy for gestational
diabetes mellitus
Huien Zhou1†, Wanming Chen1†, Chen Chen1†, Yanying Zeng2,
Jialin Chen1, Jianru Lin1, Kun He1 and Xinmin Guo1*

1Department of Ultrasound, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan
University), GuangZhou, China, 2Department of Ultrasound, Tianhe District Maternal and Child
Hospital of Guangzhou, GuangZhou, China
Background: To explore the predictive value of placental features in early

pregnancy for gestational diabetes mellitus (GDM) using deep and radiomics-

based machine learning (ML) applied to ultrasound imaging (USI), and to develop

a nomogram in conjunction with clinical features.

Methods: This retrospective multicenter study included 415 pregnant women at

11-13 weeks of gestation from two institutions: the discovery group from center 1

(n=305, control group n=166, GDM group n=139), and the independent

validation cohort (n=110, control group n=57, GDM group n=53) from center

2. The 2D USI underwent pre-processed involving normalization and resampling.

Subsequently, the study performed screening of radiomics features with Person

correlation and mutual information methods. An RBF-SVM model based on

radiomics features was constructed using the five-fold cross-validation

method. Resnet-50 as the backbone network was employed to learn the

region of interest and constructed a deep convolutional neural network

(DLCNN) from scratch learning. Clinical variables were screened using one-

way logistic regression, with P<0.05 being the threshold for statistical

significance, and included in the construction of the clinical model.

Nomogram was built based on ML model, DLCNN and clinical models. The

performance of nomogram was assessed by calibration curves, area under the

receiver operating characteristic curve (AUC) and decision curve analysis (DCA).

Results: The AUCs for the ML model in the discovery cohort and independent

validation cohort were 0.91 (0.88-0.94) and 0.86 (0.79-0.93), respectively. And

0.65 (0.59-0.71), 0.69 (0.59-0.79) for the DLCNN, 0.66 (0.59-0.72), 0.66 (0.55-

0.76) for the clinical model, respectively. The nomogram exhibited the highest

performance with AUCs of 0.93 (0.90-0.95) and 0.88 (0.81-0.94) The receiver

operating characteristic curve (ROC) proved the superiority of the nomogram of

clinical utility, and calibration curve showed the goodness of fit of the model. The

DCA curve indicated that the nomogram outperformed other models in terms of

net patient benefit.
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Conclusions: The study emphasized the intrinsic relationship between early

pregnancy placental USI and the development of GDM. The use of nomogram

holds potential for clinical applications in predicting the development of GDM.
KEYWORDS

gestational diabetes mellitus, placenta, ultrasound imaging, early pregnancy, machine
learning, deep learning
1 Introduction

Gestational diabetes mellitus (GDM) is a condition

characterized by the onset of diabetes during pregnancy The

International Diabetes Federation (IDF) reports an annual

increase in the global prevalence of GDM (1). GDM development

may elevate the risk of metabolic diseases in both mothers and

offspring (2, 3). During GDM pregnancies, thickening of the

basement membrane of trophoblast cells, increased release of

inflammatory cytokines by placental macrophages, and edema of

the interchorionic layer of the villi result in reduced placental

perfusion (4). Pregnant women at risk for GDM should undergo

early screening to detect and manage the condition in a timely

manner (5).However, there are no reliable boundaries to predict the

development of GDM. In addition to laboratory tests, various

imaging technology techniques are available to assess placental

function in early pregnancy, including Uterine Artery Pulsatility

Index (UtA-PI), free-breathing Magnetic Resonance Imaging

(MRI), and three-dimensional placental imaging. However, the

assessment of placental function in the context of placental

changes in GDM has not been extensively studied (6–8).

The utilization of ultrasound in artificial intelligence (AI) holds

significant potential for development. Ultrasound (US) is

extensively employed for disease diagnosis owing to its high

safety and efficiency. In recent years, with the widespread

adoption of Picture Archiving and Communication System

(PACS) systems, ultrasound images can now be digitally stored

systematically, facilitating the rapid advancement of artificial

intelligence (9).Deep learning and machine learning (ML)

techniques enable quantitative analysis of images, extracting a

wealth of information (10, 11). For instance, Ultrasound images

can assess morphological features of tumors, hemodynamic

parameters, and elastic properties of tissues, leading to more

accurate predictions for tumor diagnosis and treatment (12).

Recently, there has been considerable focus on placental image

analysis in the investigation of GDM. The placenta is a vital organ

that plays a crucial role in the development and health of the fetus

during pregnancy. GDM disrupts placental functioning, adversely

affecting the health of both the fetus and the mother. Analyzing

placental texture for early prediction of GDM risk carries significant
02
research background and significance (13–16).Placental texture

analysis is a non-invasive method that quantifies the structural

characteristics of the placenta by extracting textural features from

placental images using computer analysis techniques

(17).Furthermore, changes in placental ultrasound images can

offer detailed information on placental structure, providing

insights into the influence of GDM on placental morphology and

tissue structure, and enhancing the understanding of GDM’s

pathogenesis (16).Moreover, placental image analysis, with the

advantages of non-invasiveness, good reproducibility, and no

radiation exposure, can serve as a convenient, safe, and feasible

means of clinical assessment. It proves to be an effective tool for

monitoring the impact of GDM and forming a foundation for the

development of individualized treatment and management

strategies. Through early prediction, timely interventions can be

taken to control blood glucose levels and reduce the incidence of

adverse pregnancy outcomes and child health problems.

In conclusion, the aim of this study is to establish a robust

prediction model based on early pregnancy indicators for

identifying the occurrence of GDM and guiding clinical practice.
2 Materials and methods

2.1 Inclusion exclusion criteria

Women who underwent early nuchal translucency examinations

from January 2021 to October 2023 during pregnancy were

retrospectively analyzed. Centre I was located at Guangzhou Red

Cross Hospital, and Centre II was based at Tianhe District Maternal

and Child Hospital of Guangzhou. In Center 1, 305 pregnant women

were enrolled, while Center 2 enrolled 110 pregnant women. Inclusion

criteria were: (1) gestational age between 11 + 0 and 13 + 6 weeks; (2)

fetal crown-rump length (CRL) between 45 and 84 mm; and (3)

singleton pregnancy. Exclusion criteria were: (1) pre-pregnancy

diabetes mellitus; (2) a combination of severe cardiovascular, renal,

and autoimmune diseases; (3) poor image quality; and (4) incomplete

clinical data. The study received approval from the Ethics Committee

of Guangzhou Red Cross Hospital and Tianhe District Maternal and

Child Hospital of Guangzhou (Figure 1) (2024-023-01).
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2.2 Definition

Pre-pregnancy body mass index (BMI) was obtained from

clinical records and calculated by dividing pre-pregnancy weight

by the square of the mother’s height. According to the adult weight

standards published by the Chinese Ministry of Health, a BMI <

18.5 kg/m² was defined as underweight, 18.5 kg/m² ≤ BMI < 24 kg/

m² was defined as normal weight, 24 kg/m² ≤ BMI < 28 kg/m² was

defined as overweight, and a BMI ≥ 28 kg/m² was defined as

obese (18).

All participants underwent oral glucose tolerance test (OGTT)

screening for gestational diabetes mellitus (GDM). Diagnostic

criteria were based on the August 2014 revised Chinese criteria.

GDM was diagnosed when the results of the OGTT performed

between 24 and 28 weeks of gestation met any one or more of the

following criteria: 1) fasting blood glucose ≥ 5.1 mmol/L, 2) 1-hour

blood glucose ≥ 10.0 mmol/L, and 3) 2-hour blood glucose ≥ 8.5

mmol/L (19).
2.3 Regions of interest outlining and
radiomics features extraction

In Center 1, Voluson E8, Voluson E10, and HITACHI HV

VISION Preirus ultrasound machines, all equipped with 2-5 MHz

convex array probes, were utilized. In Center 2, the SAMSUNG

WS80A ultrasound machine with a 2-5 MHz convex array probe

was employed. Ultrasound scanning adhered to ISUOG

practice guidelines.

Ultrasound images of the placenta were obtained during routine

early pregnancy antenatal ultrasound examinations. Maximal

section images of the placenta were captured, and placental

thickness was measured. The images were then saved, and
Frontiers in Endocrinology 03
ultrasound images stored in the diagnostic ultrasound system

were exported in Joint Photographic Experts Group (JPEG)

format for subsequent analysis (20).
2.4 Ultrasound images

ROIs were outlined by a physician with 5 years of experience in

gynecological ultrasound. ROIs were defined along the edges of the

uterus, encompassing the placenta, myometrium, amniotic fluid,

and fetal tissues. A senior physician with 10 years of experience in

gynecological ultrasound completed the review. In cases of

disagreement between the two physicians, resolution was achieved

through negotiation. Importantly, the sonographer responsible for

outlining and reviewing had no knowledge of the patient’s

ultrasound report or pathological details.

Before extracting radiomics features from the ultrasound

images, pre-processing steps were undertaken. This involved

discretizing image pixels into 30 bandwidth ranges, resampling

the image to a 1×1mm² range size, and normalizing image pixels.

Various feature types were extracted, encompassing 2D shape

features characterizing geometric parameters, intensity features

for pixel grey levels, and grey level co-occurrence matrices

(GLCM), grey level size zone matrices (GLSZM), grey level run

length matrices (GLRLM), neighboring grey tone difference

matrices (NGTDM) and grey level dependence matrices (GLDM)

characterizing image texture. In addition to the original features,

texture features processed by various filtering methods were also

extracted. These included Laplacian of Gaussian (LoG), Wavelet,

Square, Square root, Logarithm, Exponential, Gradient, and Local

Binary Pattern 2D (LBP2D).
2.5 Feature screening and ML
model construction

Feature screening was conducted on the Discovery cohort.

Before screening, the radiomics were normalized to the z-score

range (Equation 1). This normalization aimed to eliminate potential

effects caused by differences in data magnitudes and to enhance the

convergence and computation speed of the model.

z =
x − m
s

(1)

Given the potential impact of high feature correlation on model

generalization performance, features were initially assessed using

the Pearson correlation test, and those with r > 0.9 were excluded.

To evaluate interdependence, the mutual information method, a

filtered feature screening approach, was employed. Features with

higher mutual information provide more valuable information,

reflecting both linear and non-linear relationships.

Considering the dataset’s size, the Radial Basis Function kernel

Support Vector Machine (RBF-SVM) is known for its good

performance with small-scale data. Therefore, it was selected as

the classifier for modeling and validating the radiomics features
FIGURE 1

Flowchart for selecting the study population.
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dataset. Model parameters were tuned and assessed on the

discovery cohort using a five-fold cross-validation method.

Subsequently, the generalization performance of the well-trained

model was evaluated using an independent validation cohort.
2.6 DLCNN construction

Before constructing the deep learning model, we algorithmically

extracted the lesion region of interest to maximize the model’s

ability to learn valid information in the ROIs. Resnet50 served as the

backbone network, and we employed a learning-from-scratch

strategy by resizing the image to 224×224 pixels and normalizing

it. To mitigate overfitting, multiple data augmentation were applied,

including random horizontal flip, random vertical flip, random

rotation, random grayscale transformation, and transformation of

image attributes (brightness, contrast, saturation, and hue).

Upon training, optimal hyperparameters were determined:

Batch size of 128, Epochs of 500, Learning rate of 3e-4, Loss

function of cross-entropy, Optimizer of Adaptive Moment

Estimation (Adam) with b1 of 0.9, b2 of 0.999, epsilon of 1e-8,

and weight decay of 0.01. L2 regularization was increased to

prevent overfitting.
2.7 Clinical modelling and
nomogram construction

One-way logistic regression was used to assess valuable clinical

variables on the discovery cohort, P< 0.05 was considered

statistically different and thus included in the logistic regression

model for the construction of the clinical model.

Nomogram was constructed based on the combination of ML

model of radiomics, DLCNN and clinical model. The model’s

goodness of fit P >0.05 was considered that nomogram had a

good degree of fit in terms of actual observations and predicted

probabilities directly.
Frontiers in Endocrinology 04
Figure 2 illustrates the process of studying image segmentation

and analysis used in this study.
2.8 Statistical analysis

Statistical analyses were conducted using R software (version

4.2.2, https://www.r-project.org/). For continuous variables, the

Shapiro-Wilk test was employed for distribution tests. If the data

adhered to a normal distribution, parametric tests were utilized;

otherwise, non-parametric tests were applied. Categorical variables

were analyzed using the chi-square test or Fisher’s exact test (if

applicable). Results for categorical and continuous variables were

presented as frequencies (percentages), mean ± standard deviation,

or median (interquartile range), as appropriate. Effect size and

sample size were calculated by statistical methods. f=0.4, a=0.05,

1-b=0.8, and the required sample size was 52 people.

The predictive performance of the model was assessed using

AUC and its 95% confidence interval. Target area outlining,

radiomics features extraction, feature screening, and ML model

construction were carried out using the open-source toolkit

OpenCV (version 4.8.1, https://opencv.org/), PyRadiomics

(version 3.1.0, https://pyradiomics.readthedocs.io/), and Scikit-

learn (version 1.0.2, https://scikit-learn.org/). Deep convolutional

network modeling was implemented based on the PyTorch

framework (version 1.13.0, https://pytorch.org/).
3 Results

3.1 Clinical baseline and clinical
model construction

A total of 415 patients were enrolled, with 305 in the Discovery

cohort and 110 in the Independent Validation cohort. Baseline

demographic characteristics, including Age, Placental thickness in

early pregnancy, NT gestational week, Parity, Pre-pregnancy
FIGURE 2

Workflow of this study.
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weight, Pre-pregnancy BMI, and others, are presented in Table 1.

No significant differences were observed between the two groups in

early pregnancy placental thickness, NT test gestational week,

parity, and pre-pregnancy weight (P > 0.05).

Results from one-way logistic regression analysis indicated

significant differences in age and pre-pregnancy BMI between the

groups (P< 0.05). The GDM group exhibited higher age and pre-

pregnancy BMI, leading to their inclusion in the multifactorial

logistic regression model for constructing the clinical model. The

AUC, sensitivity, specificity, and accuracy of the clinical model for

the Discovery cohort were 0.66 (95% CI 0.59-0.72), 0.44, 0.83, 0.65,

and 0.54, respectively. In the Independent Validation cohort, these

metrics were 0.66 (95% CI 0.55-0.76), 0.27, 0.93, 0.59, and

0.40, respectively.
Frontiers in Endocrinology 05
3.2 Feature screening and model building
and validation

Figure 3 illustrates the ROC curves for the Discovery cohort and

Independent Validation cohort. The DCAs of the four models are

shown in Figure 4, and Table 2 presents the diagnostic performance

of each model.

A total of 1311 ultrasound radiomics features were extracted,

categorized into 252 FirstOrderStatistics, 336 GLCM, 196 GLDM,

224 GLRLM, 224 GLSZM, 70 NGTDM, and 9 Shape-

based (shape2D).

Using the person correlation coefficient and mutual information as

filtered feature selection methods, 38 features with predictive value

were selected to build the ML model. These included one Shape-based
frontiersin.o
BA

FIGURE 3

The ROCof the Clinical model, Radiomics model, DLCNN model, and Nomogram model in the training (A) and validation (B) cohorts, respectively.
TABLE 1 Patient characteristicsa.

Discovery cohort
(N=305)

Independent validation cohort
(N=110)

Control group
(N=166)

GDM group
(N=139)

P-value
Control group

(N=57)
GDM group

(N=53)
P-value

Age (years) 31.1 ± 4.36 32.1 ± 4.02 0.04 29.6 ± 3.78 31.3 ± 4.12 0.03

Parity 0.31 0.27

Primiparous 80 (48.2%) 76 (54.7%) 35 (61.4%) 26 (49.1%)

Multiparous 86 (51.8%) 63 (45.3%) 22 (38.6%) 27 (50.9%)

Pre-pregnancy weight (kg) 54.6 ± 9.49 56.4 ± 10.00 0.11 51.5 ± 7.17 55.5 ± 9.88 0.02

Pre-pregnancy BMI (kg/m²) 21.4 ± 3.48 22.3 ± 3.69 0.03 20.2 ± 2.08 21.9 ± 3.84 0.00

Placental thickness (mm) 13.8 ± 2.42 14.3 ± 3.03 0.12 13.5 ± 1.71 13.9 ± 1.94 0.26

Gestational age at US(weeks) 11.7 ± 0.65 11.8 ± 0.62 0.29 11.9 ± 0.68 12.3 ± 1.38 0.06
aData were presented as No. (%) and mean ± SD.
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feature, 12 FirstOrderStatistics, 15 Glcm, 3 Gldm, 2 Glrlm, and 6

Ngtdm. Employing the RBF-SVM to construct the model, the AUC,

sensitivity, specificity, and accuracy for the Discovery cohort were 0.91

(95% CI 0.88-0.94), 0.85, 0.83, 0.91, and 0.83, respectively. In the

Independent Validation cohort, these metrics were 0.86 (95% CI 0.79-

0.93), 0.75, 0.82, 0.78, and 0.78, respectively.

For the Resnet50 model, the AUC, sensitivity, specificity, and

accuracy in the Discovery cohort were 0.65 (95% CI 0.59-0.71), 0.80,

0.43, 0.60, and 0.64, respectively. In the Independent Validation cohort,

these metrics were 0.69 (95% CI 0.59-0.79), 0.96, 0.07, 0.52, and

0.67, respectively.

Additionally, we evaluated a nomogram combining ML, DLCNN,

and clinical model (Figure 5A). Figure 5B and Figure 5C shows the

consistency of predicted and observed probabilities between the

Discovery cohort and Independent Validation cohort nomogram

models. In the Discovery cohort, the nomogram exhibited the

highest discrimination with AUCs of 0.951 (95% CI 0.87-1.00) and

0.893 (95% CI 0.75-0.97) for the Discovery and Independent

Validation cohorts, respectively. Sensitivities were 0.91 and 0.80,

specificity 0.88 and 0.78, and accuracy 0.85 and 0.83, respectively.

The DCAs show that the nomogrammodel has the greatest net benefit.
4 Discussion

The field of Artificial Intelligence is developing rapidly, and its

advantages in the field of medical image recognition and processing
Frontiers in Endocrinology 06
continue to emerge and are gradually being used in all aspects of

obstetrics and gynaecology (21, 22). Our study establishes a

nomogram that incorporates two clinical factors, radiomics

features, and DLCNN. This nomogram yielded a higher AUC

than a single model, demonstrating its excellent clinical

application. It can further aid in treatment decisions and improve

clinical outcomes.

Advanced age during pregnancy is a widely recognized major

risk factor for GDM. This study revealed that maternal age was

higher in the GDM group than in the non-GDM group. Maternal

age was subsequently included in the ROC analysis (23). A

systematic evaluation and meta-analysis of over 120 million

participants indicated a linear relationship between GDM risk

and maternal age. Another study demonstrated that the risk of

GDM increases with age, with a 12.5 percent rise in GDM risk for

each additional year of age (24). This aligns with the findings of our

study. We hypothesize that as pregnant women age, their body’s

metabolic capacity decreases, leading to insufficient insulin

secretion and pancreatic b-cell hypofunction (25).

Additionally, obesity is a recognized risk factor for GDM. The

results of this study showed that the pre-pregnancy BMI of

pregnant women with GDM was higher than that of pregnant

women with normal pregnancies. Maria Mirabelli et al. found that

maternal pre-pregnancy obesity was associated with almost three

times the risk of GDM (26). M. R. Torloni demonstrated that the

prevalence of GDM increased with BMI, and the risk of GDM was

positively correlated with pre-pregnancy BMI (27). J. Ogonowski
TABLE 2 Diagnostic performance of different models for predicting GDM in training and test cohorts.

Model
Discovery cohort Independent validation cohort

AUC (95%CI) Sen Spe Acc F1 AUC (95%CI) Sen Spe Acc F1

Clinical 0.66 (0.59-0.72) 0.44 0.83 0.65 0.54 0.66 (0.55-0.76) 0.27 0.93 0.59 0.40

DLCNN 0.65 (0.59-0.71) 0.80 0.43 0.60 0.64 0.69 (0.59-0.79) 0.96 0.07 0.52 0.67

Radiomics 0.91 (0.88-0.94) 0.85 0.83 0.91 0.83 0.86 (0.79-0.93) 0.75 0.82 0.78 0.78

Nomogram 0.93 (0.90-0.95) 0.91 0.80 0.85 0.84 0.88 (0.81-0.94) 0.88 0.78 0.83 0.84
fro
AUC, area under the receiver operating characteristic curve; Sen, sensitivity; Spe, specificity; F1, F1-score.
FIGURE 4

DCA for four models predicting GDM. The graphs show that the nomogram model has the greatest net benefit.
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concluded that the risk of GDM increases not only in overweight

but also in normal-weight women, making pre-pregnancy BMI a

predictor of gestational diabetes (28). Therefore, controlling pre-

pregnancy BMI and managing weight gain during pregnancy are

crucial, and effective preventive interventions for weight must

commence as early as possible.

Advanced age and pre-pregnancy obesity are identified as risk

factors, but their accuracy in predicting GDM is unsatisfactory. In

this study, we investigated the relationship between placental

ultrasound images in early pregnancy and the development of

GDM. We found that nomogram for predicting the development

of GDM, are potentially useful for clinical applications. This finding

may be related to a series of changes in placental texture

characteristics in pregnant women with GDM that occur early in

pregnancy. Many studies have shown that placental morphology

undergoes changes in early pregnancy, including alterations in

surface area and volume, as well as histological changes such as

an increased volume of the interstitium and terminal villi of the

villous structure, placental vascular function, and vascular lesions,

the number of syncytiotrophoblast junctions, fibrillar areas, and

glycogen deposition (5, 29).

Obinna et al. demonstrated that the GLCM, GLRLM, and

histogram parameters were able to differentiate between normal

and abnormal placental tissue by analyzing the textural features of

500 ultrasound placental images (p-value < 0.05) (15).Hongshuang
Frontiers in Endocrinology 07
Sun MD et al. developed a model to distinguish placental features in

ultrasound images of GDM patients and healthy pregnant women,

confirming significant changes in abnormal placental features

during diabetic pregnancy (10). The results consistently showed

that ML and deep learning can effectively distinguish the textural

features of the placenta in early pregnancy in patients with GDM,

which is an important diagnostic marker for predicting GDM.

Currently, OGTT stands as the gold standard for diagnosing

GDM. Consequently, GDM is typically identified during the middle

and late stages of pregnancy. Unfortunately, by this point, the risk of

hyperglycemia to both the mother and fetus becomes irreversible.

Gestational Diabetes Australia recommends screening for GDM in

high-risk women before 24 weeks of gestation, aiming for early

diagnosis and control of normoglycemia in pregnant women to

minimize adverse outcomes (30). However, this recommendation

lacks robust supporting evidence. Therefore, it becomes imperative

to develop reliable prediction models in early pregnancy to identify

high-risk pregnant women for GDM.

Between 11 and 14 weeks of gestation in GDM, three-

dimensional ultrasound failed to reveal significant differences in

placental volume (31). However, M. Şengül’s study, investigating

real-time placental strain elastography in early pregnancy, identified

the placental strain ratio as an independent risk factor for GDM

development (32). It showed that gestational diabetic patients

exhibited higher placental stiffness, suggesting a series of changes
B C

A

FIGURE 5

Nomogram and calibration curves. (A) The nomogram, combining Pre-pregnancy BMI、age、DLCNN score and Rad-score, was developed in
Discovery cohort. (B, C) The nomogram calibration curves in Discovery cohort (B) and Independent validation cohort (C). Calibration curves indicate
the goodness-of-fit of the model. ** means p<0.01. *** means p<0.001.
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in the pathological histology and morphological structure of the

placenta during early pregnancy (33). These alterations may lead to

functional changes in the placenta, impacting the health of both the

pregnant woman and the fetus (34).

Predicting GDM risk in pregnant women by identifying early

pregnancy placental features through radiomics and deep learning

methods could enable interventions and lifestyle changes to prevent

GDM development (35). This approach also provides clinicians with

sufficient time to formulate appropriate therapeutic strategies, reducing

the harm associated with GDM or preventing its occurrence. However,

our study has limitations. The fundamental requirement of artificial

intelligence is learning from a large dataset. The small sample size in this

study, may explain the low specificity, as a limited dataset fails to capture

the diversity and heterogeneity present in the placenta. Additionally,

exploring multimodal data to analyze placental heterogeneity and assess

function more precisely is crucial. In future studies, we will further

implement multi-center, large-sample clinical trials.

In conclusion, our study not only developed an effective model for

differentiating placental features in ultrasound images of GDM patients

and healthy pregnant women but also confirmed significant changes in

abnormal placental features during early diabetic pregnancy. Obtaining

information about placental function holds vital ancillary value for

diagnosing and treating gestational diabetes. This advanced modeling

approach opens opportunities, suggesting that future research should

focus on providingmodels that offer both the physiological features of a

normal pregnancy and aid in clinical decision-making quickly

and efficiently.
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