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Background: Analyzing bacterial microbiomes consistently using next-

generation sequencing (NGS) is challenging due to the diversity of synthetic

platforms for 16S rRNA genes and their analytical pipelines. This study compares

the efficacy of full-length (V1–V9 hypervariable regions) and partial-length (V3–

V4 hypervariable regions) sequencing of synthetic 16S rRNA genes from human

gut microbiomes, with a focus on childhood obesity.

Methods: In this observational and comparative study, we explored the

differences between these two sequencing methods in taxonomic

categorization and weight status prediction among twelve children with

obstructive sleep apnea.

Results: The full-length NGS method by Pacbio
®
identified 118 genera and 248

species in the V1–V9 regions, all with a 0% unclassified rate. In contrast, the

partial-length NGS method by Illumina
®

detected 142 genera (with a 39%

unclassified rate) and 6 species (with a 99% unclassified rate) in the V3–V4

regions. These approaches showed marked differences in gut microbiome

composition and functional predictions. The full-length method distinguished

between obese and non-obese children using the Firmicutes/Bacteroidetes

ratio, a known obesity marker (p = 0.046), whereas the partial-length method

was less conclusive (p = 0.075). Additionally, out of 73 metabolic pathways

identified through full-length sequencing, 35 (48%) were associated with level 1
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metabolism, compared to 28 of 61 pathways (46%) identified through the partial-

length method. The full-length NGS also highlighted complex associations

between body mass index z-score, three bacterial species (Bacteroides ovatus,

Bifidobacterium pseudocatenulatum, and Streptococcus parasanguinis ATCC

15912), and 17 metabolic pathways. Both sequencing techniques revealed

relationships between gut microbiota composition and OSA-related

parameters, with full-length sequencing offering more comprehensive insights

into associated metabolic pathways than the V3–V4 technique.

Conclusion: These findings highlight disparities in NGS-based assessments,

emphasizing the value of full-length NGS with amplicon sequence variant

analysis for clinical gut microbiome research. They underscore the importance

of considering methodological differences in future meta-analyses.
KEYWORDS

gut microbiome, synthetic 16S rRNA gene, read lengths, analysis pipelines, Firmicutes/
Bacteroidetes ratio, obesity, obstructive sleep apnea
1 Introduction

The gut microbiota, primarily composed of Firmicutes and

Bacteroidetes bacteria, plays a pivotal role in maintaining health

and metabolic processes (1, 2). Existing evidence suggests that the

gut microbiome holds a central role in regulating organismal energy

balance (3), which includes the involvement of intestinal microbiota

composition in intestinal plasticity and metabolism to sustain

energy equilibrium (4). The gut microbiota of the human body is

influenced by multiple exogenous and endogenous factors, such as

genetic disposition, sex, age, diet (5), physical activity (6), sleep,

pollutants (7), and others, leading to substantial variability across

individuals and populations. An imbalance or disruption in the

natural microbiota composition, referred to as dysbiosis, has been

linked to a range of health conditions (8), including gastrointestinal

disorders, autoimmune diseases, and metabolic conditions, such as

obesity (9).

The Firmicutes/Bacteroidetes (F/B) ratio has been proposed as

an obesity marker by some studies (10–12). Increased Firmicutes

abundance and the F/B ratio in subjects with obesity are associated

with disrupted energy metabolism (13). Reductions in Bacteroides

and Lactobacillus induce lipid synthesis and storage in individuals

with obesity via decreased bile acid concentrations (14). The altered

gut microbiota and related metabolites contribute to weight gain by

modulating central appetite and feeding behavior (15). In children,

an increased presence of the Firmicutes phylum and a decreased

presence of the Bacteroidetes phylum have been associated with

high body mass index (BMI) (10). However, the association of the

F/B ratio with obesity is contentious due to inherent methodological

biases in microbiome analyses (12).

The 16S ribosomal RNA (rRNA) gene, a hallmark of

prokaryotic life, encodes the RNA component of the ribosome’s
02
small subunit and is essential for protein synthesis from mRNA.

The gene encompasses conserved and variable regions (V1–V9)

(16), enabling the 16S rRNA sequencing technique to serve as a

cornerstone for microbial taxonomy and phylogeny (16, 17),

reliably classifying bacteria up to the genus level (18). However,

the precision of next-generation sequencing (NGS) for microbiome

analysis varies with the sequencing approach, database, and

targeted gene regions (19). Partial sequencing frequently lacks

specificity beyond the genus level due to the selection of variable

regions and read length inconsistencies (20–22). Although

combining several hypervariable regions (usually V3–V4) may

enhance resolution (23, 24), it can also lead to taxonomic

misclassifications (25).

Advances in third-generation NGS technologies, characterized

by long-read capabilities, allow for the sequencing of the complete

16S rRNA gene, which enhances the resolution of taxonomic

classification (26). At the species level, full-length 16S rRNA gene

sequencing has been shown to provide higher resolution compared

to the V3–V4 regions, with improvements noted in alpha diversity,

the frequency of relative abundance, and accuracy of identification

(27). However, this technique is not without its challenges, which

include the handling of unique tag sequences and the accurate

identification of low-abundance variants (26, 28, 29). These

technical hurdles contribute to an ongoing discourse regarding

the relative merits of partial versus full-length sequencing for

microbial analysis. This discussion highlights the necessity for

methodological comparative studies, aiming to ascertain the most

reliable approaches for analyzing the gut microbiome.

Obstructive sleep apnea (OSA) is a prevalent sleep disorder in

children, with obesity increasingly recognized as a major risk factor

alongside adenotonsillar hypertrophy (30). Obesity significantly

correlates with the apnea-hypopnea index (AHI) in school-aged
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children with OSA (31). Emerging evidence suggests a genetic link

between gut microbiota and OSA development (32), warranting

further research into the effects of different 16S rRNA gene

sequencing platforms and analytical pipelines on understanding

the gut microbiota’s role in obesity among children with OSA.

We hypothesized that the full-length (V1–V9 region) synthetic

16S rRNA gene sequencing method will surpass the partial (V3–V4

region) method in (1) identifying and classifying the human gut

microbiome, and (2) distinguishing patients with overweight or

obesity (OWO) from those with normal weight (NW) using

microbiota markers associated with obesity. In a sample of

pediatric OSA patients with varying weight statuses, this study

aimed to: (1) compare the results between full-length (V1-V9

region) and partial (V3–V4 region) 16S rRNA gene sequencing

methods in analyzing the gut microbiome, and (2) investigate the

implications of both methods on the identification of obesity-

associated microbiota markers.
2 Methods

2.1 Study design and participants

This was an observation and comparative study. The

participants were prospectively enrolled in an investigation of

tonsil and gut microbiomes at the Department of Otolaryngology,

Chang Gung Memorial Hospital (Linkou Main Branch, Taoyuan,

Taiwan) between March 2017 and January 2019 (33). The

Institutional Review Board of Chang Gung Medical Foundation

approved the study (Approval No.: 201507279A3). Both parents

and participants aged 6 years or older provided written informed

consent. Our research adhered to the revised Declaration of

Helsinki (34) and complied with the STROBE guidelines (35).

Children aged 5-12 years, exhibiting an AHI of ≥ 5.0 events/

hour or an AHI of ≥ 2.0 events/hour with at least one associated

morbidity (e.g., elevated blood pressure, daytime sleepiness, growth

retardation), were considered eligible (36). We excluded patients

with craniofacial, neuromuscular, or chronic inflammatory

disorders (37). Those with acute inflammation or conditions

requiring antibiotic treatment were only eligible for stool sample

collection after a minimum of two weeks following remission.

From a database of 66 children (33), we meticulously selected

six children with OWO and another six with NW based on age, sex,

and AHI. The participants were subsequently categorized based on

their BMI z-scores into the ‘OWO’ group (BMI z-score ≥ 1.0) and

the ‘NW’ group (BMI z-score > -2.0 and < 1.0) (38). Figure 1

displays the study flow diagram.
2.2 Polysomnography

Our study assessed various factors linked to OSA severity,

including AHI, apnea index, arousal index, mean blood oxygen

saturation (SaO2), minimum SaO2, total sleep time, and sleep

stages. Following the 2012 American Academy of Sleep Medicine
Frontiers in Endocrinology 03
Manual guidelines (39), we employed standard full-night in-lab

polysomnography. The detailed protocol for this polysomnography

has been previously documented (37, 40, 41).
2.3 Stool sample collection and
DNA preparation

Stool samples were collected, snap-frozen in liquid nitrogen,

and stored at -80°C. DNA extraction utilized a fecal DNA isolation

kit (MoBio Laboratories, USA). DNA concentrations were

ascertained with a NanoPhotometer P360 system (Implen, USA)

and standardized to 1 ng/ul for subsequent analyses of full-length or

5 ng/ml for subsequent analyses of partial length 16S rRNA

amplicon sequencing.
2.4 Full-length 16S rRNA amplicon
sequencing and taxonomy classification

The full-length 16S genes encompassing V1–V9 hypervariable

regions were amplified using barcoded 16S gene-specific primers as

detailed in PacBio®’s guide (42). Each primer is designed to contain

a 5’ buffer sequence (GCATC) with a 5’ phosphate modification, a

16-base barcode and the degenerate 16S gene-specific forward or

reverse primer sequences (Forward:5’Phos/GCATC- 16-base

barcode - AGRGTTYGATYMTGGCTCAG -3’, Reverse: 5’Phos/

GCATC- 16-base barcode – RGYTACCTTGTTACGACTT -3’)
FIGURE 1

Participant flowchart. Following a rigorous matching process that
considered age, sex, and apnea-hypopnea index (AHI), six children
diagnosed with obstructive sleep apnea (OSA) and concurrent
overweight/obesity (OWO) were meticulously selected.
Correspondingly, an equivalent number of six children with OSA and
normal weight (NW) were also included as participants in the
present study. These participants were chosen from a total of 66
children who had been diagnosed with OSA.
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(43). The degenerate base identities are defined as follows: R = A or

G; Y = C or T; M = A or C. A total of 2 ng of gDNA was used for the

polymerase chain reaction (PCR), employing the KAPA HiFi

HotStart ReadyMix (Roche, USA) under specified PCR

conditions. Post-reaction, the PCR products were examined on a

1% agarose gel. Samples exhibiting a prominent band around 1,500

bp were selected and purified using AMPure PB Beads for

subsequent library preparation.

The SMRTbell library preparation followed the PacBio®’s

guidelines as above. Briefly, an equal molar amount of each

barcoded PCR product was pooled, and between 500-1,000 ng of

the pooled amplicon sample underwent DNA damage repair. This

was followed by end-repair, A-tailing, and ligation steps to attach

the universal hairpin adapters to double-stranded DNA region.

After purification with AMPure PB beads to discard adapter dimers,

the SMRTbell library was prepped with Sequel II primer 3.1 and

Sequel II Binding Kit 3.1 for primer annealing and polymerase

binding. Finally, sequencing was executed in the circular consensus

sequence (CCS) mode on a PacBio® Sequel IIe instrument to yield

HiFi reads with a predicted accuracy (Phred Scale) of 30.

CCS reads were determined based on a minimum predicted

accuracy of 0.9, with the least number of passes set at three, as per

PacBio®’s official workflow using the SMRT Link software. Only

CCS reads exceeding a quality score of Q30, termed Q30 HiFi reads,

advanced to the succeeding phase. Post-demultiplexing, the HiFi

reads underwent further processing using DADA2 (version 1.20;

https://qiime2.org/) to extract amplicons with single-nucleotide

resolution (44). Trimming and filtering were set to a maximum of

two expected errors per read. The DADA2 algorithm can discern

exact amplicon sequence variants (ASVs) from the full-length 16S

rRNA gene with near-zero error rates. For each distinct sequence,

tools such as the feature-classifier (45) and classify-consensus-

vsearch (46) algorithm in QIIME 2 (v2022.11) were employed to

annotate taxonomy classifications based on data from the National

Center for Biotechnology Information (NCBI) 16S ribosomal RNA

database (47). To evaluate sequence similarities among diverse

ASVs, a multiple sequence alignment was executed using QIIME

2’s MAFFT (48) tool against the NCBI 16S ribosomal RNA

database. A phylogenetic tree, illustrating the relationship of

representative ASV sequences, was constructed using QIIME 2’s

phylogeny FastTree (49).
2.5 Partial length 16S rRNA amplicon
sequencing and taxonomy classification

We targeted the V3–V4 hypervariable region of the 16S rRNA

gene for sequencing, amplified with specific primers: 341F (5’-

C C T A C GGGNGG CWGCAG - 3 ’ ) a n d 8 0 6 R ( 5 ’ -

GACTACHVGGGTAT CTAATCC -3’). Amplification followed

the 16S Metagenomic Sequencing Library Preparation protocol

(Illumina®, USA). PCR was carried out with 12.5 ng of genomic

DNA, using KAPA HiFi HotStart ReadyMix (Roche, USA). The

PCR products were verified via 1.5% agarose gel electrophoresis.

DNA from samples with a prominent ~500 bp band was purified
Frontiers in Endocrinology 04
using AMPure XP beads (Beckman Coulter, USA). Quality

assessment of the indexed PCR products was conducted using the

Qubit 4.0 Fluorometer (Thermo Scientific, USA) and the

Qsep100TM system (BiOptic, Taiwan). The sequencing library

was constructed as per the aforementioned Illumina® protocol,

and sequencing was executed on an Illumina® MiSeq platform,

yielding paired 300-bp reads.

Post-sequencing, raw reads were demultiplexed based on

barcodes. The paired-end reads underwent primer and adapter

sequence removal via QIIME 2 cutadapt plugin (50). ASV

construction involved the QIIME 2 DADA2 plugin (v2021.4),

which facilitated quality filtering, dereplication, denoising, and

more (44). Taxonomy classification and phylogenetic tree were

performed as above.
2.6 Data analysis of gut microbiome

To account for sequence depth variations, ASVs were rarefied

to the minimal sequence depth using QIIME ’s script

(single_rarefaction.py). Both alpha and beta diversity analyses

utilized this normalized data. The community’s relative abundance

and evenness accounting for alpha diversity were assessed using the

Shannon, Simpson, and Peilou indices (51). For beta diversity,

weighted and unweighted UniFrac were calculated (52). Statistical

evaluations employed principal coordinate analysis (53) and non-

metric multidimensional scaling (NMDS) (54). Furthermore,Welch’s

t-test with the Benjamini-Hochberg procedure was performed to

control false discovery rate using the STAMP software (v2.1.3) (55).

The presence of statistically significant biomarkers was ascertained

using the linear discriminant analysis effect size (LEfSe) analysis (56).

Community structure differences were determined using analysis of

similarity (57) and permutational multivariate analysis of variance

(58). Functional abundances were predicted from full-length 16S

rRNA data using Tax4Fun2 and the V3–V4 region for the Tax4Fun2

(59) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

orthology database (60). For highlighting pivotal functional profiles,

the ggplot2 and microeco R packages were coupled with metastat

statistics (61).
2.7 Statistical analysis

The normality of the continuous variables was assessed using

the Kolmogorov-Smirnov test. For variables that followed a normal

distribution, results were presented as the mean with standard

deviation (SD). In cases where the distribution was non-normal,

we reported the median alongside the interquartile range (IQR). To

evaluate the differences between the two weight statuses, the

unpaired Student t-test or Mann-Whitney U test were employed

for continuous variables, while the Fisher exact test was used for

categorical variables. For within-group comparisons, we applied

either the paired Student t-test or the Wilcoxon signed-rank test,

depending on the nature of the continuous variables. All statistical

procedures were performed using multiple software tools:
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R (versions 4.3.1, R Foundation for Statistical Computing, Vienna,

Austria), SPSS (version 27.0, IBM Corp., Armonk, NY, USA), and

GraphPad Prism 10.0 for Windows (Graph Pad Software Inc., San

Diego, CA, USA).
3 Results

3.1 Clinical characteristics of children with
OSA and various weight status

Of the 66 children initially diagnosed with OSA, 36 were

excluded because their stool samples were collected after

December 31, 2017. Of the 30 children that remained, 17 had

both OSA and OWO, and 13 had OSA with NW. Further exclusion

based on age, sex, and weight status criteria left 12 participants for

the final analysis: 6 children with concurrent OSA and OWO, and

another 6 with OSA and NW, as illustrated in Figure 1. The final

cohort consisted of 10 boys and 2 girls, with a median age of 6 years

(IQR: 5–10 years). This is detailed in Table 1. The clinical variables

were similar between the OWO and NW groups, except for the BMI

z-score, which showed a significant difference (p = 0.002).
3.2 Full-length 16S rRNA sequencing offers
enhanced coverage but fewer ASVs

Table 2 outlines the ASV counts, and corresponding sequence

counts for each sample. With a Q score threshold of 30, the full-

length 16S rRNA sequence via PacBio® yielded significantly fewer

ASVs than the V3–V4 region sequenced with Illumina® (16044

(15554–18552) vs. 147952 (141946–152740), p < 0.001). Notably,
Frontiers in Endocrinology 05
almost all ASVs derived from full-length 16S rRNA sequencing

were classified, resulting in a negligible rate of unassigned sequences

(0–0.2% range) across phylum to species levels. In contrast, the V3–

V4 region had a progressive increase in unassigned ASVs, especially

from family (0.8%–14.5%) to species tiers (97.9%–99.9%).

Moreover, the coverage rates from full-length V1–V9 region

surpassed those of V3–V4 across all taxonomic levels (all p < 0.01).
3.3 Full-length 16S rRNA sequencing
unveils greater bacterial species richness
and elevated microbial diversities

Upon normalization by relative abundance, there were no

significant disparities in the taxonomic profiles between full-

length 16S rRNA sequencing and V3–V4 region from the phylum

to the genus levels (Figures 2A–E; all p > 0.05). However,

distinctions emerged at the species level (Figure 2F; p < 0.001). In

terms of alpha diversity, the Simpson and Pielou indexes were both

appreciably higher for full-length 16S rRNA sequencing as

compared to the V3–V4 region (Figure 3A; p = 0.021 and

p = 0.001, respectively). Delving further, it was observed that both

unweighted (Figure 3B) and weighted (Figure 3C) UniFrac

distances, as computed for individual samples from patients with

NW and OWO, exhibited pronounced differences between the two

NGS methodologies (p = 0.001 and p = 0.002, respectively).

Regarding beta diversity (Figure 3D), the unweighted UniFrac

distances associated with the full-length 16S rRNA sequencing

were considerably lower than those of the V3–V4 region

(p = 0.001). Conversely, the weighted UniFrac distances recorded

for the full-length 16S rRNA sequencing surpassed those for the

V3–V4 region (p = 0.001).
TABLE 1 Clinical characteristics of twelve pediatric patients with obstructive sleep apnea: a comparison between overweight/obesity and
normal weight.

Total Overweight/obesity Normal weight p-Value

Age, years 6 (5–10) 8 (5–10) 6 (5–9) 0.589

Sex (girls/boys) 2/10 1/5 1/5 > 0.99

BMI z-score 0.8 (0.1–2.4) 2.4 (1.8–2.7) 0.1 (-0.8–0.4) 0.002

AHI, events/h 24.0 (20.0) 30.7 (27.0) 17.3 (6.4) 0.263

AI, events/h 4.0 (1.4–14.2) 5.9 (1.4–16.8) 4.0 (1.0–7.6) 0.699

Mean SaO2, % 97 (96–98) 97 (96–98) 98 (97–98) 0.699

Minimal SaO2, % 86 (82–91) 84 (79–91) 89 (83–91) 0.589

TST, minutes 336 (279–345) 340 (315–346) 311 (263–346) 0.394

N1 sleep, % 19 (10) 20 (12) 17 (9) 0.579

N2 sleep, % 36 (29–40) 37 (33–40) 30 (29–40) 0.589

N3 sleep, % 30 (7) 28 (6) 32 (7) 0.329

REM sleep, % 17 (7) 15 (7) 18 (8) 0.584
Data are displayed as mean (standard deviation), median (interquartile range), or number.
Between-group comparisons were evaluated using the unpaired Student t test or Mann-Whitney U test for continuous variables and the Fisher exact test for categorical variables.
AHI, apnea-hypopnea index; AI, apnea index; BMI, body mass index; REM, rapid eye movement; SaO2, blood oxygen saturation; TST, total sleep time.
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3.4 Full-length 16S rRNA sequencing offers
a deeper insight into the disparities in gut
microbiota between children with OWO
and those with NW compared to the V3–
V4 16S rRNA sequencing

There were notable differences in ASVs at both the phylum and

genus levels between the OWO andNW groups, as evidenced by both

the full-length 16S rRNA sequencing and the V3–V4 region

methodologies (Figures 4A, B; all p < 0.05). However, the full-

length method provided deeper insights compared to the V3–V4

region. This distinction was apparent when evaluating the F/B ratio
Frontiers in Endocrinology 06
(Figure 4C), the alpha diversity (Figure 4D), beta diversity (Figure 4E),

and the number of differentiated ASVs (Figures 5A, B), helping to

better distinguish children with OWO from those with NW.
3.5 Both the full-length and V3–V4 16S
rRNA sequencing methods reveal unique
functional predictions of gut microbiota
across weight categories

Using the Tax4Fun2-based NMDS plot, a marked differentiation

in the habitat-specific functional profile of gut microbiota emerged
TABLE 2 Microbial community analysis.

Group Dataset Sample Read
count

ASV
count

Reads assigning taxonomic labels (coverage %)

Phylum Class Order Family Genus Species

NW

Full-length NW1 14995 12828 12828 (100) 12828 (100) 12828 (100) 12828 (100) 12828 (100) 12828 (100)

NW2 14402 12090 12090 (100) 12090 (100) 12090 (100) 12090 (100) 12090 (100) 12090 (100)

NW3 15859 13131 13131 (100) 13131 (100) 13131 (100) 13131 (100) 13131 (100) 13131 (100)

NW4 18638 16271 16271 (100) 16271 (100) 16271 (100) 16271 (100) 16271 (100) 16271 (100)

NW5 15325 12810 12810 (100) 12810 (100) 12810 (100) 12810 (100) 12810 (100) 12810 (100)

NW6 18462 15895 15895 (100) 15895 (100) 15895 (100) 15895 (100) 15895 (100) 15895 (100)

V3–V4 NW1
143507 100485

100460
(100)

100460 (100)
100460
(100)

99663 (99.2) 54567 (54.3) 119 (0.1)

NW2
158072 104795

104769
(100)

104769 (100)
104608
(99.8)

103128
(98.4)

86779 (82.8) 355 (0.3)

NW3 145091 91524 91294 (100) 91294 (99.7) 91294 (99.7) 90192 (98.5) 58282 (63.7) 55 (0.1)

NW4 151220 98229 98207 (100) 98194 (100) 98180 (100) 97289 (99.0) 61759 (62.9) 666 (0.7)

NW5
141425 106878

106863
(100)

106766 (99.9)
106663
(99.8)

104776
(98.0)

74092 (69.3) 491 (0.5)

NW6
155020 113930

113930
(100)

113908 (100)
113584
(99.7)

112832
(99.0)

86653 (76.1) 1242 (1.1)

OWO

Full-length OWO1
15728 14260

14233
(99.8)

14233 (99.8) 14233 (99.8) 14233 (99.8) 14233 (99.8) 14233 (99.8)

OWO2 15496 13008 13008 (100) 13008 (100) 13008 (100) 13008 (100) 13008 (100) 13008 (100)

OWO3 15798 13642 13642 (100) 13642 (100) 13642 (100) 13642 (100) 13642 (100) 13642 (100)

OWO4 16228 14846 14846 (100) 14846 (100) 14846 (100) 14846 (100) 14846 (100) 14846 (100)

OWO5 17416 15813 15813 (100) 15813 (100) 15813 (100) 15813 (100) 15813 (100) 15813 (100)

OWO6 18582 16021 16021 (100) 16021 (100) 16021 (100) 16021 (100) 16021 (100) 16021 (100)

V3–V4 OWO1 139392 93309 93130 (100) 93130 (99.8) 93130 (99.8) 91100 (97.6) 46526 (49.9) 1977 (2.1)

OWO2
147824 108820

108812
(100)

108812 (100)
108759
(99.9)

107281
(98.6)

51333 (47.2) 266 (0.2)

OWO3
135175 106320

106310
(100)

106310 (100)
106310
(100)

101350
(95.3)

71948 (67.7) 1139 (1.1)

OWO4 148080 96100 96076 (100) 95987 (99.9) 95929 (99.8) 94367 (98.2) 46128 (48.0) 348 (0.4)

OWO5 153246 98125 98125 (100) 97780 (99.6) 97000 (98.9) 83923 (85.5) 54190 (55.2) 365 (0.4)

OWO6 150791 96096 96071 (100) 96046 (99.9) 95762 (99.7) 93752 (97.6) 43685 (45.5) 263 (0.3)
fr
ASV, amplicon sequence variant; NW, normal weight; OWO, overweight/obesity.
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FIGURE 2

Comparative analysis of microbial taxonomic composition. Using the analysis of similarity test, taxonomic profiles showed no significant difference
between the full-length and V3–V4 region of the 16S rRNA genes at the (A) phylum, (B) class, (C) order, (D) family, and (E) genus levels. Notably,
(F) the species level exhibited marked variations between the full-length and V3–V4 region. Taxa that did not rank within the top ten most frequent
and unassigned data are collectively termed “others”.
A B

DC

FIGURE 3

Differential analysis of alpha and beta diversity between sequencing methods. (A) The Wilcoxon signed-rank test revealed that the Shannon index did
not differ significantly, while the Simpson and Pielou indexes were notably higher for the full-length method compared to the V3–V4 region. The
principal coordinate analysis (PCoA) plots showcase the distributions of (B) unweighted and (C) weighted UniFrac distances for both sequencing
methods. Their differences were found to be significant when analyzed with the permutational multivariate analysis of variance test. (D) Based on the
Wilcoxon signed-rank test, the beta index for the full-length 16S rRNA sequencing was lower than the V3–V4 region using unweighted UniFrac
distances. However, when weighted, the beta index was notably higher for the full-length method compared to the V3–V4 region. All data are
presented as medians with interquartile ranges, and ellipses signify 95% confidence intervals.
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FIGURE 4

Comparative microbial composition in Overweight/Obese (OWO) and Normal Weight (NW) groups. (A, B) Using the analysis of similarity test,
significant disparities in taxonomic profiles were found at both the phylum (A) and genus (B) levels when comparing the full-length and V3–V4
region of the 16S rRNA genes. (C) Specifically, the Firmicutes/Bacteroidetes ratio in the OWO group, as determined using the full-length
methodology, was significantly elevated compared to the NW group (unpaired Student t-test). However, using the V3–V4 region methodology, the
Firmicutes/Bacteroidetes ratios were similar between both groups. (D, E) Per the unpaired Mann-Whitney U test, the OWO group displayed markedly
greater alpha (D) and beta (E) diversities than the NW group with the full-length method. However, using the V3–V4 region methodology, the
majority of alpha and beta diversity metrics were analogous for both groups, save for the weighted UniFrac distance. Taxa not ranking within the top
ten most frequent and all unassigned data are collectively labeled as “others”. Continuous data are depicted as either means ± standard deviations or
as medians accompanied by interquartile ranges.
A B

FIGURE 5

Cladograms comparing gut microbial composition in Overweight/Obesity (OWO) and Normal Weight (NW) groups. (A) The cladogram highlights 29
representative amplicon sequence variants having a linear discriminant analysis score ≥ 4, identified via the full-length method and LEfSe. (B) In
contrast, the V3–V4 region methodology identified merely 13 representative amplicon sequence variants.
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between children with OWO and those of NW status. This was

clearly highlighted when analyzing data via the full-length 16S rRNA

sequencing, paired with the level 3 pathway of the KEGG orthology

database (stress value = 0.065) (Figure 6A). In parallel, the Tax4Fun

NMDS plot, derived from V3–V4 segment data and aligned with the

same functional prediction pathway, particularly pronounced

divergences in functional profiles between the two weight groups

(stress value = 0.021) (Figure 6B).

By harnessing the Welch’s t-test in tandem with the Benjamini-

Hochberg procedure to manage the false discovery rate, we

pinpointed 73 distinct level 3 pathways using full-length 16S rRNA

genes and another 61 pathways using the V3–V4 region (Figure 6C).

All pathways were identified with both p- and q-values falling below

0.05. Intriguingly, both NGS methods shared 18 predictive functions.

Difference in the proportion of overlapping level 3 functional

predictions were not significant (25% vs 30%, p = 0.562). Figure 7

delves deeper into these shared 18 level 3 pathways. While the

majority (n = 16) exhibited consistent distribution patterns across

both methods, two pathways — specifically, fructose and mannose

metabolism, and glycosaminoglycan biosynthesis-chondroitin sulfate

— displayed distinct patterns between the two methods.

Additionally, of the 73 identified through full-length

methodology, 35 (48%) were affiliated with the level 1 metabolism

pathway, while from the 61 pathways discerned through the V3–V4
Frontiers in Endocrinology 09
region, 28 (46%) resonated with the same category. Interestingly,

five metabolism pathways—comprising fructose and mannose

metabolism, galactose metabolism, tetracycline biosynthesis,

steroid hormone biosynthesis, and pentose and glucuronate

interconversions—exhibited consistency between the two

methodologies. The proportion of overlapping level 1 metabolism

pathways were similar (86% vs 82%, p = 0.737).
3.6 Association between weight-related
gut bacterial species and
metabolic pathways

Utilizing the Spearman correlation test, a set of bacteria—

Bacteroides ovatus, Bifidobacterium pseudocatenulatum, and

Streptococcus parasanguinis ATCC 15912—were identified in

association with BMI z-score. These were discerned through the

combined use of Welch’s t-test and the Benjamini-Hochberg

procedure. Additionally, Bacteroides uniformis was singled out via

the LEfSe method as having relevance to BMI z-score. Concurrently,

an analysis using Tax4Fun2 highlighted 17 metabolic pathways that

bore associations with the BMI z-score (Figure 8).

The intricate interconnections amongst BMI z-score, the four

gut bacterial species, and the metabolic pathways are vividly
A B

C

FIGURE 6

Functional profile analysis of gut microbiomes in children with Overweight/Obese (OWO) and Normal Weight (NW). (A) By integrating Tax4Fun2 with
the NMDS test, we observed a distinct variation in the functional profiles of the two weight categories as per the KEGG orthology database. The
stress values, which range from ≥ 0.05 to < 0.1, confirm the trustworthy representation of data after dimensionality reduction. (B) Using the older
version, Tax4Fun, in conjunction with the NMDS test, the functional profile differences between the weight groups became evident once more. This
reliable difference is accentuated by the strong representation in the visual plot with a stress value of < 0.05. (C) The UpSet plot showcases the
overlap and unique pathways: 73 derived from the full-length 16S rRNA genes and another 61 from the V3–V4 segments. Notably, 18 predictive
functions were consistently observed across both NGS methods.
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depicted in the network graph. This representation underscores the

multifaceted associations between BMI z-score and these critical

components of the gut microbiome. Strikingly, the trio of bacteria—

Bacteroides ovatus, Bifidobacterium pseudocatenulatum, and

Streptococcus parasanguinis ATCC 15912—showcased active

interactions with the metabolic pathways (Figure 9).
3.7 Correlations between gut microbiota
composition, functional predictions, and
polysomnographic parameters

Comprehensive 16S rRNA gene sequencing revealed that alpha

diversity indices were not correlated with polysomnographic

measures. However, distinct genera demonstrated significant

associations: Bifidobacterium levels correlated with AHI and

Escherichia with AI. Additionally, Phocaeicola abundance was

inversely related to AI, and Bifidobacterium abundance was

inversely associated with minimal SaO2. Extended analysis using

the V3–V4 regions of the 16S rRNA gene confirmed these

relationships and further identified a significant correlation

between Bifidobacterium and AI (Table 3).
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Metabolic function predictions based on full-length 16S rRNA

gene sequencing indicated significant associations between

microbial metabolism in diverse environments, propanoate

metabolism, and AI, as well as between glycine, serine, and

threonine metabolism and mean SaO2. Conversely, sequencing of

the V3–V4 regions elucidated a notable association of

peptidoglycan biosynthesis with minimal SaO2 (Table 4).
4 Discussion

This study investigated the gut microbiome of twelve pediatric

OSA patients, half with OWO and half without, using both the V3-

V4 region and full-length 16S rRNA sequencing methods. The

clinical characteristics were comparable the two groups except for

the BMI z-score. The full-length sequencing, despite producing

fewer ASVs, outperformed the V3–V4 region in terms of taxonomic

coverage. It also resulted in fewer unassigned sequences and

exhibited significant variations in both alpha and beta diversities.

Interestingly, the full-length sequencing provided deeper insights

into the differences in gut microbiota composition between children

with OWO and children with NW compared to the V3–V4
FIGURE 7

Comparison of predicted metabolic pathway abundance in gut microbiomes from children with Overweight/Obesity (OWO) and children with
Overweight/Obesity (OWO) and Children with Normal Weight (NW). Through the columnar visualization, we get a clearer view of the pathway
distributions, making it simpler to contrast and compare across the weight classifications and the two NGS technologies.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1344152
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chuang et al. 10.3389/fendo.2024.1344152
approach. Functionally, each method highlighted unique metabolic

pathways associated with gut microbiota across the different weight

categories. The full-length sequencing was particularly effective in

identifying bacterial species linked to BMI z-score, emphasizing
Frontiers in Endocrinology 11
their potential significance in the dynamics of weight-related gut

microbiome. Table 5 provides a comprehensive comparison of these

two NGS methods, including microbiota bioinformatics, correlation

with weight status, and functional predictions of microbial
FIGURE 8

Heatmap illustrating the spearman correlations Between BMI Z-score, specific gut bacteria, and metabolic pathways. By consolidating findings from
Welch’s t-test, LEfSe, and Tax4Fun2, we identified intricate associations between the BMI z-score, four gut bacterial species, and 17 metabolic
pathways. The Spearman correlation test facilitated this observation.
FIGURE 9

Network interactions illustrating the correlation between BMI Z-score, gut bacteria, and metabolic pathways. This network graph elucidates the
complex relationships between BMI z-score, the gut bacteria Bacteroides ovatus, Bifidobacterium pseudocatenulatum, and Streptococcus
parasanguinis ATCC 15912, and various metabolic pathways. Nodes represent either bacterial species or metabolic pathways, with red ellipses
indicating associations with overweight/obesity and blue for normal weight. The interconnecting lines represent correlation strengths, with thicker
lines denoting stronger associations (correlation coefficient of r-value ≥ 0.60).
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communities in stool samples. Subsequent sections will delve

deeper into the detailed findings.
4.1 16S rRNA sequencing methods: full-
length or V3–V4 region?

In this research, we focused on comparing two sequencing

methods: full-length sequencing and the V3–V4 region sequencing

of the 16S rRNA gene. One of the most striking observations was

that full-length sequencing demonstrated superior taxonomic

coverage compared to the V3–V4 region as previous studies (27,

62). This suggests that the full-length method captures a broader

spectrum of microbial diversity, potentially providing a more

comprehensive picture of the microbial community. This

comprehensive taxonomic resolution could be particularly

beneficial in studies where fine-scale differences in microbial

communities are of interest (63).

While the full-length sequencing yielded fewer ASVs after

denoising, it’s crucial to consider the quality and relevance of

these ASVs. Fewer ASVs doesn’t necessarily imply reduced

microbial diversity but may indicate reduced noise or spurious

sequences (64). The reduced rate of unassigned sequences in the

full-length method further underscores its precision. Unassigned

sequences, often a source of ambiguity in microbial studies, can

stem from sequencing errors, chimeric sequences, or genuine novel

sequences that aren’t yet represented in reference databases (65).

Despite similar relative abundances of both methods, the

significant variations in both alpha (within-sample diversity) and

beta diversities (between-sample diversity) between the two

methods have substantial implications. The higher alpha diversity

in the full-length sequencing might suggest that it can detect a wider

range of taxa within a single sample, potentially unearthing rare or

low-abundance species that might be missed by the V3–V4 method

(66). Differences in beta diversity, on the other hand, could imply

that community compositions derived from the two methods might

not be directly comparable (22). This is pivotal for studies looking at

differences between groups, such as those based on health status,

geography, or other variables.

While our results highlight the potential advantages of full-

length 16S rRNA gene sequencing, researchers should carefully

consider their objectives before selecting a method. For instance,

studies that require rapid results or are constrained by budget might

still benefit from the V3–V4 region due to its established protocols,

faster turnaround, and lower per-case costs (67). Conversely,

projects demanding in-depth taxonomic resolution might favor

the full-length approach.
4.2 Potential applications in studying
weight-related gut microbiome

The observed superiority of full-length sequencing in discerning

the differences in gut microbiota composition and functional

prediction between OWO and NW groups versus the V3–V4

approach is a significant finding. The enhanced depth offered by
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full-length sequencing might be analogous to viewing an image in

higher resolution (66). Where the V3–V4 approach might provide a

general view of the microbiota landscape, full-length sequencing

offers a detailed map. In this study, the performance of the full-

length sequencing to differentiate children with OWO from

children with NW was better than that of the V3–V4 approach,

regarding F/B ratio, alpha diversity, and beta diversity. Therefore,

the full-length sequencing is particularly cost-effective when the

sample size was relatively small. This can be especially significant
TABLE 3 Spearman correlations of alpha diversity indices and top 10 gut
microbiota genera with polysomnographic parameters in pediatric
obstructive sleep apnea.

Predicted
function

AHI AI
Mean
SaO2

Minimal
SaO2

Full-length 16S rRNA sequencing

Shannon 0.29 -0.04 -0.39 -0.43

Simpson 0.25 -0.14 -0.44 -0.41

Pielou 0.16 -0.15 -0.34 -0.35

Bacteroides -0.09 0.07 0.10 0.01

Phocaeicola -0.41 -0.67* -0.14 0.36

Roseburia 0.05 -0.34 -0.43 -0.22

Prevotella 0.13 0.39 0.32 -0.23

Escherichia 0.38 0.84* 0.07 -0.24

Blautia 0.48 0.07 -0.49 -0.39

Dialister -0.33 -0.31 0.09 0.36

Veillonella 0.09 0.30 0.34 0.07

Bifidobacterium 0.58* 0.56 -0.23 -0.69*

Parabacteroides 0.01 -0.02 -0.05 -0.17

V3–V4 16S rRNA sequencing

Shannon -0.15 -0.32 -0.31 0.03

Simpson -0.18 -0.33 -0.27 -0.08

Pielou -0.10 -0.31 -0.41 -0.07

Bacteroides -0.04 0.18 0.10 -0.05

Phocaeicola -0.48 -0.58* 0.07 0.54

Escherichia 0.12 0.71* 0.31 -0.05

Roseburia 0.13 -0.52 -0.55 -0.15

Bifidobacterium 0.61* 0.59* -0.23 -0.66*

Dialister -0.34 -0.32 0.08 0.32

Parabacteroides -0.08 0.06 0.18 0.03

Fusobacterium 0.19 0.13 -0.17 -0.04

Blautia 0.17 0.22 -0.06 -0.28

Prevotella 0.06 0.08 0.01 0.21
fr
Spearman’s r-values are used to represent correlations. Significant correlations are marked as
follows: **p < 0.01, *p < 0.05. AHI, apnea-hypopnea index; AI, apnea index; SaO2, blood
oxygen saturation.
Bold font indicates statistically significant differences (p < 0.05).
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when identifying minor bacterial taxa that may have substantial

impacts on host physiology (67, 68). For example, the full-length

method revealed six bacterial species of 29 representative ASVs,

whereas the V3–V4 region methodology identified 0 bacterial

species of 13 representative ASVs. Furthermore, Bacteroides

ovatus, Bacteroides uniformis, Bifidobacterium pseudocatenulatum,

and Streptococcus parasanguinis ATCC 15912 were closely related

to BMI z-score by using the full-length method.

The differences in functional predictions identified by each

sequencing method underscore the complex and multifaceted

nature of the gut microbiome’s role in host metabolism (69). In

this study, we pinpointed 73 distinct level 3 pathways using full-

length 16S rRNA genes and another 61 pathways using the V3–V4
TABLE 4 Spearman correlations between top 20 predicted level 3
metabolic functions of gut microbiota and polysomnographic
parameters in pediatric obstructive sleep apnea.

Predicted
function

AHI AI
Mean
SaO2

Minimal
SaO2

Full-length 16S rRNA sequencing

Biosynthesis of
secondary
metabolites

-0.13 0.11 0.12 -0.23

Biosynthesis
of antibiotics

0.35 0.34 -0.28 -0.53

Microbial metabolism
in diverse
environments

0.52 0.72** -0.09 -0.32

Biosynthesis of
amino acids

-0.11 -0.12 0.10 -0.25

Carbon metabolism -0.28 0.10 0.39 0.34

Amino sugar and
nucleotide
sugar metabolism

-0.26 -0.39 0.13 0.45

Purine metabolism 0.24 0.46 0.17 -0.11

Pyrimidine
metabolism

0.09 0.10 0.17 -0.23

Pyruvate metabolism -0.11 0.24 0.18 0.12

Glycolysis/
Gluconeogenesis

0.43 0.15 -0.40 -0.37

Starch and
sucrose metabolism

0.00 -0.33 -0.16 -0.12

Galactose metabolism -0.17 -0.36 -0.03 0.27

Glyoxylate and
dicarboxylate
metabolism

0.08 0.17 -0.07 0.13

Fructose and
mannose metabolism

0.49 0.34 -0.34 -0.03

Carbon fixation
pathways
in prokaryotes

-0.49 -0.08 0.52 0.43

Cysteine and
methionine
metabolism

0.00 0.32 0.33 -0.27

Propanoate
metabolism

0.43 0.58* -0.17 -0.09

Alanine, aspartate
and glutamate
metabolism

-0.17 -0.50 -0.17 0.34

Glycine, serine and
threonine metabolism

-0.41 0.15 0.59* 0.24

V3–V4 16S rRNA sequencing

ABC transporters 0.22 -0.09 -0.28 -0.12

Two-component
system

-0.08 -0.04 0.03 0.27

Purine metabolism 0.39 0.57 -0.27 -0.53

(Continued)
TABLE 4 Continued

Predicted
function

AHI AI
Mean
SaO2

Minimal
SaO2

V3–V4 16S rRNA sequencing

Pyrimidine
metabolism

0.13 -0.21 -0.08 -0.18

Aminoacyl-
tRNA biosynthesis

0.32 0.36 -0.22 -0.46

Starch and
sucrose metabolism

0.08 0.08 -0.04 -0.12

Amino sugar and
nucleotide
sugar metabolism

0.10 0.21 -0.03 -0.11

Arginine and
proline metabolism

-0.14 -0.42 0.17 0.15

Ribosome 0.06 0.13 -0.05 -0.38

Fructose and
mannose metabolism

-0.09 0.10 0.11 -0.04

Alanine, aspartate
and
glutamate
metabolism

-0.04 -0.40 0.03 0.03

Porphyrin and
chlorophyll
metabolism

0.16 0.18 -0.13 -0.04

Homologous
recombination

0.02 -0.14 0.09 -0.05

Oxidative
phosphorylation

-0.08 -0.34 0.12 0.05

Peptidoglycan
biosynthesis

0.47 0.51 -0.46 -0.58*

Cell cycle
- Caulobacter

0.29 -0.20 -0.31 -0.25

Nitrogen metabolism -0.40 0.11 0.46 0.41

Methane metabolism 0.36 -0.13 -0.44 -0.46

RNA degradation -0.15 0.28 0.21 0.06
fr
Spearman’s r-values are used to represent correlations. Significant correlations are marked as
follows: **p < 0.01, *p < 0.05. AHI, apnea-hypopnea index; AI, apnea index; SaO2, blood
oxygen saturation.
Bold font indicates statistically significant differences (p < 0.05).
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region. Differences in gut microbiota composition can impact

nutrient absorption, gut barrier function, inflammation, and

interactions with other organ systems (70). Furthermore, the

metabolic pathways, whether involved in short-chain fatty acid

production, amino acid metabolism, or other processes, might hold

the key to understanding how gut microbiota influence weight and

overall health (71–73). Using the full-length method, 35

differentiated metabolic pathways were identified, whereas the

V3–V4 region method revealed 28 differentiated metabolic

pathways. Furthermore, Bacteroides ovatus, Bifidobacterium

pseudocatenulatum, and Streptococcus parasanguinis ATCC 15912

showcased active interactions with the metabolic pathways and

closely related to BMI z-score by using the full-length method.

Therefore, beyond just identifying which bacterial species are

present, the full-length sequencing might offer insights into the

potential functions of these bacteria. Moreover, understanding how

various strains and species are related can give insights into how the

gut microbiome might have evolved in response to dietary,

environmental, or other external factors in children with OWO

versus children with NW.

The ability of full-length sequencing to associate specific

bacterial species with the BMI z-score is not just a technical

achievement but also a clinically relevant finding. Such

associations might provide the foundation for personalized

therapeutic interventions. For instance, seaweed Undaria

pinnatifida administration significantly increased lean-related

Bacteroides ovatus and short-chain fatty acids and tricarboxylic

acid cycle intermediates and decrease high-fat diet-induced body

weight gain in high-fat diet-fed mice (74). As mentioned above,

carbohydrate, amino acids, and lipid metabolisms are weight-

related metabolic pathways. Interestingly, the role of

Bifidobacterium pseudocatenulatum on these pathways is strain

dependent. For example, Bifidobacterium pseudocatenulatum

CECT 7765 can reduce both metabolic and immunological

dysfunctions related to obesity in HFD-fed mice (75), whereas

Bifidobacterium pseudocatenulatum JCLA3 involves the

carbohydrate and amino acids metabolism (76). Streptococcus

parasanguinis ATCC 15912 is an atypical viridans streptococcus

(77) and its clinical significance is not well studied. In this study,
TABLE 5 Comparison of full-length and V3–V4 region 16S rRNA gene
sequencing methods in assessing gut microbiome across different
weight groups in children.

Items/Parameters Full-length
V3–V4
region

NGS methodologies

NGS technology Third-generation Second-generation

Current application Emerging Preferred method

PCR primers V1–V9 region V3–V4 region

NGS platform Pacbio® Illumina®

Amplicon length 1500 bp 300 bp

Bioinformatics platform
QIIME 2

(version 2022.1)
QIIME 2

(version 2021.4)

Analysis pipelines DADA2 (version 1.20)
DADA2

(version 2021.4)

Taxonomic database NCBI (2020.7) NCBI (version 2022.1)

Microbiota bioinformatics

Read count 16044 (15554–18552)
147952

(141946–152740)

ASV count 13951 (12873–15875) 99357 (96097–106739)

Coverage rate High Low

Identified species Numerous Limited

Similarity of
relative abundance

Similar (except at
species level)

Alpha diversity High Low

Beta diversity (unweighted) Low High

Beta diversity (weighted) High Low

Correlation with weight status (small sample size)

Taxonomic profile Present Present

Firmicutes/
Bacteroidetes ratio

More distinct Less distinct

Alpha diversity Present Absent

Beta diversity, unweighted More distinct Less distinct

Beta diversity, weighted Present Present

Representative ASVs Higher Lower

Functional prediction of gut microbiota

Software Tax4Fun2 Tax4Fun

Database KEGG KEGG

Differentiated level 3
pathway

(overlapping/unique)
18/55 18/43

Differentiated metabolic
pathway

(overlapping/unique)
5/31 5/23

Note
Highlighted inconsistency in fructose and
mannose metabolism representations

(Continued)
TABLE 5 Continued

Items/Parameters Full-length
V3–V4
region

Functional prediction of gut microbiota

Translational significance

Elucidating gut
bacterial species can
lead to more targeted
mechanistic research,

enriching our
understanding of the

complex
gut interactions

Embracing a
universally accepted
method for gut

microbiome study
ensures consistent and
comparable results,

fostering collaboration
and

field advancements
Data are presented as median (interquartile range) or number.
ASV, amplicon sequence variant; KEGG, Kyoto Encyclopedia of Genes and Genomes; NCBI,
National Center for Biotechnology Information; NGS, next-generation sequencing; PCR,
polymerase chain reaction.
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Streptococcus parasanguinis ATCC 15912 is positively associated

with BMI z-score and involves amino acid and lipid metabolic

pathways. This is a novel finding; however, its exact mechanism of

weight gaining should be further investigated. Nevertheless,

understanding the metabolic pathways prevalent in different

weight categories could guide dietary recommendations.

While the study focuses on weight differences, it indirectly sheds

light on the broader interactions between the host and its

microbiota. The gut microbiota’s influence isn’t limited to weight

but extends to the immune system, mental health, and more (78,

79). The identified differences in gut microbiota composition and

function could have ripple effects across various physiological

systems. These findings set the stage for further studies.

Longitudinal analyses could explore whether these microbiota

differences precede weight changes or result from them.

Additionally, mechanistic studies could elucidate how the

identified bacterial species influence the BMI z-score and whether

modulating their populations can have tangible health benefits.
4.3 Difference in analyzing OSA-related gut
microbiome with two 16S rRNA
sequencing approaches

Our study offers preliminary evidence that full-length and V3–V4

16S rRNA sequencing methods identify significant correlations

between certain gut microbiota and polysomnographic parameters in

pediatric OSA. Both techniques demonstrated the capability to discern

relationships between the composition of gut microbiota and OSA-

related parameters. Notably, taxa such as Bifidobacterium, Escherichia,

and Phocaeicola, which are either anaerobic or facultative anaerobic

and typically reside in the human gastrointestinal tract, were examined.

Previous research suggests that anaerobic conditions may promote the

proliferation of Bifidobacterium and Escherichia (80, 81), corroborating

our findings of their positive correlations with OSA severity indicators.

Conversely, Phocaeicola, known for its distinctive oxygen tolerance

(82), demonstrates an inverse correlation with the AI, supporting our

observations of its relationship with OSA severity. Hence, NGS

methods are valuable in elucidating the contribution of specific gut

microbes to OSA pathogenesis.

Distinctly, the full-length sequencing provided a more

comprehensive insight into potential OSA-associated metabolic

pathways compared to the V3–V4 technique. The full-length

approach has been instrumental in identifying correlations

between microbial metabolism in diverse environments and AI,

as well as in discovering and characterizing new microbial lineages

that significantly enrich our understanding of microbial diversity

(83). The associations of propanoate metabolism and the

metabolism of glycine, serine, and threonine with OSA were also

observed (84, 85). The impact of peptidoglycan biosynthesis, vital

for bacterial structural integrity and stress tolerance (86), in relation

to OSA and hypoxic conditions is novel and merits further

exploration. These observed differences likely reflect the distinct

genomic regions targeted by each sequencing method, indicating

that each technique may provide a unique perspective on

microbiome complexity. Furthermore, full-length 16S rRNA
Frontiers in Endocrinology 15
sequencing could offer a more nuanced understanding of the

pathophysiological interplay between OSA and the gut microbiota.
4.4 Study limitations

The comparison underscores the importance of method selection

in microbiome studies. There are some study limitations. First, the

choice of sequencing method and analytic pipeline might lead

researchers to different conclusions or emphasize certain findings

over others (67, 87). It’s a reminder that while partial-length (such as

V3–V4) sequencing is more common and might be more cost-

effective, there might be trade-offs in terms of the depth and

breadth of data acquired (88). Additionally, expanding the scope to

include larger cohorts and other disease-associated microbiomes

could enrich the preliminary results presented herein. The observed

differences in microbial compositions between the two groups, as

revealed by the full-length sequencing, can pave the way for

longitudinal studies. Second, although certain bacterial species were

more predominant in children with OWO than in children with NW

and might play roles in metabolism, appetite regulation, or other

physiological processes linked to weight, the cause-effect relationships

between gut bacteria and weight categories need further

investigations. These studies can assess if the microbial differences

are a cause or consequence of being overweight or obese and if

modulating the microbiota can have therapeutic benefits. Targeted

interventions, such as probiotics or dietary changes, could potentially

be designed to modulate the gut microbiota in favor of

weight regulation.
4.5 Conclusions

The full-length 16S rRNA sequencing offers a promising avenue

for microbial research, particularly when high taxonomic resolution

is required. However, the choice between it and the V3–V4 region

should be context-driven, factoring in the study’s goals, available

resources, and the potential trade-offs of each method.

Furthermore, the observed advantages of full-length sequencing in

differentiating gut microbiota and predictive functions between

children with OWO and children with NW, coupled with its

ability to correlate these functions with OSA-related indicators,

highlight its potential in advancing our understanding of the

complex relationship between the gut microbiome and weight. It

emphasizes the need for methodological rigor in microbiome meta-

analysis and suggests a rich area for future investigations. The

associations drawn between gut microbiota composition, metabolic

pathways, and BMI z-score offer a promising avenue to understand

weight management and overall health better.
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