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Background: There are complex interactions between osteoporosis and the

immune system, and it has become possible to explore their causal relationship

based on Mendelian randomization methods.

Methods: Utilizing openly accessible genetic data and employing Mendelian

randomization analysis, we investigated the potential causal connection between

731 immune cell traits and the risk of developing osteoporosis.

Results: Ten immune cell phenotypes were osteoporosis protective factors and

three immune cell phenotypes were osteoporosis risk factors. Specifically, the

odds ratio (OR) of IgD+ CD24+ %B cell (B cell panel) risk on Osteoporosis was

estimated to be 0.9986 (95% CI = 0.9978~0.9996, P<0.01). The OR of CD24+

CD27+ %B cell (B cell panel) risk on Osteoporosis was estimated to be 0.9991

(95% CI = 0.9984~0.9998, P = 0.021). The OR of CD33- HLA DR+AC (Myeloid

cell panel) risk on Osteoporosis was estimated to be 0.9996 (95% CI =

0.9993~0.9999, P = 0.038). The OR of EM CD8br %CD8br (Maturation stages

of T cell panel) risk on Osteoporosis was estimated to be 1.0004 (95% CI =

1.0000~1.0008, P = 0.045). The OR of CD25 on IgD+ (B cell panel) risk on

Osteoporosis was estimated to be 0.9995 (95% CI = 0.9991~0.9999, P = 0.024).

The OR of CD25 on CD39+ activated Treg+ (Treg panel) risk on Osteoporosis

was estimated to be 1.001 (95% CI = 1.0001~1.0019, P = 0.038). The OR of CCR2

on CD62L+ myeloid DC (cDC panel) risk on Osteoporosis was estimated to be

0.9992 (95% CI = 0.9984~0.9999, P = 0.048). The OR of CCR2 on CD62L+

plasmacytoid DC (cDC panel) risk on Osteoporosis was estimated to be 0.9993

(95% CI = 0.9987~0.9999, P = 0.035). The OR of CD45 on CD33dim HLA DR+

CD11b- (Myeloid cell panel) risk on Osteoporosis was estimated to be 0.9988

(95% CI = 0.9977~0.9998, P = 0.031). The OR of CD45 onMoMDSC (Myeloid cell

panel) risk on Osteoporosis was estimated to be 0.9992 (95% CI =

0.9985~0.9998, P = 0.017). The OR of SSC-A on B cell (TBNK panel) risk on

Osteoporosis was estimated to be 0.9986 (95% CI = 0.9972~0.9999, P = 0.042).

The OR of CD11c on CD62L+ myeloid DC (cDC panel) risk on Osteoporosis was

estimated to be 0.9987 (95% CI = 0.9978~0.9996, P<0.01). The OR of HLA DR on
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DC (cDC panel) risk on Osteoporosis was estimated to be 1.0007 (95% CI =

1.0002~1.0011, P<0.01). No causal effect of osteoporosis on immune cells

was observed.

Conclusions: Our study identified 13 unreported immune phenotypes that are

causally related to osteoporosis, providing a theoretical basis for the bone

immunology doctrine.
KEYWORDS

osteoporosis, immunocyte phenotype, mendelian randomization, causal connection,
B cells
1 Introduction

Osteoporosis is a metabolic bone disease characterized by

changes in the microstructure of bones, decreased bone density,

and increased bone fragility (1). In recent years, the complex

interaction between the immune system and osteoporosis has

received attention. With the introduction of the concept of

“immunoporosis” (2), the correlation between immune cells and

osteoporosis has become a research hotspot.

A multitude of research indicates that the immune system,

encompassing both its innate and adaptive branches, is critically

involved in both the onset and persistence of the inflammatory state

characteristic of osteoporosis (3–5). Cells of the immune system, along

with an array of chemokines and cytokines, affect the metabolic

dynamics of bones, influencing the growth, differentiation, and

equilibrium of osteoclasts and osteoblasts (6, 7). Bone marrow

macrophages (BMMs) can switch between M1 inflammatory state

and M2 repair state depending on the surrounding environment (8).

Research reports that M1 macrophages can disrupt osteoblast

formation by secreting tumor necrosis factor-a (TNF-a) (9). Certain
subsets of pro-inflammatory T cells may promote osteoblast

differentiation during the early stages of fracture healing, but it is

currently unclear whether T cells will exert the same effects in the

persistent inflammatory environment of osteoporosis (10). B cells

play a role in regulating the receptor activator of nuclear factor

kappa-B ligand/osteoprotegerin (RANKL/OPG) axis, which affects

osteoclast differentiation. They can inhibit osteoclast differentiation

by secreting OPG (1). Breg cells, a subset of B cells, can inhibit the

differentiation of Th17 cells by secreting interleukin-10 (IL-10) and

transforming growth factor-beta (TGF-b). This inhibition leads to a

decrease in the secretion of inflammatory factors by monocytes and

dendritic cells (11). so, promoting B cell differentiation can have

immunosuppressive effects and may also promote the maturation

and growth of osteogenic precursor cells. It is hypothesized that

there is a causal relationship between immune cells and osteoporosis.

However, due to limitations in sample size, study design flaws, and

confounding factors, it is currently not possible to clearly elucidate

this relationship (12–15). Therefore, further research is necessary to
02
clarify the causal relationship between immune cells, including B cells,

and osteoporosis.

The method of Mendelian randomization (MR) combines

instrumental variables (IVs) and Mendel’s laws of inheritance

(16). It overcomes limitations of traditional randomized

controlled trials by minimizing the impact of confounding factors

(17). Compared to observational analyses, MR offers several

advantages: (1) it maintains the proper sequence of exposure and

outcome, preventing reverse causality; (2) it reduces the influence of

confounding factors on the results; (3) it enables long-term studies

of exposure and outcome (IVs remain valid throughout a lifetime);

(4) it avoids regression dilution resulting from testing errors, thanks

to the accurate genotype testing (18, 19). In this study, a

comprehensive two-sample bidirectional MR analysis was

conducted to establish the causal relationship between immune

cell characteristics and osteoporosis.
2 Materials and methods

2.1 Study design

We employed a two-sample MR analysis to investigate the

causality between 731 immune cell characteristics and osteoporosis.

The IVs used in the analysis satisfied the following critical

assumptions: genetic variation exhibits a direct association with

exposure factors; genetic variation remains independent of possible

confounders; and genetic variation does not affect outcome through

pathways other than exposure.
2.2 Genome-wide association study
data sources

The GWAS summary statistics for osteoporosis were obtained

from the IEU openGWAS public database (Osteoporosis GWAS id:

ebi-a-GCST90038656). The study included GWAS data from

484,598 individuals, with 7,751 cases and 476,847 controls. For
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each immune trait, GWAS summary statistics are available in the

GWAS Catalog with accession numbers ranging from

GCST0001391 to GCST0002121 (20, 21). The dataset includes a

total of 731 immunophenotypes, which consist of various features

such as absolute cell (AC) counts (118 traits), median fluorescence

intensities (MFI) reflecting surface antigen levels (389 traits),

morphological parameters (MP) (32 traits), and relative cell (RC)

counts (192 traits). The MFI, AC, and RC features encompass

various immune cell types, including B cells, CDCs, mature stages of

T cells, monocytes, myeloid cells, TBNK (T cells, B cells, natural

killer cells), and Treg panels. The MP feature includes CDC and

TBNK panels. These immunophenotypes provide valuable

information for investigating the relationship between immune

cell characteristics and osteoporosis through two-sample

MR analysis.
2.3 Screening mendelian randomized IVs

In the first step of the analysis, the IVs was set at 1×10-5, based

on previous related studies (20, 22). The second step involved

removing single nucleotide polymorphisms (SNPs) in linkage

disequilibrium (LD) with each other, with a parameter setting of

r2 = 0.001 and kb=10,000. This step helps to avoid bias caused by

the correlation between SNPs in close proximity to one another.

Finally, if any of the selected SNPs were found to be associated with

confounding factors that significantly correlated with the outcome

(p value <5×10−8), they were removed from the list of selected SNPs.

This step is important to ensure that the observed associations are

not due to the influence of other factors that may affect both the

genetic variant and the outcome of interest (23). The R package

used in this study is available from a public database (URL: https://

github.com/ZDQZBXZ/731-Immune-Cell-Code).
2.4 Statistical analysis

The analysis process was conducted using R 3.5.3 software

(http://www.Rproject.org). A Mendelian Randomization (MR)

analysis employing a two-sample approach was carried out on

GWAS data to investigate the causal link between 731 immune

cell types (as exposures) and osteoporosis (as the outcome), with the

Wald ratio (WR) combined inverse variance weighting (IVW)

strategy as the principal analytic method (24). Where MR results

showed heterogeneity, the random effects version of IVW was

applied; in its absence, a fixed effects model was adopted. To

enhance the robustness and dependability of the findings,

additional methods such as MR-Egger regression, Weighted

Median Regression (WMR), and MR Pleiotropy RESidual Sum

and Outlier (MR-PRESSO) were used alongside IVW (25).

Specifically, the IVW method aims to assess the overall

population by combining the effect estimates of each individual

SNP in MR studies. It’s important to note that if a single SNP

contributes more than 50% of the weight in all relevant SNP pairs,

or if multiple SNPs collectively exceed half of the weight, it can lead

to horizontal pleiotropy. Therefore, in this study, the WMRmethod
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was employed as an alternative strategy to address situations where

IVW findings might lack precision (26). Indeed, the IVW method

assumes its intercept must pass through zero (27). However, this

assumption may not accommodate scenarios where the intercept

deviates from zero. To address this limitation, the MR-Egger

method was employed as an additional strategy (28). The use of

the MR-PRESSO method aimed to detect and correct biases arising

from pleiotropy (29). In this study, data adjusted for pleiotropy via

MR-PRESSO were incorporated to ensure potential outliers were

appropriately addressed. F-statistics were calculated as measures of

IV strength, with values greater than 10 indicating minimal

susceptibility to weak instrument bias (30). IVs failing to meet the

criterion of F ≥ 10 were excluded, ensuring robust IV strength.

Sensitivity checks including the Cochran’s Q test, MR-Egger

intercept test, and MR-PRESSO global test were performed,

ensuring the solidity of the results, evidenced by all MR-Egger

intercept tests having p-values over 0.05, thus excluding the

presence of a horizontal pleiotropy effect (31). In the event of

inconsistency in MR findings, a reanalysis with stricter cutoffs for

the p-value of instrumental variables and more rigorous selection

criteria was executed. Scatter plots offered a graphical display of the

reevaluated data, while funnel plots were employed to scrutinize any

potential publication bias.
3 Results

In this study, we used a two-sample bidirectional MR method to

explore the relationship between 731 immune cell phenotypes and

osteoporosis. Regarding the causal analysis of immune cells for

osteoporosis, we observed a total of 13 different immune cell

phenotypes that have an effect on osteoporosis. Of these 3 immune

cell phenotypes were osteoporosis risk factors and 10 immune cell

phenotypes provided osteoporosis protection (Figure 1; Supplementary

File 1). The results of IVW analysis were referenced as the primary

assessment tool for the study. The IVW results for 13 immune cell

phenotypes are shown in Table 1. Specifically, the odds ratio (OR) of

IgD+ CD24+ %B cell (B cell panel) risk on Osteoporosis was estimated

to be 0.9986 (95% CI = 0.9978~0.9996, P<0.01). The OR of CD24+

CD27+ %B cell (B cell panel) risk on Osteoporosis was estimated to be

0.9991 (95% CI = 0.9984~0.9998, P = 0.021). The OR of CD33- HLA

DR+AC (Myeloid cell panel) risk on Osteoporosis was estimated to be

0.9996 (95% CI = 0.9993~0.9999, P = 0.038). The OR of EM CD8br %

CD8br (Maturation stages of T cell panel) risk on Osteoporosis was

estimated to be 1.0004 (95%CI = 1.0000~1.0008, P = 0.045). The OR of

CD25 on IgD+ (B cell panel) risk on Osteoporosis was estimated to be

0.9995 (95%CI = 0.9991~0.9999, P = 0.024). The OR ofCD25 on CD39

+ activated Treg+ (Treg panel) risk on Osteoporosis was estimated to

be 1.001 (95% CI = 1.0001~1.0019, P = 0.038). The OR of CCR2 on

CD62L+ myeloid DC (cDC panel) risk on Osteoporosis was estimated

to be 0.9992 (95% CI = 0.9984~0.9999, P = 0.048). The OR of CCR2 on

CD62L+ plasmacytoid DC (cDC panel) risk on Osteoporosis was

estimated to be 0.9993 (95% CI = 0.9987~0.9999, P = 0.035). The

OR of CD45 on CD33dim HLA DR+ CD11b- (Myeloid cell panel) risk

on Osteoporosis was estimated to be 0.9988 (95% CI = 0.9977~0.9998,

P = 0.031). The OR of CD45 onMoMDSC (Myeloid cell panel) risk on
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Osteoporosis was estimated to be 0.9992 (95% CI = 0.9985~0.9998, P =

0.017). The OR of SSC-A on B cell (TBNK panel) risk on Osteoporosis

was estimated to be 0.9986 (95% CI = 0.9972~0.9999, P = 0.042). The

OR of CD11c on CD62L+ myeloid DC (cDC panel) risk on

Osteoporosis was estimated to be 0.9987 (95% CI = 0.9978~0.9996,

P<0.01). The OR of HLA DR on DC (cDC panel) risk on Osteoporosis
Frontiers in Endocrinology 04
was estimated to be 1.0007 (95% CI = 1.0002~1.0011, P<0.01)

(Figure 2; Supplementary File 2). Sensitivity analysis of 13 immune

cells to osteoporosis was uploaded as a supplementary file

(Supplementary File 3). There was no gene pleiotropy for 13

immune cell phenotypes, indicating that the results are reliable

(Supplementary File 4). Publication bias and funnel plot results are
B C
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A

FIGURE 1

The causal relationship between 13 immune cell phenotypes and osteoporosis. An upward slope indicates exposure as a risk factor and a downward slope
indicates exposure as a protective factor. The outcome is osteoporosis. (A) exposure factor is CCR2 on CD62L+ myeloid DC. (B) exposure factor is CCR2 on
CD62L+ plasmacytoid DC. (C) exposure factor is CD11c on CD62L+ myeloid DC. (D) exposure factor is CD24+ CD27+ %B cell. (E) exposure factor is CD25
on CD39+ activated Treg. (F) exposure factor is CD25 on IgD+. (G) exposure factor is CD33- HLA DR+ AC. (H) exposure factor is CD45 on CD33dim HLA
DR+ CD11b-. (I) exposure factor is CD45 on Mo MDSC. (J) exposure factor is EM CD8br %CD8br. (K) exposure factor is HLA DR on DC. (L) exposure factor
is IgD+ CD24+ %B cell. (M) exposure factor is SSC-A on B cell.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1341002
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhou et al. 10.3389/fendo.2024.1341002
also presented as supplementary documents (Supplementary File 5).

No causal effect of osteoporosis on immune cells was observed

(Supplementary File 6). The raw data of 731 immune cell

phenotypes after excluding weak IVs, along with F-statistics for 13

immune cell phenotypes, are detailed in Supplementary File 7.
4 Discussion

Utilizing the genetic information from publicly accessible

databases, our investigation delved into the potential causative

links between 731 immune cell characteristics and osteoporosis

via MR. As far as we are aware, Mendelian studies are the current

focus of much scientific attention; however, the investigation into

the connection between immune cells and diseases remains largely

unexplored. Our MR analysis is pioneering in examining the

causative links between a variety of immune phenotypes and

osteoporosis, thereby laying some groundwork for the concept of

immune-related osteoporosis. Our research identified 13 immune

cell phenotypes spanning four categories of immune traits (MFI,

RC, AC, and MP) that have a causal relationship with osteoporosis.

Within these traits, 3 phenotypes were identified as risk factors,

while 10 were established as protective factors, all with a P value of

less than 0.05.

According to MR results, the traits IgD+ CD24+ %B cells, CD24+

CD27+ %B cells, and CD25 on IgD+ (B cell panel) have been identified

as protective factors against osteoporosis. These three phenotypes all

reflect the expression of surface-active substances on B cells. Typically,

common markers found on the surface of B cells are utilized to isolate

and characterize the various subgroups within the B cell population. To

elaborate, IgD is a membrane-bound immunoglobulin on B cells that
Frontiers in Endocrinology 05
binds to antigens and participates in the B cell immune response (32,

33). CD24 is a cell surface marker involved in cell-to-cell interactions

and interactions between cells and their external microenvironment,

and it is associated with the adhesion and migration capabilities of B

cells (33–35). The term IgD+ CD24+ %B cells indicates the percentage

of B cell subgroups that co-express IgD and CD24 within the overall B

cell population (the same principle applies to the other phenotypic

characteristics mentioned in the text). Consequently, MR analyses

suggest that a higher proportion of B cell subgroups expressing IgD

and CD24 correlates with a reduced risk of osteoporosis. IgD plays a

crucial role within the adaptive immune system, participating in the B-

cell driven antibody-mediated immune reactions (36). Studies indicate

that higher IgD levels and lower IgM levels on B cells correspond with

reduced B cell activity in human peripheral blood (36–40). However,

the connection between these observations and osteoporosis remains

unclear. It’s hypothesized that the suppressive activity of B cells may

interact with the development and expansion of bone-forming

progenitor cells (11). Whether the control of B cell functionality

through IgD surface expression is implicated in bone metabolism

requires comprehensive investigation. CD24 participates in the

osteogenic differentiation process of bone marrow mesenchymal

stem cells (BMSCs) and acts as a signaling molecule within this

context (41, 42). Study has demonstrated that CD24, located on the

cell surface, displays a notable disparity in expression levels when

BMSCs undergo differentiation into osteogenic or lipogenic lineages,

with reduced CD24 expression being associated with diminished

osteogenic differentiation (43). CD24 is currently proposed as a

selective biomarker for a subpopulation of BMSCs with enhanced

osteogenic potential (33). CD27, on the other hand, is a molecular

marker on the cell membrane commonly used to differentiate various

subgroups of memory B cells (44, 45). A previous MR study has
TABLE 1 The IVW results for 13 immune cell traits.

immune cell traits beta
coefficients

standard
error

OR
values

95%
confidence

p-value Trait type

IgD+ CD24+ %B cell -0.00123 0.000464153 0.9986 0.9978~0.9996 <0.01 Relative count

CD24+ CD27+ %B cell -0.00086 0.000374428 0.9991 0.9984~0.9998 0.021 Relative count

CD33- HLA DR+ AC -0.00033 0.000160646 0.9996 0.9993~0.9999 0.038 Absolute count

EM CD8br %CD8br 0.00041 0.000204786 1.0004 1.0000~1.0008 0.045 Relative count

CD25 on IgD+ -0.00046 0.000204577 0.9995 0.9991~0.9999 0.024 MFI

CD25 on CD39+ activated Treg 0.00100 0.000485582 1.0010 1.0001~1.0019 0.038 MFI

CCR2 on CD62L+ myeloid DC -0.00080 0.000405533 0.9992 0.9984~0.9999 0.048 MFI

CCR2 on CD62L+ plasmacytoid DC -0.00067 0.000310695 0.9993 0.9987~0.9999 0.035 MFI

CD45 on CD33dim HLA DR+ CD11b- -0.00118 0.000547639 0.9988 0.9977~0.9998 0.031 MFI

CD45 on Mo MDSC -0.00079 0.000331975 0.9992 0.9985~0.9998 0.017 MFI

SSC-A on B cell -0.00138 0.000677511
0.9986 0.9972~0.9999 0.042 Morphological

parameter

CD11c on CD62L+ myeloid DC -0.00123 0.000449283 0.9987 0.9978~0.9996 <0.01 MFI

HLA DR on DC 0.00071 0.000219126 1.0007 1.0002~1.0011 <0.01 MFI
Table 1 displays the IVW results for 13 immune cell traits causally linked to osteoporosis. The 95% confidence intervals represent the 95% confidence intervals for OR values. The ‘type’ of various
immune cells can be referenced in the Trait type column. The original data for IVW are retained in Supplementary File 1.
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reported a causal relationship between CD27 and bone density (46).

CD25, also known as the IL-2 receptor alpha chain, is another cell

surface marker that characterizes a cell surface receptor and plays a

crucial role in regulating the activation, proliferation, and

differentiation of T and B cells (47, 48). Evidence on CD25

expression on the surface of B cells and osteoporosis is limited, so

this finding is revealing.

The term “SSC-A on B cell (TBNK panel)” refers to the

quantification and assessment of the side scatter signal intensity

(SSC-A) observed in B cells within the TBNK panel for cell analysis.

SSC-A indicates the intensity of side scatter signals detected during

flow cytometry, providing insights into cellular dimensions, shape,
Frontiers in Endocrinology 06
and intracellular complexity (21). Generally, a heightened SSC-A

reading may indicate a greater cell population, though it does not

directly quantify the actual number of cells. So, MR results from this

research demonstrate a negative causal link between side scatter

signal intensity on B cells (SSC-A) and osteoporosis. Moreover, the

immunosuppressive characteristics of B cells, along with the

presentation of certain proteins on their surface, play a significant

role in providing defense against osteoporosis. However,

further discussion is needed on the two main aspects of the

potential relationship between B cells and osteoporosis: an

osteoprotective function in physiological conditions and a bone-

destructive function in pathological states. In the bone marrow
FIGURE 2

The forest plot of the causal relationship between 13 immune cell phenotypes and osteoporosis. The inverse variance weighting method is used as
the primary outcome p < 0.05 is considered causal relationship.
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microenvironment, B lymphocytes are unable to mature in the

absence of secretory factors from mesenchymal and osteoblastic

cells (49). Bruton’s tyrosine kinase (BTK) is an enzyme integral to

signaling in pre-B cell receptors (pre-BCRs) (50). As part of their

maturation process, B cells participate in the assembly of pre-BCRs

via V(D)J recombination (49). Upon successful pre-BCR formation,

BTK engages in subsequent signaling pathways (51). Interestingly,

BTK signaling unexpectedly plays a crucial role in the

differentiation of osteoclasts. When BTK signaling is impaired,

osteoclasts become dysfunctional and bone resorption is

diminished (52). OPG, belonging to the tumor necrosis factor

(TNF) receptor superfamily, competitively interacts with RANKL,

inhibiting the interaction of RANKL with its receptor RANK—a

critical step in osteoclastogenesis and activation (53). There is

previous evidence that B cells under physiological conditions can

secrete OPG (54), and in the bone marrow, B cells contribute nearly

half of the OPG (55), suggesting that B lymphocytes are crucial in

maintaining bone integrity by mitigating excessive bone resorption.

This means that B lymphocytes play a very important role in

regulating bone health, particularly in preventing excessive

bone resorption.

In instances of osteoporosis pathology, notably under

conditions of chronic inflammation commonly associated with

postmenopausal osteoporosis in women, B lymphocytes can

contribute to bone destruction (56). Unlike senile osteoporosis,

which is characterized by reduced bone resorption and even more

significant decreases in bone formation (57), postmenopausal

osteoporosis sees a marked increase in osteoclast numbers and a

surge in bone resorption (58). More critically, the abrupt decline in

estrogen triggers an inflammatory state and elevates inflammatory

factors within the bone milieu, which in turn stimulates B

lymphocytes to produce more granulocyte macrophage colony-

stimulating factor (GM-CSF) (59). This factor has been shown to

promote proliferation in osteoclast progenitor cells and an uptick in

osteoclast numbers (60). Additionally, under inflammatory

conditions, activated B cells secrete RANKL, which is

instrumental in the activation of osteoclast formation (61).

Besides osteoporosis in postmenopausal women, smoking and

chronic diseases such as obesity, diabetes, and hypertension can

also lead the body to a state of chronic inflammation. Compared to

the physiological state where OPG secretion inhibits osteoclasts, B

cells in pathological states promote osteoclasts. However, it is

undeniable that B cells appear to play a significant role in the

regulation of osteoclastogenesis through the RANKL/OPG

signaling pathway. This study has identified only three B

lymphocyte subpopulations and the SSC-A on B cell marker that

are protective against osteoporosis. Due to MR analysis avoiding

confounding bias and reverse causation, the results have some

significance, but whether these cell subpopulations have potential

roles in conjunction with the RANKL/OPG signaling system

remains to be further investigated.

The term “EM CD8br %CD8br (Maturation stages of T cell

panel)” denotes a specific subset of T cells within the T cell

differentiation process that are characterized by an effective memory

function, high CD8 expression, and comprise a certain percentage of
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the overall T cell population. This subset of T cells, known as memory

CD8+ T cells, is found persistently in the peripheral blood of patients

who suffer from delayed bone healing. Memory CD8+ T cells have

been observed to hinder the activity and osteogenic differentiation of

bone marrow stromal cells by excessively producing interferon-gamma

(IFN-g) (62). This was also suggested as an osteoporosis risk factor in

the MR results. CD39 is prevalently located on the surface of Treg cells

and is part of the Nucleoside Triphosphate Diphosphohydrolase

(NTPDase) superfamily, and it plays a significant role in T cell

functionality, storage, and proliferation (63–65). The term “activated

Treg+” refers to a subset of Treg cells that express both CD39 and

CD25 and are in an activated state, exhibiting regulatory properties in

response to antigen stimulation. Evidence found that CD39 mediates

osteoporosis by regulating the balance between osteoclasts and

osteoblasts through the Wnt/b-collagen pathway (66). Additional

evidence corroborates that soluble pro-inflammatory cytokines IL-

17A and IL-17F, secreted by T cells (Th17 cells), are vital mediators

for the maturation and differentiation of osteoblasts, and play a crucial

role in enhancing bone formation as well as facilitating the healing of

fractures (67, 68). Despite the known association of various cytokines,

proteins, and T cells with osteoporosis, the intricate processes related to

bone metabolism and remodeling involving CD25 and CD39, which

are expressed on the T cells, remain a mystery (69).

In our study, CD11c on CD62L+ myeloid DC, CCR2 on

CD62L+ myeloid DC, and CCR2 on CD62L+ plasmacytoid DC

were all observed to be protective factors against osteoporosis.

CD62L, also known as L-selectin, is an adhesion molecule found

primarily on the surface of lymphocytes and indicated by certain

dendritic cells (70, 71). Down-regulation of CD62L antigen has

been suggested as a possible mechanism for neutrophilia during

Immune response (72, 73). A previous study reported decreased

CD62L expression in the spleen and increased expression in the

bone marrow during inflammation-induced osteoporosis (74).

CCR2 serves as a chemokine receptor on the cell membrane,

playing a critical role in the migration of monocytes and the

management of inflammation-associated activities (75). It has

been associated with a decline in bone mass and the facilitation

of bone degradation (76). CCR2 can also be found on

preosteoblasts and osteoblasts, where its interaction with the

chemokine ligand 2 (CCL2) is thought to contribute to the fusion

and development of osteoblasts (77–79). Research indicates that

the removal or blocking of CCR2 results in a reduction in both

the quantity and the functionality of fully formed osteoclasts, as

well as mitigated bone resorption (80). According to MR

findings from the current study, CCR2 activity on both

plasmacytoid and conventional dendritic cells acts as a

defensive mechanism against osteoporosis, aligning with the

prevailing body of evidence.

MR results show that CD45 on CD33dim HLA DR+ CD11b-,

CD45 on Mo MDSC, and CD33- HLA DR+ AC were protective

factors against osteoporosis, and all three were associated with

Myeloid cells. Where CD33dim indicates a lower level of CD33

expression and CD11b- indicates no expression of CD11b.Mo-

MDSC stands for monocyte-derived myeloid-derived suppressor

cells, which play an important role in the regulation of immune
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responses, inflammation, and the tumor microenvironment (81).

CD45 is a common leukocyte co-antigen that plays an important

role in immune responses and cell signaling (82). For T cells, the

extracellular structural domain of CD45 is expressed in several

different isoforms, and the expression of specific isoforms depends

on specific cellular subpopulations. The nature of the ligands for the

different isoforms of CD45 is still uncertain, and the exact

mechanism by which the potential ligands regulate CD45

function is not known (83). CD45 is inextricably linked to the

immune system, and current studies have elucidated significant

associations between CD45 in systemic lupus erythematosus,

rheumatoid arthritis, and HIV (84). Dysfunction of CD45 has

also been associated with hematologic malignancies and

Alzheimer ’s disease (85). Some evidence suggests that

perturbations in CD45 activity may lead to the development of

autoimmune diseases (86, 87). Despite the abundant expression of

CD45, its role in myeloid cells is unclear, and there is no definitive

proof indicating an association with osteoporosis (88). HLA-DR is

an MHC class II cell surface receptor encoded by the human

leukocyte antigen complex on chromosome 6, region 6P21. A

statistically significant association was found between the number

of HLA-DR mismatches and the diagnosis of osteoporosis in renal

transplant patients (89). Increased immune response due to HLA-

DR mismatch may be associated with osteoporosis and hip fracture

development (90). CD33 is a myeloid-specific antigen that is highly

expressed in myeloid cells. CD33 plays an important role in

immune regulation and cell adhesion functions (91). CD11b is an

adhesion molecule expressed in monocytes and myeloid cells, which

facilitates cell adhesion and migration (92, 93). The low expression

of CD11b and CD33 in myeloid cells may limit their cell adhesion

and migration functions, suggesting a negative causal effect on

osteoporosis, which is enlightening.

Before this study, research (Cao’s study) had already reported

causal relationships between immune cell phenotypes and bone

mineral density (BMD). Therefore, it is important to discuss the

necessity of this study. Cao’s study reported a total of 53 causal

relationships between different immune cell phenotypes and BMD

(see Cao’s study Supplementary Table 2) (46). Similar to this study,

neither found causal effects of osteoporosis or BMD on immune

cells. CD45 on CD33dim HLA DR+ CD11b- was the same exposure

factor found in both studies, one study defined its outcome as total

body BMD, while this study defined its outcome as osteoporosis.

Using BMD as an outcome may lean more towards assessing the

overall impact of immune cells on bone density. Using osteoporosis

as an outcome aims to better understand the specific role of

immune cells in the development of osteoporosis. Therefore, the

causal relationship between the other 12 immune cell phenotypes

and osteoporosis, which was found in this study, is unreported and

holds clinical significance. In this study, we identified and

extensively discussed the complex causal role of B cells in

osteoporosis, whereas Cao’s study focused on the correlation

between the CD40/CD40L system and bone metabolism. In

addition, based on existing literature evidence, this study

discusses in detail the potential links between each immune

phenotype traits and osteoporosis The results of these two studies
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complement each other, providing insights from different

perspectives into the potential causal relationships between

osteoporosis and immune cells.

Through our study, we found that four immune cell

characteristics, including absolute cell counts, median fluorescence

intensities reflecting surface antigen levels, morphological

parameters, and relative cells all had different causal relationships

with osteoporosis. CD24, CD27, CD25 from B cells are protective

factors against osteoporosis, and similar findings have been discussed,

but more in-depth mechanisms of action remain to be investigated.

The signal intensity of side scatter (SSC-A) on B cells reflects the

protective effect of osteoporosis, which is related to the

comprehensive assessment of B cell size, number, complexity, and

granular content. Therefore, several active factors on B cells and a

certain degree of B cells may be beneficial for osteoporosis. It must be

mentioned that there are two risk factors associated with T cells. The

EM CD8br %CD8br (Maturation stages of T cell panel) primarily

represents effector T cells that have undergone stimulation and

differentiation in immune response and possess the ability for rapid

response. These cells are characterized by high expression of CD8.

Another factor is a subset of regulatory T cells (Tregs), which are

characterized by the surface expression of CD25 and CD39.

Additionally, these Treg cells display an activated state. However,

the regulation of T cells in osteoporosis is complex and diverse, and

further evidence is still worth exploring.
4.1 Limitations

Due to the self-reported nature of the diagnostic data for

osteoporosis in the GWAS database with the identifier ebi-a-

GCST90038656, there is a potential for a certain degree of bias in

the results. Due to database limitations, we were unable to stratify

osteoporosis by gender, age, race, and whether or not they smoked,

and we will work to address this issue in our upcoming studies.
5 Conclusions

In conclusion, we demonstrated a causal relationship between

13 immune phenotypes and osteoporosis through comprehensive

bidirectional MR analysis, highlighting the complex pattern of

interactions between the immune system and osteoporosis. In

addition, our study significantly reduced the effects of

unavoidable confounders, reverse causality, and other factors.

This may provide new avenues for researchers to explore the

biological mechanisms of osteoporosis and help to explore early

intervention and therapeutic approaches.
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